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8 Chapter 1

INTRODUCTION
Domestication of animals and plants played a major role in the rise and establish-

ment of human civilizations. People were always dependent on a continuous supply 
of food, however the tremendous growth in human population makes securing global 
food resources one of the crucial goals of current and future generations (Baker et al. 
1997). Diseases that destroyed livestock and crops have had catastrophic effects caus-
ing starvation and huge economic losses (Baker et al. 1997). The ability to successfully 
infect economically and ecologically important species has evolved several times inde-
pendently within the tree of life and disease-causing organisms include diverse groups 
such as bacteria, fungi and nematodes (Figure 1-1A).

A fascinating collection of these pathogens is united in the taxonomic class of oomy-
cetes (Figure 1-1B and Figure 1-2). Since the first description of one of its members in 
the 19th century, these eukaryotic organisms have been in the research focus thereby 
initiating the scientific field of ‘phytopathology’. Even though some members devel-
oped to model organisms for host-pathogen interactions, experimental work with this 
group of organisms in general has shown to be challenging (Govers & Gijzen 2006). 
Consequently, comprehensive characterization of the (molecular) biology of oomycetes 
is lagging behind other eukaryotic model organisms. Six years ago, oomycetes entered 
the genomics era by collaborative sequencing efforts that led to the publication of 
whole genome sequences of two of its members (Tyler et al. 2006). Since then, many 
more oomycete genome sequences together with accompanying transcriptomics data 
became available. To retrieve biological insights from the wealth of these complex data 
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Figure 1-1 Independent evolution of pathogenicity in the tree of life.
(A) Pathogenicity (indicated with asterisk) evolved (at least) in two of the three domains of life (possible root 
indicated with red star); in bacteria, e.g. proteobacteria such as Pseudomonas syringae, and in eukaryotes. 
(B) The ability to successfully infect a host (indicated with asterisk) has evolved several times independently 
in eukaryotes, e.g. in morphologically diverse organisms such as fungi and nematodes. Even though oomy-
cetes share apparent similarities with fungi, they are phylogenetically unrelated. Whereas fungi are closely 
related to metazoans, phylogenetic analyses unambiguously group oomycetes together with non-pathogen-
ic algae in the group Stramenopiles.
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9General Introduction

and to overcome the experimental limitations inherent to oomycetes, integrative and 
comparative bioinformatic approaches are crucial. Comparative genomics, especially 
within oomycetes, but also with fungi and other eukaryotes, is needed to elucidate 
the genome evolution of these organisms, to identify specific features that characterize 
these species and to shed light on the function of as yet uncharacterized genes thereby 
complementing traditional experimental work. For the research described in this thesis, 
we have exploited the growing number of omics data in oomycetes and applied com-
parative genomic and integrative bioinformatic approaches to study their biology and 
evolution. 

In this introductory chapter (chapter 1), we briefly touch upon the current know-
ledge of the phylogeny and biology of oomycetes and describe the use of comparative 
genomics as a crucial tool to elucidate genome evolution and function. We then intro-
duce the experimental chapters of this thesis, the first two of which focus on the evolu-
tion of genes and their encoded proteins. In chapter 2 we studied protein domains, the 
building blocks of proteins, and in chapter 3 the evolution of genomes, more specifically 
the gene content, in oomycetes. The next chapter (chapter 4) centers on the regulation 
of gene expression by identifying cis-regulatory DNA motifs and chapter 5 on large-scale 
functional associations between genes and/or proteins. The analyses presented in this 
thesis highlight the merit of comparative genomics and lead to the establishment of 
(testable) hypotheses on the evolution, biology and the function of as yet uncharacter-
ized gene products in oomycetes. This is summarized in the last chapter (chapter 6), in 
which we discuss recurring themes, especially in the light of related work, and give an 
outlook how comparative genomics will further aid oomycete research.

THE GROUP OF OOMYCETES

Oomycetes - an Intriguing Ensemble of Cosmopolitan Organisms

Oomycetes are an intriguing ensemble of more than 1,500 species comprising sap-
rophytes - organisms that feed on dead organic material - and pathogens of animals as 
well as plants (Govers & Gijzen 2006; Thines & Kamoun 2010). Historically, oomycetes 
or ‘water molds’ have received considerable attention since a member of the genus 
 Phytophthora significantly impacted human history (Fisher et al. 2012).  Phytophthora 
 infestans is the causal agent of potato late blight, a disease that led to starvation and 
death of millions of people during the Irish potato famine and enforced one of the 
largest immigration waves in human history reducing the population in Ireland from 
8.2 to 5.8 million in 20 years (Duncan 1999). The name  Phytophthora, Greek for ‘plant 
destroyer’, was coined in the 19th century by the German mycologist Heinrich Anton de 
Bary (Large 1940). De Bary studied infected potato plants and showed that P. infestans 
was the cause of late blight. Even today, P.  infestans is a constant threat to global potato 
and tomato production, estimated to cause losses of up to US$3 billion annually (Dun-
can 1999; Pennisi 2010). 

Thesis.indb   9 3/17/13   7:22 PM



10 Chapter 1

Since the 19th century and the work of de Bary, P. infestans has always been a cat-
alyst for advances in studies of plant pathogens and the interaction with their hosts 
(Judelson & Blanco 2005). However, P. infestans is only one of many pathogens within 
the oomycetes: the most basal branching oomycetes are parasites of marine algae and 
diatoms such as the brown algae pathogen Eurychasma dicksonii (Grenville-Briggs et al. 
2011). Therefore oomycetes most likely evolved from an aquatic environment that they 
shared with their hosts (Thines & Kamoun 2010). Parasitism on (land) plants, as seen 
for P. infestans, has most likely evolved several times independently in major groups of 
oomycetes, most prominently within the group of Peronosporales (reviewed in Thines 
& Kamoun 2010), which besides  Phytophthora also contains the downy mildews. The 
genus  Phytophthora comprises over 100 described species (Kroon et al. 2012), several 
of which have severe impact on agriculture and ecosystems (for some examples see 
Figure 1-2). Most  Phytophthora species have a hemi-biotrophic lifestyle characterized 
by an initial biotrophic phase that subsequently switches to a necrotrophic phase at the 
end of the infection cycle. Members of this genus display a huge diversity in their host 
specificity ranging from the soybean pathogen  Phytophthora  sojae that infects only one 
host to Phytophthora ramorum that is a severe threat to a broader variety of more 
than 100 plant species (Grunwald et al. 2008). Whereas some oomycetes exhibit similar 
host ranges and lifestyles compared to  Phytophthora, others show distinct lifestyles or 
colonize hosts other than plants. The downy mildew   Hyaloperonospora   arabidopsidis 
as well as the white rust Albugo laibachii are two examples of exclusively  Arabidopsis 
 thaliana parasitizing oomycetes that evolved their obligate biotrophy lifestyle indepen-
dently (Figure 1-2). In contrast, Pythium species such as  Pythium  ultimum are wide-
range saprophytes and opportunistic phytopathogens mainly exhibiting a necrotrophic 
lifestyle.  Saprolegnia  parasitica is a fish pathogen and a growing problem in aquaculture 
threatening fish production as one of the emerging major sources of animal protein 
for human nutrition (Jiang et al. 2013). Exhibiting a wide variety of different lifestyles 
and occupying diverse ecological niches all around the world makes oomycetes, next to 
fungi, one of the most prominent and diverse group of eukaryotic pathogens.

Oomycetes and their Phylogenetic Relationship to Other (Pathogenic) Taxa

The ability to successfully colonize a host and the distinct mode of this relationship, 
i.e. if the pathogen exhibits a biotrophic or necrotrophic lifestyle, evolved independent-
ly within oomycetes and fungi (Figure 1-1B). For many decades, it was assumed that 
oomycetes and fungi are phylogenetically related because they share several notable 
similarities ranging from their osmotrophic feeding behavior, mode of reproduction, 
to hyphal growth (Money 1998; Money et al. 2004). Even though de Bary had already 
observed some morphological differences between fungi and oomycetes (Large 1940), 
it was biochemistry that found distinct differences, e.g. in the constitution of the cell 
wall (Werner et al. 2002; Latijnhouwers et al. 2003). Moreover, molecular phylogenetics 
placed oomycetes unambiguously together with marine non-pathogenic autotrophic 
organisms such as the photosynthetic brown algae and diatoms within the phylum 
 Stramenopiles (Baldauf et al. 2000) (Figure 1-2). Recent molecular data suggest that 
oomycetes as a group are relatively old; they likely diverged from their non-pathogen-
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11General Introduction

ic relatives around 1,000 million years ago (Bhattacharya et al. 2009) and are slightly 
younger than fungi but of similar age as animals. 

Whereas the common ancestry of  Stramenopiles is generally accepted, their re-
lation with other species is still controversial (Baurain et al. 2010). According to the 
  Chromalveolate hypothesis,  Stramenopiles are grouped with other chlorophyll-c con-
taining lineages such as  Cryptophytes,  Alveolates, and  Haptophytes into a single mono-
phyletic supergroup (Cavalier-Smith 1999; Keeling 2009). This grouping has been justi-
fied under the assumption that the last common ancestor of these species acquired the 
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Figure 1-2 Phylogenetic relationship between Stramenopiles and fungi.
Predicted phylogenetic relationship between a (non-exhaustive) selection of sequenced fungal and oomy-
cete pathogens together with some of their non-pathogenic relatives. The phylogeny is based on 65 core 
genes and corroborates the established dichotomies with high support (>95% bootstrap). The possible ac-
quisition and subsequent independent loss of a plastid as well as the independent gain of pathogenicity 
mechanisms is displayed on the most likely branches for the given selection of species. The sequenced 
genomes display a huge diversity in size, ranging from 12 Mb in fungi up to 260 Mb in oomycetes, and in 
number of predicted genes.
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12 Chapter 1

plastid via a single secondary endosymbiosis event and inherited it strictly vertically. 
Subsequently, oomycetes and other plastid-lacking species independently lost these 
plastids, a hypothesis that seems to be supported by the identification of remnants 
of plastid-derived genes in their genomes (Andersson & Roger 2002; Tyler et al. 2006; 
Maruyama et al. 2009). The competing serial eukaryotic-eukaryotic endosymbiosis hy-
pothesis, however, proposes the independent acquisition of plastids through higher 
order endosymbiosis and, depending on the precise point of acquisition, no or less 
secondary losses are needed to explain the obvious lack of plastids in several lineages 
(Cavalier-Smith et al. 1994; Archibald 2009; Baurain et al. 2010).

A Snapshot of the Biology and Pathology of Oomycetes 

Oomycetes are tightly associated with their respective hosts because most of the 
distinct life stages take place and develop during host colonization, exemplified by the 
life cycle of Phytophthora (Figure 1-3). After a biflagellated zoospore, the free-swim-
ming asexual spore, detects host tissue by chemotaxis, as has been shown for some 
 Phytophthora species such as P. sojae, it adheres and encysts (Judelson & Blanco 2005). 
Subsequently, this cyst starts to germinate, forming an appressorium that allows a tight 
contact to the host cell. This serves as a starting point for hyphal growth subsequent to, 
in the case of plant pathogenic oomycetes, biochemical and/or mechanical breakdown 
of the cell wall (Randall et al. 2005; Tyler et al. 2006; Haas et al. 2009). Hyphae spread 
through the living host tissue, forming specialized infection and feeding structures 
called haustoria (Hohl & Stössel 1976). Similar to fungi, oomycetes release proteins that 
interfere with or suppress immune responses in the host, such as the oomycete spe-
cific RXLR and Crinkler effectors, and enzymatically degrade organic compounds such as 
glycoside hydrolases for nutrition uptake (reviewed by Stassen & Van den Ackerveken 
2011). After a certain time of vegetative growth, typically 4-7 days for P. infestans, new 
sporangia are formed to allow dispersal and colonization of other hosts. Sporangia 

hyphae

sporangium

cleaving
sporangiumzoospore

germinating
cyst

direct germination

indirect germination

infection

Figure 1-3 The life cycle of Phytophthora
The (asexual) life cycle of Phytophthora is 
mainly associated with the colonization of 
the host. Phases on or within the host are 
indicated in green. The infection of the host 
is initiated directly by a germinating sporan-
gium or indirectly by a germinating cyst.
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13General Introduction

emerge from the termini of hyphae and can either germinate and infect directly or 
develop in a zoosporangium that releases zoospores that initiate colonization and infec-
tion of a new host. In P. infestans and other species sporangia can be blown away to 
disperse over large distances.

Historically, reaching back to de Bary, these processes have been studied microscop-
ically by observations of morphological alteration such as zoospore formation (Large 
1940). However, this has been gradually substituted by studies applying in-depth mo-
lecular and biochemical tools such as DNA transformation (Judelson et al. 1991) and 
gene silencing (Kamoun et al. 1998; van West et al. 1999, also reviewed by e.g. Birch 
& Whisson 2001; Kamoun 2003). However, these techniques have limitations (Govers 
& Gijzen 2006) and focus on the function of a single gene and its role in the complex 
biological/developmental processes, e.g. the contribution of Pks1 (Xiang et al. 2009) or 
Pigpb1 (Latijnhouwers & Govers 2003) in spore formation. In the last few years, espe-
cially since the availability of the genome sequences of the first oomycetes (Tyler et al. 
2006) and the application of bioinformatics, the research on all aspects of oomycete 
biology has noticeably gained velocity, accelerating molecular genetics and molecular 
biology and thereby changing the focus to a more system-wide understanding of oomy-
cete biology.

COMPARATIVE GENOMICS IN OOMYCETES

Oomycetes Entering the (Gen-) Omics Era

Since the late 90’s of the last century, biology has undergone a tremendous transi-
tion facilitated by the availability of technologies to sequence full genomes. The first 
sequenced organism was the parasitic bacterium  Haemophilus  influenzae (Fleischmann 
et al. 1995), but the number of fully sequenced genomes was increasing continuously, 
reaching milestones with the availability of the human genome (Venter et al. 2001; 
Lander et al. 2001) and genomes of eukaryotic model organisms such as  Saccharomyces 
 cerevisiae (Goffeau et al. 1996) and A.  thaliana (Arabidopsis Genome Initiative 2000). 
This increase in the number of sequenced genomes - 3,707 so far - is even further ac-
celerated with the emergence of new technologies such as next generation sequencing 
(NGS) (information gained from Genomes OnLine Database on 22.10.2012).

Seven years after the release of the H. influenzae genome sequence, the genome 
sequences of two pathovars of the plant pathogenic bacterium Xanthomonas became 
available (da Silva et al. 2002). Rapidly afterwards, the first eukaryotic plant pathogen 
was sequenced, the hemi-biotrophic fungus  Magnaporthe  grisea (Dean et al. 2005), 
and just a year later, the genome sequences of two hemi-biotrophic oomycete plant 
pathogens, P. sojae and P. ramorum, were published (Tyler et al. 2006). The availability 
of these genomes marked a milestone in the emergence of large-scale descriptive data 
in oomycetes, initiated by the sequencing of expressed sequence tags several years 
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earlier (Kamoun et al. 1999; Qutob et al. 2000; Randall et al. 2005; Torto-Alalibo et 
al. 2005). Subsequently, additional omics data including transcriptomics in the form of 
microarrays (Judelson et al. 2008; Haas et al. 2009), RNA-Seq (Lévesque et al. 2010; Ye 
et al. 2011; Links et al. 2011; Kunjeti et al. 2012; Savory et al. 2012; Jiang et al. 2013), 
proteomics (Savidor et al. 2006) and phospho-proteomics (Resjö et al. unpublished) be-
came available. These data are accompanied by many more sequenced genomes rep-
resenting distinct taxa within oomycetes, e.g.  Peronosporales and  Pythiales, different 
biological lifestyles, e.g. biotrophic downy mildews and hemi-biotrophic  Phytophthora, 
and host ranges, e.g. the animal pathogen S. parasitica (Figure 1-2), and complemented 
with recently available NGS data (e.g. Grenville-Briggs et al. 2011; Ye et al. 2011; Stassen 
et al. 2012). The wealth of these diverse data opens a treasure trove. Below we will fur-
ther discuss initial analyses, and their influence and contribution to our understanding 
of the biology of oomycetes.

Comparative Genomics Enables a Comprehensive Study of Genomes and their 
Content

The increasing amount of these complex data sets and their integration enabled 
comparative studies between two or more oomycetes, their non-pathogenic relatives, 
and other pathogenic eukaryotes such as fungi or eukaryotes. In general, these com-
parative analyses provide substantially more information compared to analyses merely 
based on a single genome because they allow the identification of shared, sometimes 
called core, and specific genes, possibly linking those to the biology. 

Comparative genomics traditionally focused on approaches to gradually close the 
gap between the increasing amount of sequence data and the lack of experimental 
functional characterization for the majority of genes (Bork et al. 1998). This has also 
been a major focus in oomycetes. Recently, however, the focus has moved to more 
fundamental questions related to genome evolution and physiology of oomycetes and 
more specifically to the emergence of similarities and differences that account for bio-
logical characteristics such as lifestyle and infection (see e.g. Judelson 2012). Compar-
ative genomics in oomycetes (and other species) therefore complements traditional 
experimental work and will lead to the establishment of (testable) hypotheses on the 
evolution, biology, and specifically, on the function of as yet uncharacterized gene 
 products. 

Comparative Genomics in Oomycetes – Application and Initial Insights

Numerous comparative studies in bacteria and eukaryotes have indicated that mul-
tiple and opposing processes shape the genome structure and gene content of genom-
es. These processes include genome expansions altering the non-coding and/or coding 
regions of the genome, genome reductions and horizontal gene transfer (e.g. Koonin 
2005). The availability of a growing number of sequenced oomycete genomes enables 
us to approach and answer fundamental questions on the evolution of genome struc-
ture and content.
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Oomycetes display a tremendous variation in their genome size ranging from 37 Mb 
in A.  laibachii (Kemen et al. 2011) up to 260 Mb in P.  infestans (Haas et al. 2009). The 
expansion of genome sizes in certain taxa seems to be associated with the presence of 
transposable elements. The genome of P.  infestans has 74% repetitive DNA content, 
whereas the percentage in closely related  Phytophthora such as P.  ramorum is consider-
ably lower (28%) (Haas et al. 2009). Differences in genome sizes are not limited to oomy-
cetes; they occur also in other lineages. The non-pathogenic brown alga  Ectocarpus 
 siliculosus, a sister taxon to the pathogenic oomycetes, has also a considerably larger 
genome (214 Mb) compared to most of its close relatives. This genome expansion, in 
contrast to that in oomycetes and in the pathogenic fungus   Blumeria   graminis (Spanu 
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et al. 2010), does not seem to be repeat driven (only 23% of the genome contains re-
peated regions), but might be influenced by an unusually high number of introns (up 
to 7 per gene) and long 3’ untranslated regions (Cock et al. 2010). The occurrence of a 
considerable number of repetitive elements in the genomes of  Phytophthora, especially 
in P.  infestans, most likely caused the evolution of a bipartite genome that is character-
ized by (i) stable gene-rich regions (small intergenic distance) that harbor the core genes 
and (ii) dynamic gene-poor, transposon and repeat-rich regions that are enriched for 
fast evolving gene families encoding proteins with predicted functions in pathogenicity 
(Haas et al. 2009; Raffaele et al. 2010). The mechanism underlying this partitioning has 
not yet been fully understood, but has been attributed to the high abundance of trans-
posable elements in the genomes and in particular in gene-sparse regions. Interestingly, 
it has already been known for a while that eukaryotic genomes have a non-random 
gene order, mainly clustering co-expressed genes and genes encoding proteins involved 
in the same process (reviewed by Hurst et al. 2004). Crombach and Hogeweg (2007) 
showed that random genomes possessing transposable elements to mediate chromo-
somal rearrangements will over time evolve to a structured genome with islands of core 
genes and of genes with functions in adaptation. These authors argue that transposable 
elements mediated rearrangements and structured genomes allow rapid adaptation 
to new, changing environments, a scenario that can easily be visualized for pathogenic 
species adapting to new hosts or escaping recognition by the host.

Genomes and their gene content, i.e. the abundance and nature of protein coding 
genes, differ greatly in oomycetes. Initial analyses focusing merely on the abundance 
of protein-coding genes in the plant pathogens P. ramorum and P. sojae identified large 
gene families that were not evident in their non-pathogenic relatives such as diatoms 
(Tyler et al. 2006; Martens et al. 2008; Judelson & Ah-Fong 2010). These expansions 
include gene families encoding ABC transporters, kinases, extracellular peptidases or 
plant material degrading hydrolases (Figure 1-4), but are especially apparent for genes 
encoding RXLR and Crinkler proteins (Tyler et al. 2006; Jiang et al. 2008; Haas et al. 
2009; Schornack et al. 2010), two classes of recently described oomycete-specific effec-
tor proteins that translocate into the host cytoplasm. RXLR effectors have been mainly 
identified within  Peronosporales and some of them, e.g. RXLR29 in H.  arabidopsidis 
(Cabral et al. 2011), have been shown to suppress host defenses. In contrast, Crinklers 
are evolutionarily older and experimentally tested Crinklers seem to trigger cell death 
(Schornack et al. 2010). Recently, Crinkler 8 (CRN8) has been shown to contain an ac-
tive kinase domain that is necessary for cell death activity and therefore represents the 
first characterized example of a biochemically active effector (van Damme et al. 2012). 
Additional studies focusing on recently sequenced oomycetes such as the obligate bio-
troph H.  arabidopsidis or the fish pathogen S.  parasitica identified distinct expanded or 
reduced gene families. S.  parasitica contains an expanded repertoire of peptidases, in 
particular peptidases of the C1 type, and different types of eukaryotic kinases, several 
of which have predicted membrane domains and therefore might be cell surface recep-
tors involved in signaling (Jiang et al. 2013). In contrast H.  arabidopsidis, but also other 
biotrophic oomycetes such as A.  laibachii, display a remarkable reduction of patho-
genicity-associated gene families and the loss of biosynthetic pathways (Baxter et al. 
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2010;  Kemen et al. 2011) (Figure 1-4). In particular, several components of the inorganic 
nitrate assimilation pathway such as nitrate reductase, an enzyme that catalyzes the 
nitrate reduction for acquisition, have been lost (Baxter et al. 2010; Kemen et al. 2011). 
Similar reductions have been observed in biotrophic pathogenic fungi and have been 
hypothesized as being the consequence of the obligate biotroph lifestyle and the acqui-
sition of nitrate from the host (Spanu et al. 2010). 

In chapter 2 of this thesis, we describe our approach to study the expansion of pro-
tein families in plant-pathogenic Peronosporales. It is based on analyzing the individual 
functional building blocks of proteins, so called protein domains. Protein domains are 
independent functional, structural and evolutionary units and as such, a major focus of 
bioinformatics and biochemical research (Rossmann et al. 1974; Orengo et al. 1997; Vo-
gel et al. 2004). We analyzed the expansion of protein domains and their implication to 
the biology of oomycetes by systematically characterizing the domain composition pre-
dicted in the proteomes of four sequenced Peronosporales, five fungal plant pathogens 
and 58 diverse eukaryotes. We detected nearly 250 expanded domains in fungal and 
oomycete plant pathogens and successfully linked a substantial part of these domains 
to pathogenicity. We highlight how comparative genomics can put gene products that 
have not yet been linked to pathogenicity into their functional context.

Initial studies of the genome content of oomycetes focused merely on the abun-
dance of gene families and the quantitative changes relative to related taxa (Tyler et 
al. 2006; Martens et al. 2008; Haas et al. 2009). This, however, does not yet take into 
account different evolutionary scenarios that are needed to fully explain the gene con-
tent of extant oomycetes, such as gene gain, gene duplication and gene loss. In chapter 
3, we present a phylogenomic study that describes the fundamental evolutionary dy-
namics that shaped the gene content of oomycetes. By reconciliation of nearly 19,000 
individual gene trees with a reliable species phylogeny we determined the patterns of 
gene gains, duplications and losses. Thereby, we identified major transition points in 
the evolution of pathogenic oomycetes. The branch leading to  Phytophthora displays 
an extraordinary number of duplications that happened in a constrained window of 
time. Martens and Van de Peer (2010), who used alternative methods to date the age 
of duplications, made similar a observation. These authors argue that this observation 
together with the presence of short blocks of homologous genes points to a whole-
genome duplication in the last common ancestor of  Phytophthora. This conclusion, 
however, is highly controversial, also because of the lack of larger intra-species synteny. 
Recent evidence taking into account additional oomycetes as well as a critical reevalua-
tion of the initial evidence of homologous blocks of similar age seems to favor alterna-
tive scenarios and makes a whole genome duplication in the last common ancestor of 
 Phytophthora unlikely (Van Hooff, unpublished). Another point of interest is the differ-
ence in the expansion and contraction patterns of distinct functional classes of genes, 
e.g. transcription factors. Studies on the evolution of distinct gene families (chapter 
3) rather than just quantitative differences (chapter 2) allow the reconstruction of the 
exact mode of evolution that shaped (large or over-abundant) gene families such as 
glycoside hydrolases in oomycetes. Our results highlight the merit of phylogeny-based 
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analysis over traditional quantitative- or parsimony-based studies to decipher the mode 
of evolution in organisms.

The Genomes of Oomycetes Contain Novel Gene Fusions, Mainly Involved in 
Signaling

Comparative studies of eukaryotes and bacteria have revealed a considerable 
amount of genes that result from gene fusions. Gene fusion occurs if two, often ad-
jacent, genes are transcribed and translated as a single protein, often maintaining the 
distinct function of the individual genes. The first gene fusion between two metabolic 
genes in oomycetes was described in 1997 (Unkles et al. 1997). Since then, comparative 
studies in oomycetes, in particular in  Phytophthora, have identified a considerable rep-
ertoire of novel gene fusions involving genes with roles in metabolism, but especially in 
signaling (Bakthavatsalam et al. 2006; Meijer & Govers 2006; Morris et al. 2009). The 
kinome of P.  infestans harbors an intriguing ensemble of eukaryotic protein kinases 
with accompanying domains that form oomycete-specific domain compositions and are 
therefore likely the results of novel gene fusion (or recombination) (Judelson & Ah-
Fong 2010). Another notable example is the specific fusion of the phosphatidylinositol 
3-phosphate-binding zinc finger domain (FYVE) together with the phosphatidylinositol 
kinase (Meijer & Govers 2006). 

In chapter 2, we describe how comparative studies of protein domains and the oc-
currence of domain pairs (two adjacent domains encoded in a single gene) can help 
identifying novel domain combinations. Applying this approach to 67 eukaryotes (in-
cluding four oomycetes), we identified a large repertoire of novel domain combinations 
in oomycetes. Many of the involved domains have a role in signaling and regulation, e.g. 
histone modification. Moreover, many of the domains involved are highly abundant in 
oomycetes, e.g. FYVE zinc finger and kinases. This indicates that oomycetes, or at least 
the analyzed plant pathogenic species, encode proteins that rewire existing signaling 
networks in a novel way that is distinct from other eukaryotes.

Recently, it has been proposed that the genome organization of oomycetes might 
facilitate the acquisition of viable fusions (Judelson 2012). Many genes in the genome 
of oomycetes, especially genes predicted not to be involved in pathogenicity, have short 
intergenic distances so that fusions can easily occur due to the loss of a stop codon. 
The availability of more genome sequences together with genome-wide RNA-Seq data 
to test potential fusion genes will further enhance the identification, validation and 
subsequent characterization of these genes and their role in the biology of oomycetes.

The Genomes of Oomycetes are Chimeric, Containing Traces From Multiple 
Divergent Sources

The gene content of many prokaryotes and eukaryotes is not of homogeneous origin 
but rather displays a chimeric ancestry likely originating from horizontal or endosym-
biotic gene transfer (HGT or EGT) (Figure 1-4). Indeed, analyses of several oomycete 
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genomes revealed the chimeric ancestry of many of its nuclear encoded genes from 
both eukaryotic and prokaryotic sources (Tyler et al. 2006; Richards et al. 2006; Morris 
et al. 2009; Richards et al. 2011). Of special interest are genes with functions involved in 
osmotrophy that have been acquired by cross-kingdom transfer from fungi (Richards et 
al. 2006; 2011). Richards and colleagues (2011) identified 33 HGTs in plant pathogenic 
oomycetes that had a fungal ancestry. Many gene families that originated from the 
HGT events are predicted to encode secreted proteins. After subsequent duplications, 
these gene families account for a large proportion of the secretome of plant pathogenic 
oomycetes (Richards et al. 2011). Interestingly, 13 out of the 33 HGT gene families are 
involved in transport, breakdown and remodeling of sugar, of which 9 encode secret-
ed polysaccharide hydrolases with a possible role in osmotrophy. These fungi-derived 
HGTs might thereby specifically facilitate the successful adaptation to plants as hosts 
because osmotrophy has evolved before the acquisition of these gene families in oomy-
cetes (Richards et al. 2011).

Another major contribution to the gene content is the acquisition of genes from en-
dosymbiotic origin (Figure 1-4). In oomycetes, this is of particular interest because their 
closest relatives are autotrophic photosynthetic diatoms. Together with oomycetes 
they form the Stramenopile lineage which is, at least according to the  Chromalveolate 
hypothesis, united with other chlorophyll-c containing lineages in a monophyletic su-
pergroup. This is based on the assumption that a single shared secondary endosymbio-
sis event involving a red alga gave rise to plastids observed in several taxa. Genes from 
the initially acquired plastid might therefore be transferred via EGT to the nucleus, in 
the case of oomycetes prior to its secondary loss, thus contributing to the gene con-
tent of extant organisms. Indeed, the analysis of the genome sequence of P. ramorum 
and P. sojae identified several genes with likely red algae origin and this, together with 
other evidence, seemingly confirms the Chromalveolate hypothesis (Andersson & Rog-
er 2002; Tyler et al. 2006). However, recent data derived from genome sequences of 
plastid harboring and lacking Stramenopiles, seem to favor a more complex scenario 
involving a later acquisition of the plastid by the autotrophic Stramenopiles (Stiller et al. 
2009; Baurain et al. 2010). Stiller and colleagues (2009) determined that the fraction of 
observed genes with red algae origin within the genomes of pathogenic Stramenopiles 
is too low to significantly support the earlier acquisition of the plastid. They highlight 
the importance of carefully evaluating chimeric phylogenetic signals within genomes. 
The identified genes with red algae origin in oomycetes are therefore most likely not the 
result of an early endosymbiosis event within Stramenopiles, but likely point to acquisi-
tion of these genes via alternative routes such as ancient HGT. The availability of many 
more genomes of pathogenic fungi, oomycetes, their non-pathogenic autotrophic sister 
taxa, but especially of more red algae genomes, together with dedicated research will 
most certainly shed additional light of the complex evolutionary history of many gene 
families and the contribution of HGT and EGT to the genome content of extant species.

Cis-regulatory Elements are Inferred Using Omics Data in Phytophthora

Comparative genomics not only provides insights into the evolution of oomycete 
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genomes, their gene content and its function, but also serves as a starting point to iden-
tify and study other functional regions within their genomes (see e.g. Hardison 2003). 
Of special interest are conserved DNA regions that interact with transcription factors 
involved in the regulation of expression of genes during different phases of develop-
ment and infection.

Whereas extensive studies on eukaryotic model organisms and human identified a 
magnitude of functional DNA elements upstream of coding genes (Singer et al. 1990; 
Kutach & Kadonaga 2000; Majewski & Ott 2002; Müller et al. 2007; Yang et al. 2007; 
Hahn & Young 2011; Hoskins et al. 2011) this knowledge in oomycetes is rather limited. 
In eukaryotes, the basic transcriptional activity is determined by the eukaryotic core 
promoter that consists of different combinations of functional regions, e.g. the TATA-
box and the Initiator (Inr) element, as well as proximal elements such as the common 
CCAAT-box. Pre-whole genome studies on a small set of oomycete genes identified few 
non-canonical TATA-box elements (Judelson et al. 1992) and a modified eukaryotic Inr-
element with a conserved downstream region called FPR (Pieterse et al. 1994; McLeod 
et al. 2004), which has not yet been described as an important functional region in 
other eukaryotes. In addition, very few developmental-specific DNA elements, mostly 
involved in regulation of sporulation genes, have been identified (Tani & Judelson 2006; 
Xiang et al. 2009). P. sojae for example seems to encode up to 900 transcription factors 
(Rayko et al. 2010). This leaves a considerable gap when considering the number of so 
far determined potential transcription factors that are encoded in oomycete genomes. 

In chapter 4, we describe the first genome-wide survey of potentially active cis-reg-
ulatory elements in three  Phytophthora species with a main focus on the late blight 
pathogen P. infestans. We applied an in silico approach that uses gene co-expression 
and conservation between related species to define functional DNA elements, a meth-
od that has been successfully applied in other eukaryotic species (van Noort & Huynen 
2006; Vandepoele et al. 2006). The availability of whole-genome sequences and accom-
panying gene expression data also allowed us to apply this integrative and comparative 
genomics methodology in  Phytophthora. We identified several highly abundant motifs 
with similarity to common eukaryotic promoter elements, which have not yet been 
described for oomycetes in this quantity. Moreover, we identified several candidates 
of potentially functional DNA motifs that occur upstream of particular groups of genes 
such as effectors or transcription factors, thereby providing the first step to a more com-
prehensive description of transcriptional regulation in oomycetes.

Comparative Genomics Guides the Determination of Functional Associations 
Between Proteins

Historically, research on genes and proteins has mainly focused on their evolution, 
their individual function and their contribution to the biology. However, in vivo, pro-
teins rarely act solitarily; instead they either directly or indirectly associate with other 
proteins to synergistically perform complex functions. These interactions can be experi-
mentally determined in a large-scale, ideally genome-wide, fashion using in vivo and 
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in vitro techniques such as yeast-two hybrid (see e.g. Fromont-Racine et al. 1997; Ito 
et al. 2001) or tandem affinity purification (see e.g. Gavin et al. 2002; 2006). These 
techniques are labor intensive and expensive and therefore mainly eukaryotic model 
organisms have been subjected to this type of studies. However, in silico analyses (e.g. 
Jansen et al. 2003; Lee et al. 2004; 2010) that integrate distinct genomic and transcrip-
tomic data sets provide alternative strategies to determine the functional associations 
between proteins in other organisms.

These studies often apply Bayesian frameworks to integrate heterogeneous data 
into a single unified network that describes all determined associations between pro-
teins (Jansen et al 2003; Lee et al. 2004; 2010). The advantage of this methodology is 
that each data source adds a distinct level of evidence to each functional linkage be-
tween two proteins, correcting for differences in the quality of individual data sources. 
Gene co-expression for example is only a moderate predictor for functional associations 
between proteins and therefore linkage based on co-expression should add less confi-
dence to a prediction than other more reliable predictors. Different types of functional 
omics data have been integrated to predict functional associations. These comprise 
transcriptomic data for co-expression (e.g. Hughes et al. 2000; Gollub et al. 2003), con-
served co-expression (Teichmann & Babu 2002; van Noort et al. 2003), phylogenetic co-
occurrence (Pellegrini et al. 1999) and interolog mapping. Interolog mapping describes 
the transfer of associations, typically protein-protein interactions, from one organism 
to another. The underlying assumption is the conservation of associations, i.e. proteins 
that have been experientially shown to be associated, will maintain this association 
in the other species, too (Walhout et al. 2000). Phylogenetic co-occurrence predicts 
functional associations between proteins based on the similarity of their phylogenetic 
profiles, i.e. the presence or absence of genes, across a large amount of divergent spe-
cies (Pellegrini et al. 1999). It assumes that associated partners should either be gained 
or lost together, since a single protein cannot perform the synergistic function. Conser-
vation of co-expression across related species has been shown to significantly enhance 
the predictive power of co-expression towards functional association (Teichmann & 
Babu 2002; van Noort et al. 2003). 

So far none of the above described experiments or bioinformatics network inter-
ference studies to comprehensively determine functional associations between pro-
teins has been performed within oomycetes. Yeast-two hybrid technologies were ap-
plied to characterize interactions between effector proteins of the downy mildew H. 
 arabidopsidis with the known actors in the A. thaliana immune system (Mukhtar et al. 
2011), but only a subset of the effector proteins was included in this study. Other ex-
perimentally determined protein-protein interactions or functional associations are as 
yet not available for other oomycetes. 

Over the last decade, a considerable amount of diverse large-scale functional om-
ics data for several oomycetes became available (e.g. Judelson 2012; see above). In 
chapter 5, we outline our approach to utilize these available data to predict the first 
comprehensive functional association network in the late blight pathogen P.  infestans. 
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We used a Bayesian approach to assess the merit and integrate four different data sets 
(co-expression, conserved co-expression, phylogenetic co-occurrence and interolog 
mapping) providing linkage for a considerable amount of proteins in P.  infestans. These 
associations can be used as a framework to obtain additional biological knowledge from 
available and upcoming large-scale omics data. Using microarray data and the novel 
predicted associations, we identified and studied the functional module of up-regulat-
ed genes early during sporulation. Next to known genes involved in this developmental 
process, we observed many novel candidates that can now be linked to these impor-
tant proccesses in the life cycle of P.  infestans. Thereby, we highlight how the derived 
functional association network provides an essential addition to the growing number of 
genomic resources for P. infestans. 
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ABSTRACT
Oomycetes comprise a diverse group of organisms that morphologically resemble 

fungi but belong to the stramenopile lineage within the supergroup of  chromalveolates. 
Recent studies have shown that plant pathogenic oomycetes have expanded gene 
families that are possibly linked to their pathogenic lifestyle. We analyzed the protein 
domain organization of 67 eukaryotic species including four oomycete and five fungal 
plant pathogens. We detected 246 expanded domains in fungal and oomycete plant 
pathogens. The analysis of genes differentially expressed during infection revealed 
a significant enrichment of genes encoding expanded domains as well as signal pep-
tides linking a substantial part of these genes to pathogenicity. Overrepresentation and 
clustering of domain abundance profiles revealed domains that might have important 
roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. 
The number of distinct domain combinations (bigrams) in oomycetes was significantly 
higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority 
composed of domains common to eukaryotes. The analyses enabled us to link domain 
content to biological processes such as host-pathogen interaction, nutrient uptake, or 
suppression and elicitation of plant immune responses. Taken together, this study rep-
resents a comprehensive overview of the domain repertoire of fungal and oomycete 
plant pathogens and points to novel features like domain expansion and species-spe-
cific bigram types that could, at least partially, explain why oomycetes are such remark-
able plant pathogens.
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INTRODUCTION
Oomycetes are a diverse group of organisms that live as saprophytes or as path-

ogens of plants, insects, fish, vertebrates, and microbes (Govers & Gijzen 2006). The 
numerous plant pathogenic oomycete species cause devastating diseases on many 
different host plants and have a huge impact on agriculture. A prominent example is 
  Phytophthora  infestans, the causal agent of late blight of potato (Solanum tuberosum) 
and tomato ( Solanum  lycopersicum) and responsible for the Irish potato famine in the 
19th century. Plant pathogenic oomycetes include a large number of different species 
that vary in their lifestyle, from obligate biotrophic and hemibiotrophic to necrotrophic. 
In addition, they show great differences in host selectivity, ranging from broad to very 
narrow (Erwin & Ribeiro 1996; Agrios 2005). Oomycetes have morphological features 
similar to filamentous fungi, and the two groups exploit common infection structures 
and mechanisms (Latijnhouwers & Govers 2003). Together with diatoms, brown algae, 
and golden-brown algae, oomycetes are classified as stramenopiles, a lineage that is 
united with alveolates in the supergroup of chromalveolates (Baldauf et al. 2000; Yoon 
et al. 2002). The monophyly of this supergroup, however, is under debate (Baurain et 
al. 2010). The genomes of oomycetes sequenced so far are variable in size and content, 
ranging from 65 Mb in Phytophthora ramorum to 240 Mb in P. infestans (Haas et al. 
2009), and only include plant pathogenic species. Analysis of these genomes revealed 
that several gene families facilitating the infection process are expanded  (Martens et al. 
2008). Extreme examples are gene families encoding cytoplasmic effector proteins such 
as RXLR effectors, which share the host cell-targeting motif RXLR and suppress defense 
responses in the host, and the necrosis-inducing proteins classified as Crinklers (Crn; 
Haas et al. 2009). To date, a few oomycete genomes have been sequenced, and this 
enables a comprehensive comparison of genomic features present in oomycetes, fungi, 
and other eukaryotic species such as gene families and protein domains. Experimen-
tally derived functional knowledge of the majority of gene products in oomycetes in a 
comparable depth as for model species like Saccharomyces cerevisiae and   Arabidopsis 
(Arabidopsis thaliana) will likely not be accessible in the near future. Hence, compara-
tive genomics provides an important framework to functionally characterize oomycete 
gene products and generate hypotheses on the basic cellular functions as well as the 
complex interactions of these plant pathogens with their hosts and environment.

In this study, we focus on protein domains because these are the basic functional, 
evolutionary, and structural units that shape proteins (Rossmann et al. 1974; Orengo et 
al. 1997; Vogel et al. 2004). Domains function independently in single-domain proteins 
or synergistically in multidomain proteins (Doolittle 1995; Vogel et al. 2004; Bashton & 
Chothia 2007). Accordingly, some domains always occur with a defined set of functional 
partners, whereas others are highly versatile and form combinations of two consecu-
tively occurring domains (also called bigrams) with different N- or C-terminal partners 
(Marcotte et al. 1999; Basu et al. 2008). Here, we analyzed the domain repertoire pre-
dicted from the genome sequences of 67 eukaryotic species and compared filamen-
tous plant pathogens with other eukaryotes with a special emphasis on oomycetes. 
We show how differences in the domain repertoire of oomycetes, especially in the ex-
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pansion of certain domain families and the formation of species-specific bigram types, 
can be linked to the biology of this group of organisms. This allowed the generation of 
candidate sets of proteins and domains that are likely to play roles in the lifestyle of 
oomycetes or their interaction with plants.

RESULTS

The Domain Repertoire of Oomycete Plant Pathogens and its Comparison with 
Other Eukaryotes

We analyzed the domain architecture of the predicted proteomes in 67 eukaryotes 
covering all major groups of the eukaryotic tree of life with the exception of the super-
group Rhizaria (Figure 2-1A; Supplementary Table S2-1). We included seven strameno-
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Figure 2-1 Phylogenetic relationships of the analyzed species.
(A) The major eukaryotic groups considered in the analysis and the number of species represented in every 
group. For the exact species used in the analysis, see Supplemental Table S2-1. The tree is adapted from 
Simpson and Roger (2004) and incorporates the phylogeny for the stramenopiles based on Blair et al. (2008). 
(B) Fungal and oomycete plant-pathogenic species used in this analysis. The plant pathogens include species 
with different lifestyles, indicated by the symbol following the species name. The phylogeny for the fungi is 
based on James et al. (2006).
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piles, four of which are plant pathogenic oomycetes, namely the obligate biotrophic 
downy mildew Hyaloperonospora arabidopsidis and three hemibiotrophic  Phytophthora 
species. The selection also contained five fungal plant pathogens, including rice (Oryza 
 sativa) blast fungus (Magnaporthe grisea) and corn (Zea mays) smut (Ustilago maydis), 
both species with a (hemi)biotrophic lifestyle comparable to the oomycete plant patho-
gens used in the analysis (Figure 2-1B).

The domain architecture of all 1,250,996 predicted proteins in the 67 eukaryotic ge-
nomes was analyzed using HMMER (Eddy 1998) and a local Pfam-A database (Finn et al. 
2010). Overall, 59% (737,851) of all proteins have one or more predicted domains. We 
detected a total of 1,464,807 domains in all species, 80,180 within the stramenopiles 
and 51,030 in oomycetes.

In order to characterize the domain repertoire of eukaryotes, we used two metrics: 
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Figure 2-2 Description of different metrics used in this study. 
In the example shown, we observe five different domain types. The abundance of a domain type is defined 
as the number of occurrences of the individual entity within the species (e.g. domain type B has an abun-
dance of two). The versatility is defined as the number of different direct adjacent N- or C-terminal neigh-
bors. We distinguish between N- and C-terminal partners (e.g. the versatility of domain type C is three). A 
bigram is a set of two directly adjacent domains, and we also consider two entities of the same domain a 
bigram (e.g. we observe nine different bigram types in the proteome, of which three have an abundance of 
two (right panel)).
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the number of domain types and the number of different combinations of adjacent 
domains, also called bigrams (Figure 2-2). In total, 13,994 bigram types were identified 
in the 67 eukaryotic genomes, consisting of 6,356 different domain types. As described 
by Basu et al. (2008), the number of bigram types increases superlinearly relative to 
the number of domain types, with the highest numbers in multicellular organisms (Fig-
ure 2-3). We observed separate clusters for metazoans, fungi, and plants (including 
land plants and mosses). Oomycetes and fungi have similar numbers of domain types, 
ranging from 2,000 to 2,500; however, oomycetes, in particular  Phytophthora species, 
contain significantly more bigram types. The three analyzed  Phytophthora species ap-
peared to have approximately 50% more bigram types compared with other organisms 
that have similar numbers of domain types (Figure 2-3; P = 0.0019, by one-sided Wil-
coxon rank-sum test). This even holds when we apply a more conservative approach 
by discarding all domain and bigram types that occur once in each predicted proteome 
(Supplementary Figure S2-1A). We observed that the number of domain types as well 
as the number of bigram types increases with proteome size and reaches saturation for 
larger proteomes (Supplementary Figure S2-1, B and C; Cosentino Lagomarsino et al. 
2009). 
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Figure 2-3 Dependence of the number of domain and bigram types observed in the analyzed species. 
The average number of different bigrams of species that have between 2,000 and 2,500 different domain 
types is indicated with the bottom horizontal red bar. The top horizontal red bar indicates the average num-
ber of different bigrams for Phytophthora species. The full species names corresponding to the abbrevia-
tions can be found in Supplemental Table S2-1. A magnification of the area encompassing the oomycete and 
fungal plant pathogens is shown; the species of interest are highlighted. The dots are colored according to 
the major eukaryotic groups as indicated in the text box.
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Although oomycetes and in particular  Phytophthora species contain a similar num-
ber of domain types as fungi, they have a larger predicted proteome (Supplementary 
Figure S2-1B). However, they contain more bigram types than fungi but less than other 
species with predicted proteomes of similar size (e.g.  Drosophila  melanogaster; Sup-
plementary Figure S2-1C).

Domain Overrepresentation Provides a Snapshot of Pathogen-Host Interaction

Apart from a wide and abundant repertoire of domains related to transposable ele-
ments (Haas et al. 2009), the most abundant domain types in oomycetes are similar to 
those in other eukaryotes (Supplementary Table S2-2). Hence, absolute domain abun-
dance alone is not indicative enough to correlate domains to the lifestyle of both fungal 
and oomycete plant pathogens. Instead, we identified domains that are overrepresent-
ed in plant pathogens relative to other eukaryotes (Figure 2-1B).

Our analysis inferred 246 overrepresented domains in plant pathogens that are ob-
served in 24,970 proteins (P < 0.001, by Fisher’s exact test; a selection of well-described 
overrepresented domains is depicted in Figure 2-4A; Supplementary Table S2-3). Since 
we analyzed the expansion in plant pathogens at the level of a group rather than an 
individual species, domains that are reported as being expanded in the group are not 
necessarily expanded in all species of the group or may even be absent (Supplemen-
tary Table S2-3). For example, secreted proteins encoding carbohydrate-binding fam-
ily 25 domains (IPR005085) are only found in  Phytophthora species and not in fungal 
plant pathogens, whereas secreted proteins containing the Cys-rich domain (CFEM; 
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Figure 2-4 Overrepresentation of selected, 
well-described domains involved in plant-
pathogen interaction and establishing or 
maintaining infection. 
(A) The log2-fold overrepresentation of the 
domains in plant pathogens is shown in the 
bar chart. The absolute number of occurrenc-
es in plant pathogens and the percentage of 
all predicted domains in plant pathogens are 
displayed in the bars, and the corrected P val-
ues are shown at the tip of the bars. The fold 
overrepresentation and the P value for the 
Kazal protease inhibitor domain were based 
on the overrepresentation in oomycetes com- 
pared with plant pathogens (indicated by the 
white bar and asterisks). (B) The overrepre-
sented domains described in (A) are depicted 
in their possible cellular role during infection 
of the plant host.

Thesis.indb   35 3/17/13   7:22 PM



36 Chapter 2

IPR008427) are only observed in fungal pathogens (Kulkarni et al. 2003).

Many proteins involved in host-pathogen interaction are secreted in the apoplast 
or, like the RXLR effector proteins, translocated into host cells following their secre-
tion from the pathogen (Haas et al. 2009). Hence, we also predicted the presence of 
potential N-terminal signal peptide sequences in the whole proteomes of the analyzed 
species. The combined secretome encompasses 100,521 potentially secreted proteins, 
of which 11,352 are predicted in plant pathogens (Supplementary Figure S2-2). Ap-
proximately 20% (2,478) of these proteins contain overrepresented domains; hence, 
proteins containing overrepresented domains are 1.85-fold enriched in the predicted 
secretome of the analyzed plant pathogens (P = 2.57 X 10-231, by Fisher’s exact test).

Oomycete proteins with significantly expanded domains are prime candidates for 
being pathogenicity associated. To assess this hypothesis, we tested if P. infestans genes 
that are differentially expressed during infection of the potato host are enriched for the 
aforementioned expanded domains. For this, we utilized NimbleGen microarray data 
that include genome-wide expression levels of P. infestans genes at different days post 
inoculation (dpi) of potato leaves as well as from mycelium grown in vitro on different 
media (Haas et al. 2009). We identified in total 1,584 genes that are significantly in-
duced or repressed in P. infestans during infection (differentially expressed for at least 
one of the time points 2–5 dpi) compared with those grown in vitro (three different 
growth media; P < 0.05, q < 0.05, by t test; Supplementary Table S2-4A). Of the 1,584 
differentially expressed genes, 259 encode proteins containing significantly expanded 
domains (Supplementary Table S2-4B), which is 1.2-fold more than expected (P = 8.8 X 
10-5, by Fisher’s exact test). Moreover, 44 of these 259 genes also encode proteins with 
a predicted signal peptide, which is a significant enrichment (1.8-fold; P = 4.38 X 10-5, 
by Fisher’s exact test). The majority (41) of these 44 genes are differentially expressed 
early in infection (2 dpi; Figure 2-5A). All genes differentially expressed at 3 dpi are also 
differentially expressed at 2 dpi (Figure 2-5, A and B). Consequently, the 44 differentially 
expressed genes coding for proteins with both predicted signal peptides as well as over-
represented domains are promising candidates for pathogenicity-associated proteins, 
of which several will be discussed in detail below.

For several groups of overrepresented domains, a direct or indirect role in host-
pathogen interaction and/or plant pathogen lifestyle has already been hypothesized 
or demonstrated (Dean et al. 2005; Tyler et al. 2006; Haas et al. 2009). Nearly 18% 
of the 246 overrepresented domains belong to three groups of domains: (1) hydro-
lase domains; (2) domains involved in substrate transport over membranes, such as 
the general ATP-binding cassette (ABC) transporter-like domain (IPR003439) but also 
more specialized transporters of sulfate (IPR011547) and amino acids (IPR004841/
IPR013057); and (3) domains present in peptidases, such as the metalloprotease-type 
M28 domain (IPR007484) found in many secreted proteins. Of the hydrolases, which 
encompass 9% of the overrepresented domains, the majority is present in enzymes that 
hydrolyze glycosidic bonds. An example is the glycoside hydrolase (GH) family 12 do-
main (IPR002594). This domain is observed 34 times in plant pathogens, which overall 
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Figure 2-5 Gene expression analysis of P. infestans genes encoding overrepresented domains and a pre-
dicted N-terminal signal peptide. 
Genes with significant gene expression changes at different time points after infection (2–5 dpi) relative to 
the expression intensities of different growth media are displayed (P < 0.05, q < 0.05, by t test). Heat maps 
show the significantly differentially expressed genes at different time points relative to growth media. Genes 
were clustered using Spearman rank correlation and average linkage clustering. Gene identifiers as well as 
domain descriptions are displayed. Gene expression profiles are displayed for the expression intensities 
relative to the average intensities of the growth media for each time point after infection. Heat maps and 
expression profiles of the significantly differentially expressed genes relative to the growth media are shown 
for individual time points as follows: 2 dpi (A), 3 dpi (B), 4 dpi (C), and 5 dpi (D).
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contain 91,747 domains, and 43 times in all eukaryotes, which have a total of 1,464,807 
domains, and hence is 12.62-fold (3.66 log2-fold) enriched in the plant pathogens. This 
domain is mainly observed in secreted proteins (27 out of 34; SignalP prediction). The 
majority (79%) of the GH-12 domains are found in oomycete plant pathogens, and the 
expression of two of these hydrolase genes in P. infestans (PITG_08944 and PITG_16991) 
is significantly induced during infection of potato (Figure 2-5; Supplementary Table S2-
4). In total, 33 differentially expressed genes during plant infection in P. infestans en-
code proteins that contain GH domains, including GH-17 (IPR000490) in endo-1,3-β-
glucosidases and GH-81 (IPR005200) in β-1,3-glucanases as well as several members of 
GH-28 (IPR000743), a domain involved in soft rotting of host tissues and described in 
both fungal and bacterial plant pathogens (He & Collmer 1990; Ruttkowski et al. 1990). 
Twenty-eight P. infestans genes coding for domains involved in transmembrane trans-
port are differentially expressed during plant infection (Supplementary Table S2-4). Ex-
amples of genes encoding domains involved in substrate transport over the membrane 
are PITG_04307, which encodes an ABC-2-type transporter (IPR013525), PITG_12808, 
which encodes an amino acid transporter (IPR013057), as well as PITG_22087, a gene 
encoding both ABC-like (IPR003439) and ABC-2-type domains (Supplementary Table S2-
4). Extracellular degrading enzymes like cutinases contain an overrepresented domain 
(IPR000675; P = 3.72 X 10-61). This domain is observed 65 times in plant pathogenic spe-
cies, corresponding to a 13.3-fold (3.73 log2-fold) enrichment (Figure 2-4A). In total, 61 
proteins in plant pathogens predicted to possess this domain are potentially secreted. 
Another overrepresented domain that is present in secreted proteins and involved in 
maceration and soft rotting of plant tissue is the pectate lyase (IPR004898). This domain 
is 15.34-fold (3.94 log2-fold) enriched in plant pathogens and mainly found in oomy-
cetes. Five genes in P. infestans encode this domain as well as a predicted N-terminal 
signal peptide and are differentially expressed (Figure 2-5).

Novel Candidate Domains Significantly Expanded in Plant Pathogens

Next to domains that were already directly or indirectly implied in host-pathogen 
interaction, we identified novel candidates that are also expanded in plant pathogens, 
several of which are encoded in P.  infestans genes differentially expressed during in-
fection of the host. Genes encoding the significantly expanded alcohol dehydrogenase 
(zinc binding; IPR013149) as well as a GroES-like alcohol dehydrogenase (IPR013154) 
domains are ubiquitous in all analyzed eukaryotes, and also the combination of these 
two domains is present in all species with only a few exceptions. Nine of these genes in 
P. infestans are induced during infection (Supplementary Table S2-4). Sixty-five genes in 
plant pathogens encode proteins with FAD-linked oxidase (IPR006094) and berberine/
berberine-like (BBE) domains (IPR012951), of which three out of six in P.  infestans are 
induced during infection (PITG_02928, PITG_02930, and PITG_20764). The BBE domain 
is involved in the biosynthesis of the alkaloid berberine (Facchini et al. 1996). The genes 
encode a predicted N-terminal signal peptide, although molecular analysis of proteins 
containing these domains in plants indicated that at least some of these are not secreted 
but instead are targeted to specialized vesicles (Amann et al. 1986; Kutchan & Dittrich 
1995; Facchini et al. 1996). Moreover, Moy et al. (2004) observed induced expression 
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of a soybean (Glycine max) gene (BE584185) shortly after infection with  Phytophthora 
 sojae containing these two domains. A recent analysis from Raffaele et al. (2010) focus-
ing solely on the secretome in P.  infestans corroborates our results and also concludes 
that proteins with BBE and FAD-linked oxidase domains are candidate virulence factors. 
Three genes encoding secreted metallophosphoesterases (IPR004843; PITG_20454, 
PITG_07720, and PITG_10322) show induced gene expression. These metallophospho-
esterase domains are found in phosphatases and hence are involved in the regulation 
of protein activity, since they work as antagonists of kinase activity.

For approximately 6% of all overrepresented domains, no or limited functional infor-
mation is available in Pfam. These are the so-called DUFs: domains of unidentified func-
tion. Given their expansion in plant pathogens and the fact that other overrepresented 
domains are known to function in diverse aspects of plant-pathogen interactions, these 
DUFs are also likely to play a role in the lifestyle of plant pathogens and hence are prom-
ising targets for further experimental validation (Supplementary Table S2-3). Secreted 
proteins containing a combination of two overrepresented DUFs, DUF2403 (IPR018807) 
and DUF2401 (IPR018805), are exclusively found in fungi and in oomycetes, with the 
majority (approximately 75%) in oomycetes. The N-terminal DUF2403 contains a 
 Gly-rich region without further functional annotation, whereas five highly conserved 
Cys residues characterize the C-terminal DUF2401. Proteins containing both DUFs have 
been characterized in S. cerevisiae and in Candida albicans as being covalently linked to 
the cell wall (Terashima et al. 2002; Yin 2005; Klis et al. 2009). Another overrepresented 
DUF within plant pathogens and mainly found in oomycetes is DUF953 (IPR010357). 
This domain is present in several eukaryotic proteins with thioredoxin-like function, 
and two genes in P. infestans containing this domain are differentially expressed during 
infection (PITG_07008 and PITG_07010). DUF590 (IPR007632), which is ubiquitous in 
nearly all eukaryotes, is observed in proteins containing eight putative transmembrane 
helices. These proteins exhibit calcium-activated ion channel activity and are involved 
in diverse biological processes (Yang et al. 2008). The P.  infestans gene PITG_06653 that 
contains the DUF590 domain is differentially expressed during infection, and this pro-
vides further support for a role in host-pathogen interaction. The exemplified DUFs as 
well as other overrepresented domains with less or no functional annotation are inter-
esting candidates for further functional studies to decipher their precise role in plant 
pathogens.

Domain Overrepresentation in Oomycete Plant Pathogens

Since the previous analysis grouped both fungal and oomycete plant pathogens, 
domains specifically enriched in oomycetes were not directly discernible. Hence, we 
compared the relative domain abundance predicted in plant pathogens (Figure 1B) with 
the aim to identify domains specifically enriched in oomycetes. Of the 75 domains that 
are overrepresented in oomycetes, 20 are not observed in any fungal plant pathogen 
and therefore can be considered oomycete specific within plant pathogens (Supple-
mentary Table S2-5). In general, the abundance of expanded domains in  Phytophthora 
species is higher than in H.  arabidopsidis. A well-described example is the NPP1 do-
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main (IPR008701) that is present in secreted (SignalP: 122) necrosis-inducing proteins. 
It shows a significant overrepresentation in oomycetes (1.68-fold [0.75 log2-fold] en-
riched), in particular in Phytophthora species, but is also observed 10 times in fungal 
plant pathogens as well as in a few cases in nonpathogenic fungi as noted before (Gijzen 
& Nürnberger 2006). Four P. infestans genes encoding this domain are induced early 
during infection (2–3 dpi), whereas a single gene (PITG_18453) is induced late (5 dpi). 
Several peptidases (e.g. containing the peptidase S1/S6 and C1A domains) are over-
represented compared with other plant pathogens. S1/S6 (IPR001254; 1.6-fold [0.74 
 log2-fold]) is predicted in 91 proteins, of which 67 have a predicted secretion signal, 
while C1A (IPR000668; 1.79-fold [0.85 log2-fold]) is predicted in 78 proteins, of which 
31 are potentially secreted. C1A is present in several eukaryotic species, but within the 
plant pathogenic group it is exclusively found in oomycetes.

Several secreted protease inhibitors of the Kazal family containing the Kazal I1 
(IPR002350) and Kazal-type (IPR011497) domains are significantly expanded in oomy-
cetes and are within the group of analyzed plant pathogens specific to oomycetes. This 
suggests that they provide an increased level of protection of the pathogen against 
host-encoded defense-related proteases (Tyler et al. 2006). Another domain that is 
oomycete specific within the plant pathogens is the Na/Pi cotransporter (IPR003841) 
involved in the uptake of phosphate. Several other transporters that have already been 
described as being overrepresented in plant pathogens (e.g. the ABC-2-type transport-
ers) are significantly expanded within oomycete plant pathogens, since these species 
are the major contributors to the overall abundance of this domain in plant pathogens. 
The abundance of predicted Ser/Thr-like kinase domains (IPR017442) compared with 
other plant pathogenic species is surprisingly high, and this domain is specifically ex-
panded in the Phytophthora species. Even if several expanded domains are observed in 
both oomycete as well as fungal plant pathogens, the exploration of domains primarily 
expanded in oomycetes (e.g. certain transporter families and defense- and signaling-
related domains) highlights functional entities that discriminate between these groups 
of plant pathogens.

Clustering of Abundance Profiles Reveals Additional Potential Pathogenicity 
Factors

We extended the set of candidate domains that might be important for host-patho-
gen interaction beyond overrepresented domains by searching for additional domains 
that show presence, absence, and expansion profiles similar to overrepresented do-
mains, since these domains are likely to be functionally linked or involved in similar bio-
logical processes (Pellegrini et al. 1999). We calculated a normalized profile of domain 
abundance and clustered similar abundance profiles using hierarchical clustering (Sup-
plementary data S2-1). Several clusters contained a mix of significantly overrepresented 
domains and domains whose expansion in plant pathogens is not significant. We exem-
plify this with three clusters that contain 20% of all overrepresented domains in plant 
pathogens (Figure 2-6).
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In the first cluster (Figure 2-6), domains are mainly expanded in oomycete plant 
pathogens. The abundance of some domains in plant pathogens is too low to be iden-
tified as being overrepresented. For example, the PcF domain (IPR018570), which is 
present in a small, approximately 50-amino acid necrosis-inducing protein found in vari-
ous  Phytophthora species (Orsomando et al. 2001; Liu et al. 2005), was not identified 
in the initial overrepresentation analysis. Also in this cluster is the sugar fermentation 
stimulation domain (IPR005224), which is mainly found in bacteria and involved in the 
regulation of maltose metabolism (Kawamukai et al. 1991). In this first cluster, we ob-
served a high number (approximately 40%) of domains without functional characteriza-
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 IPR000415|PF00881|Nitroreductase 
 IPR003806|PF02655|ATP-grasp fold, DUF201-type 
 IPR009959|PF07366|Protein of unknown function DUF1486 
 IPR003836|PF02685|Glucokinase 
 IPR005114|PF03457|Helicase-associated 
 IPR003442|PF02367|Uncharacterised protein family UPF0079, ATPase bacteria 
 IPR000397|PF01430|Heat shock protein Hsp33 protein 
 IPR005322|PF03577|Peptidase C69, dipeptidase A 
 IPR007494|PF04399|Glutaredoxin 2, C-terminal 
 IPR018461|PF03553|Na+/H+ antiporter NhaC-like 
 IPR005224|PF03749|Sugar fermentation stimulation protein 
 IPR002549|PF01594|Uncharacterised protein family UPF0118 
 IPR014867|PF08757|Spore coat protein CotH 
 IPR007571|PF04482|Protein of unknown function DUF564 
 IPR013702|PF08495|FIST domain, N-terminal 
 IPR010323|PF06041|Protein of unknown function DUF924, bacterial 
 IPR008619|PF05594|Filamentous haemagglutinin, bacterial 
 IPR005583|PF03883|Protein of unknown function DUF328 
 IPR006059|PF01547|Bacterial extracellular solute-binding, family 1 
 IPR005085|PF03423|Carbohydrate binding family 25 
 IPR010766|PF07085|DRTGG 
 IPR018570|PF09461|Phytotoxin, PcF 
 IPR015269|PF09186|Region of unknown function DUF1949 
 IPR002200|PF00964|Elicitin 
 IPR002822|PF01969|Protein of unknown function DUF111 
 IPR015396|PF09317|Protein of unknown function DUF1974 
 IPR004616|PF03588|Leucyl/phenylalanyl-tRNA-protein transferase 
 IPR004740|PF03825|Nucleoside:H+ symporter 
 IPR005526|PF03775|Septum formation inhibitor MinC, C-terminal 
 IPR001123|PF01810|Lysine exporter protein (LYSE/YGGA) 
 IPR007607|PF04519|Protein of unknown function DUF583 
 IPR005651|PF03966|Protein of unknown function DUF343 
 IPR007511|PF04417|Protein of unknown function DUF501 
-|PF09818|- 
 IPR010499|PF06445|Bacterial transcription activator, effector binding 
 IPR012545|PF08002|Protein of unknown function DUF1697 
 IPR007560|PF04471|Restriction endonuclease, type IV-like, Mrr 
 IPR003345|PF02370|M protein repeat 
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 IPR000254|PF00734|Cellulose-binding region, fungal 
 -|PF10282|- 
 IPR008701|PF05630|Necrosis inducing 
 IPR004898|PF03211|Pectate lyase, catalytic 
 IPR016288|PF01341|1, 4-beta cellobiohydrolase 
 IPR011118|PF07519|Tannase and feruloyl esterase 
 IPR000675|PF01083|Cutinase 
 IPR002594|PF01670|Glycoside hydrolase, family 12 
 IPR015364|PF09284|Rhamnogalacturonase B, N-terminal 
 IPR001722|PF00840|Glycoside hydrolase, family 7 
 IPR011683|PF07745|Glycosyl hydrolase 53 
 IPR006710|PF04616|Glycoside hydrolase, family 43 
 IPR018535|PF09362|Domain of unknown function DUF1996 
 IPR000627|PF00775|Intradiol ring-cleavage dioxygenase, C-terminal 
 IPR015289|PF09206|Alpha-L-arabinofuranosidase B, catalytic 
 IPR008902|PF05592|Bacterial alpha-L-rhamnosidase 
 IPR010905|PF07470|Glycosyl hydrolase, family 88 
 IPR000383|PF02129|Peptidase S15 
 IPR013736|PF08530|Peptidase S15/CocE/NonD, C-terminal 
 IPR002765|PF01906|Uncharacterised protein family UPF0145 

 IPR000073|PF00561|Alpha/beta hydrolase fold-1 
 IPR013525|PF01061|ABC-2 type transporter 
 IPR008183|PF01263|Aldose 1-epimerase 
 IPR005132|PF03330|Rare lipoprotein A 
 IPR003480|PF02458|Transferase 
 IPR000070|PF01095|Pectinesterase, catalytic 
 IPR000743|PF00295|Glycoside hydrolase, family 28 
 IPR002022|PF00544|Pectate lyase/Amb allergen 
 IPR001000|PF00331|Glycoside hydrolase, family 10 
 IPR013094|PF07859|Alpha/beta hydrolase fold-3 
 IPR013149|PF00107|Alcohol dehydrogenase, zinc-binding 
 IPR013154|PF08240|Alcohol dehydrogenase GroES-like 
 IPR008030|PF05368|NmrA-like 
 IPR006094|PF01565|FAD linked oxidase, N-terminal 
 IPR012951|PF08031|Berberine/berberine-like 
 IPR004276|PF03033|Glycosyl transferase, family 28 
 IPR001764|PF00933|Glycoside hydrolase, family 3, N-terminal 
 IPR002772|PF01915|Glycoside hydrolase, family 3, C-terminal 
 IPR001547|PF00150|Glycoside hydrolase, family 5 
 IPR001568|PF00445|Ribonuclease T2 
 IPR003594|PF02518|ATP-binding region, ATPase-like 
 IPR001789|PF00072|Signal transduction response regulator, receiver region 
 IPR003661|PF00512|Signal transduction histidine kinase, subgroup 1, dim. and phosph. r
 IPR003864|PF02714|Protein of unknown function DUF221 
 IPR001765|PF00484|Carbonic anhydrase 
 IPR002925|PF01738|Dienelactone hydrolase 
 IPR001155|PF00724|NADH:flavin oxidoreductase/NADH oxidase, N-terminal 
 IPR004183|PF02900|Extradiol ring-cleavage dioxygenase, class III enzyme, subunit B 
 IPR002933|PF01546|Peptidase M20 
 IPR013108|PF07969|Amidohydrolase 3 
 IPR007402|PF04305|Protein of unknown function DUF455 
 IPR000890|PF00871|Acetate and butyrate kinase 

Figure 2-6 Average linkage clustering of normalized domain profiles using Spearman rank correlation as a 
distance measurement. 
The species tree for all eukaryotic species is depicted on top, with the color code of their supergroup as 
introduced in Figure 2-1. Plant pathogens are marked with stars, and the arrowheads highlight domains 
identified as overrepresented in plant pathogens.
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tion that are mainly present in bacteria. An example is DUF1949 (IPR015269), a domain 
that is only found in the three analyzed Phytophthora species. This domain is observed 
in functional uncharacterized bacterial proteins like YIGZ in  Escherichia coli K12 and 
adopts a ferredoxin-like fold (Park et al. 2004). The  Phytophthora and bacterial proteins 
containing DUF1949 also contain a second, N-terminal uncharacterized protein family, 
UPF (UPF00029, IPR001498). This domain is also found in the human protein Impact 
and is conserved from bacteria to eukaryotes (Okamura et al. 2000). The P.  infestans 
gene (PITG_00027) containing both domains is induced early in infection (Supplemen-
talry Table S2-4B). Since these DUFs cluster with overrepresented domains, they are 
promising candidates for further study.

The domains in the second cluster mainly show an expansion of the abundance 
in both fungal and oomycete plant pathogens. This cluster contains, for example, cell 
 wall-degrading domains like cutinases, pectate lyases, and other hydrolases and also 
the NPP1 domain that is found in necrosis-inducing proteins. The glycosyl hydrolase 
family 88 comprises unsaturated glucuronyl hydrolases thought to be involved in bio-
film degradation and is mainly found in bacteria and fungi (Itoh et al. 2006). Interest-
ingly, homologs are also observed in plant pathogenic bacteria (e.g.  Pectobacterium 
 atrosepticum), in fungi (e.g. M. grisea), and in all three Phytophthora species.

The third cluster contains domains that are not exclusively found in plant pathogens 
but have a broader abundance profile. This cluster includes a variety of overrepresent-
ed hydrolases, epimerases, and the ABC-2-type transporter domain (IPR013525) that is 
observed nearly 500 times in plant pathogenic species. Another domain that is found 
in this cluster is the dienelactone hydrolase domain (IPR002925), observed in all plant 
pathogens and also in other eukaryotic species, with a high abundance in plants as well 
as in fungi. This domain hydrolyzes dienelactone to maleylacetate in bacteria (Pathak et 
al. 1991) and is also detected in a putative 1,3:1,4-β-glucanase from P. infestans that is 
proposed to be involved in cell wall metabolism (McLeod et al. 2003).

Quantification of Oomycete-Specific Bigrams

Domains generally do not act as single entities in proteins but rather synergistically 
with other domains in the same protein or with domains in interacting proteins (Park et 
al. 2001; Vogel et al. 2004). Domains involved in signaling, sensing, and generic interac-
tions are versatile and form combinations with several different partner domains (Sup-
plementary Table S2-6). As described by others (Vogel et al. 2005), we observed that the 
versatility of domains is proportional to their abundance (Supplementary Figure S2-3). 
Hence, we applied a weighted bigram frequency that corrects for abundance to detect 
domains that are promiscuous or prone to form combinations with different partners 
(Basu et al. 2008). The average number of promiscuous domains in oomycetes is 424 
and in Phytophthora is 464. This is higher than the average number of promiscuous 
domains (357) in all other species (Supplementary Table S2-7).

We observed that oomycetes have a higher number of bigram types than species 
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with a comparable number of domain types (Figure 2-3). We identified in total 13,994 
different bigram types throughout the 67 analyzed species. The majority of these bi-
gram types (i.e. 7,724, or 55.2%) are predicted in only a single species. In oomycetes, bi-
gram types formed by domains that are associated with transposable elements showed 
a high abundance (Supplementary Tables S2-8 and S2-9). We identified 1,107 bigram 
types occurring exclusively in plant pathogens, the majority of which (773) are only 
observed in the analyzed oomycetes (Supplementary Table S2-10). These oomycete-
specific bigram types are identified in total 1,511 times in 1,375 predicted proteins. 
Of the 773 oomycete-specific bigram types, 53 are present in all oomycetes (Figure 
2-7A). The biggest overlap in oomycete-specific bigram types is observed between the 
 Phytophthora species, especially between P. ramorum and P. sojae. A recent analysis 
of domain combination in P. ramorum and P. sojae already revealed several proteins 
involved in metabolism and regulatory networks containing novel bigrams (Morris et 
al. 2009). We additionally observed in total 43 bigram types that are shared either be-
tween P.  infestans and P.  sojae or between P.  infestans and P.  ramorum. However, the 
majority of oomycete-specific bigrams (467) are specific for a single species. The num-
ber of oomycete-specific bigram types highly exceeds the number of oomycete-specific 
domain types (41). Interestingly, only six of the oomycete-specific domains participate 
in forming the specific bigrams. Therefore, common domain types form the majority 
of the observed species-specific domain combinations, emphasizing the importance of 
novel domain combinations rather than novel domain types as a source for species-spe-
cific functionality. Even when we selectively look at the bigrams that occur at least twice 
in the same proteome or once in at least two different proteomes, we still observe 320 
bigram types that are specific to oomycetes and occur in 982 predicted proteins.

Approximately 8% of the proteins containing an oomycete-specific bigram have a 
predicted secretion signal (9.2% of all oomycete proteins contain a predicted secretion 
signal). An example that is observed in a secreted putative Cys protease present in all 
analyzed oomycetes is the combination of the peptidase C1A domain (IPR000668) and 
the ML domain (IPR003172). The ML domain is known to be involved in lipid binding and 
innate immunity and has been observed in plants, fungi, and animals (Inohara & Nuñez 
2002). The proteins containing this bigram also have an N terminal cathepsin inhibitory 
domain (IPR013201) that is often found next to the peptidase C1A domain and pre-
vents access of the substrate to the binding cleft (Groves et al. 1996). Another bigram 
that is found in secreted proteins predicted in the analyzed Phytophthora species is the 
combination of the carbohydrate-binding domain family 25 (IPR005085; CBM25) with 
a GH-31 domain (IPR000322) as well as the tandem combination of CBM25 domains  N  
 terminal to the glycosyl hydrolase domain. The presence of the secreted CBM25 and 
GH-31 combination has recently been noted in Pythium ultimum (Lévesque et al. 2010). 
We further tried to elucidate the presence of RXLR or Crn motifs in proteins containing 
oomycete-specific bigrams. We predicted the presence of one of these motifs using in-
dividual HMMER models for both the RXLR and the Crn motif (see Materials and Meth-
ods). We overall predicted 746 proteins containing an RXLR and 99 proteins with a Crn 
motif. None of these proteins is predicted to contain an oomycete-specific bigram type.
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The most abundant oomycete-specific bigram type that occurs in 64 proteins is a 
combination of the phosphatidylinositol 3-phosphate-binding zinc finger (FYVE type) 
and the GAF domain. The presence of this oomycete-specific bigram in P.  ramorum and 
P.  sojae has been noted before (Morris et al. 2009). The GAF domain is described as one 
of the most abundant domains in small-molecule-binding regulatory proteins (Zoraghi 
et al. 2004). It is present in a large number of different proteins with a wide range of 
cellular functions, such as gene regulation (Aravind & Ponting 1997) and light detection 
and signaling (Sharrock & Quail 1989; Montgomery & Lagarias 2002). A typical eukary-
otic domain composition involving the GAF domain is N terminal to the 3’ 5’-cyclic phos-
phodiesterase domain found in phosphodiesterases that regulate pathways with cyclic 
nucleotide-monophosphate as second messengers (Sharrock & Quail 1989; Martinez et 

Figure 2-7 Quantification of oomycete-spe-
cific bigrams
(A) Venn diagram depicting the presence of 
oomycete-specific bigram types in the ana-
lyzed oomycete proteomes and indicating 
the number of shared bigram types between 
different proteomes. The total number of 
oomycete-specific bigram types in each pro-
teome is shown in parentheses. The Venn 
diagram was produced using Venny (Oliveros, 
2007). (B) Domain architecture of example 
proteins containing a GAF domain. The top 
two architectures resemble common protein 
architectures: the cGMP-dependent 3’,5’-cy-
clic phosphodiesterase (observed 111 times 
in eukaryotes and five times in oomycetes) 
and phytochrome A (observed 21 times in 
eukaryotes). The bottom two architectures 
depict oomycete-specific architectures: the 
FYVE-GAF fusion is observed 53 times inde-
pendent of other domains, and the myosin 
motor head in combination with the FYVE- 
GAF fusion is observed four times, a single 
copy in each of the oomycetes included in 
this study. aa, amino acids. (C) Simplified 
evolutionary tree based on the phylogenetic 
analysis of the GAF domain in prokaryotes 
and eukaryotes. GAF domains from proteins 
with a FYVE-GAF fusion are exclusively found 
to be close to bacterial GAF domains. Other 
oomycete proteins that only contain the GAF 
domain without the FYVE domain also cluster 
with other eukaryotic sequences.
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al. 2002). This organization is observed in total 111 times, and five times in oomycetes 
(Figure 2-7B). The GAF-FYVE bigram is either observed as a single bigram (in 53 proteins) 
or in combination with other domains (in 11 proteins), for example with myosin (Rich-
ards & Cavalier-Smith 2005). In P. infestans, two genes (PITG_07627 and PITG_09293) 
encoding proteins with this combination are induced early during infection of the plant 
(Supplementary Table S2-4B). A phylogenetic analysis of the GAF domain in eukary-
otes and prokaryotes showed that all GAF domains in oomycetes that are involved in 
the fusion with FYVE exclusively cluster with prokaryotic GAF domains, whereas other 
GAFs also cluster with eukaryotes. Hence, this suggests a horizontal gene transfer from 
bacteria to oomycetes of those GAF domains that are involved in the fusion with FYVE 
(Figure 2-7C; see Materials and Methods). The FYVE-type zinc finger is not identified in 
prokaryotic species; hence, we suggest two independent events, namely a horizontal 
gene transfer of the GAF domain from bacteria to oomycetes and subsequently a fusion 
to the zinc finger domain. Horizontal gene transfer seems to play an important role in 
the evolution of eukaryotes (Keeling & Palmer 2008), and recent evidence indicates 
that these events also have a significant contribution to the genome content of protists 
and oomycetes, as they received genetic material from different sources (Richards & 
Talbot 2007; Martens et al. 2008; Morris et al. 2009). Because GAF domains are known 
to be involved in many different cellular processes, we can only speculate about the 
biological function of proteins harboring the GAF-FYVE bigram. A possible function is 
the targeting of proteins to lipid layers by the zinc finger domain in response to second 
messengers sensed by the GAF domain.

Several domains involved in the phospholipid signaling were found to be overrep-
resented in the filamentous plant pathogens and in particular in oomycetes. These in-
cluded the phosphatidylinositol 3-/4-kinase, PIK (IPR000403), the phosphatidylinositol 
4-phosphate 5-kinase domain, PIPK (IPR002498), as well as the phosphatidylinositol 
3-phosphate-binding FYVE. Novel domain compositions in proteins involved in phos-
pholipid signaling and metabolism in  Phytophthora species have been reported previ-
ously (Meijer & Govers 2006). Signaling domains like the FYVE and the PIK, as well as 
domains like the IQ-calmodulin-binding domain (IPR000048) and the phox-like domain 
(IPR001683), form highly abundant oomycete-specific bigram types (Supplementary Ta-
ble S2-10). Moreover, other domains, like the Ser/Thr protein kinase-like (IPR017442), 
pleckstrin homology (IPR001849), and DEP (IPR000591) domains, are involved in several 
oomycete-specific bigram types (e.g. the DEP-Ser/Thr protein kinase-like domain fusion 
is predicted in the proteomes of all analyzed oomycetes). Additionally, domains that 
are components of the histone acetylation-based regulatory system form oomycete-
specific bigrams, such as the AP2 (IPR001471) and the histone deacetylase (IPR000286) 
domain combination (Iyer et al. 2008), which is observed in P.  ramorum as well as in P. 
 sojae.

DISCUSSION
We predicted the domain repertoire encoded in the genomes of four oomycete 
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plant pathogens and compared it with a broad variety of eukaryotes spanning all major 
groups, including several fungal plant pathogens that have a similar morphology, life-
style, and ecological niche as oomycete plant pathogens. We quantified and examined 
domain properties observed in oomycetes and especially emphasized differences and 
common themes within fungal and oomycete plant pathogens and their probable con-
tribution to a pathogenic lifestyle.

We observed that oomycete plant pathogens, in particular  Phytophthora species, 
have significantly higher numbers of unique bigram types compared with species with 
a similar number of domain types (Figure 2-3). However, oomycetes also have on aver-
age 50% more predicted genes than most of the analyzed fungi, but at the same time 
they encode a comparable number of domain types and hence exhibit similar domain 
diversity (Supplementary Figure S2-1B). The high number of genes observed in oomy-
cetes suggests enlarged complexity compared with fungi, which is not directly obvious 
from the domain diversity but instead from the number of unique bigram types (Sup-
plementary Figure S2-1C). This observation has two possible explanations: (1) the larger 
number of genes predicted from oomycete genomes provides the flexibility to form 
new domain combinations based on a limited set of already existing domains that are 
in quantities similar to fungi; (2) the domain models that cover specific domains are in-
complete and therefore do not provide the required sensitivity for oomycete genomes. 
Hence, we would underestimate the number of observable domain types (and to a cer-
tain extent the number of predicted bigram types). Additionally, oomycetes, especially 
 Phytophthora species, are no longer following the observed trend that organisms with 
a higher number of genes (proteins) contain a larger number of domain types. Conse-
quently, they are shifted when comparing the number of predicted domain and bigram 
types. Nevertheless, both possible explanations and the observed numbers allow us to 
conclude that oomycete genomes, especially Phytophthora species, harbor a large rep-
ertoire of genes encoding different bigram types compared with species of comparable 
complexity and, in the case of filamentous fungi, even similar morphology.

Oomycetes and fungal plant pathogens seem to be very similar to other eukaryotes 
with respect to absolute domain abundance (Supplementary Table S2-2), and this met-
ric is hence not sufficiently indicative to correlate domains directly or indirectly with the 
pathogenic lifestyle. Therefore, we predicted overrepresented domains in plant patho-
gens and identified 246 domains that are significantly expanded (Supplementary Table 
S2-3). Proteins containing overrepresented domains are significantly enriched in the 
predicted secretome of the analyzed plant pathogens, corroborating the idea that ex-
panded domain families are involved in host-pathogen interaction and that these pro-
teins are mainly acting in the extracellular space. It has to be noted that the presence 
of a predicted signal peptide does not necessarily mean that these proteins are found 
extracellularly, since some proteins are retained in the endoplasmic reticulum/Golgi 
and hence are not secreted (Bendtsen et al. 2004).

Since we anticipate that proteins that are directly involved in host-pathogen interac-
tion are differentially regulated upon infection, we utilized the NimbleGen microarray 
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data of P. infestans (Haas et al. 2009) and identified 259 induced/repressed genes en-
coding proteins containing overrepresented domains. Genes containing overrepresent-
ed domains are significantly enriched within the set of differentially expressed genes 
containing a predicted domain. Moreover, this subset contains a significantly higher 
abundance of genes with a predicted N-terminal signal peptide than expected. These 
observations highlight and corroborate the initially emerging link between domain ex-
pansion and host-pathogen interaction.

The majority of the 246 expanded domains are present in proteins that are involved 
in general carbohydrate metabolism, nutrient uptake, signaling networks, and sup-
pression of host responses and hence might contribute to establishing and maintain-
ing pathogenesis (Figure 2-4). The variety of overrepresented domains involved in sub-
strate transport over membranes is of special interest. Filamentous plant pathogens 
and especially oomycetes exhibit a complex and expanded repertoire of these domains, 
enabling them to absorb nutrients from their environment and host. The expression 
of P.  i nfestans genes encoding ABC-2-like transporters, amino acid transporters, and 
Na/ Pi cotransporter is induced early in infection of the plant, suggesting that these pro-
teins act during the biotrophic phase of infection. Several other genes encoding pro-
teins with a predicted extracellular localization are induced during infection and contain 
overrepresented domains. For example, three P.  infestans genes encoding the predicted 
N-terminal signal peptide as well as FAD-linked oxidase and BBE domains are induced 
during infection. The BBE domain is involved in the biosynthesis of the alkaloid ber-
berine (Facchini et al. 1996). Moy et al. (2004) showed that a soybean homolog of this 
gene is induced after infection with P.  sojae. Molecular studies of proteins containing 
BBE domains in plants have indicated that several proteins containing these domains 
are in fact not secreted but instead targeted to specific alkaloid biosynthetic vesicles 
where the proteins accumulate (Amann et al. 1986; Kutchan & Dittrich 1995; Facchini 
et al. 1996). The expansion of domain families with potential direct or indirect roles in 
host-pathogen interaction in filamentous plant pathogens strongly suggests adaptation 
to their lifestyle at the genomic level.

In addition to known domains, the set of overrepresented domains also revealed 
domains that, as yet, have not been implicated in pathogenicity nor are functional-
ly characterized. An example is the DUF953 domain, which, within plant pathogens, 
is mainly found in oomycetes. This domain is observed in eukaryotic proteins with a 
thioredoxin-like function, and P.  infestans genes encoding these domains are differen-
tially expressed during infection. The significant expansion of these domains in plant 
pathogens, and the fact that other well-described domains with a function in plant 
pathogenicity are also overrepresented, make proteins encoding poorly described but 
expanded domains interesting candidates to decipher their role in filamentous plant 
pathogens in general and oomycetes in particular.

We determined domain overrepresentation on the basis of species groups (plant 
pathogens and oomycetes) rather than on the level of individual species. We are aware 
that, as a consequence of this approach, we might have identified domains as being 
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overrepresented in one group even if they do not need to be present or expanded in 
all the members (Supplementary Tables S3 and S5). Hence, we might falsely extrapo-
late the functional role of a domain in a subset of species to the whole group (e.g. a 
domain that is exclusively found in plant pathogenic fungi and not in oomycetes would 
still be overrepresented in the plant pathogenic group). Especially when comparing 
oomycete with fungal plant pathogens, the dominant expansion of domain families 
within   Phytophthora species over families in H.  arabidopsidis might bias the inferred 
overrepresented domain (Supplementary Table S2-5). Since we in general want to iden-
tify candidate domains that might be directly or indirectly involved in host-pathogen 
interaction, either at the level of filamentous plant pathogens or oomycetes, we think 
our group-based approach is appropriate to establish a set of candidate proteins and 
domains.

Moreover, the clustering of presence, absence, and expansion patterns of domains 
known or implicated to be involved in a plant pathogenic lifestyle with domains that 
have no known or direct connection to host-pathogen interactions aids in expanding 
this set of novel candidate domains (Figure 2-6). For example, DUF1949 is within our 
species selection exclusively found in  Phytophthora species and adopts a ferredoxin-
like fold. The N-terminal region of proteins containing this domain shows similarity to 
another domain (UPF00029) that has been found in the human Impact protein. The P. 
 infestans gene containing both domains is induced early during infection of the plant, 
providing additional, independent evidence for the possible role of genes encoding this 
uncharacterized domain in host-pathogen interaction. However, domains that are also 
abundant in nonpathogenic species (e.g. other stramenopiles) might not be related to 
or only indirectly involved in pathogenicity. Hence, the exact nature of the contribu-
tion of these domains to pathogenesis or to general lifestyle requires more in-depth 
experimental studies of the candidate domains and genes predicted to contain these 
functional entities.

Protein domains generally do not act as single entities but in synergy with other 
domains in the same protein or with other domains in interacting proteins. We identi-
fied 773 oomycete-specific bigrams, of which 53 are observed in all analyzed oomycetes 
(Figure 2-7A; Supplementary Table S2-10). Based on our species selection, we cannot 
conclude that the oomycete-specific bigrams are common to all oomycetes, since they 
might only be specific for plant pathogenic oomycetes or even for the selected oomy-
cetes analyzed in this study. The majority of the 773 bigrams, however, are specific 
for a subset of the tested oomycete species or even a single species. The 320 bigram 
types that are observed in more than a single species or twice in the same proteome 
are observed in 982 predicted proteins. These bigrams are less likely to be the result of 
a wrong gene annotation and include already well-described examples of oomycete-
specific domain combinations, such as the FYVE-PIK bigram observed in  Phytophthora 
phosphatidylinositol kinases (Meijer & Govers 2006), the AP2-histone deacetylase bi-
gram that is specifically found in P. ramorum and P.  infestans (Iyer et al. 2008), and 
the myosin head domain-FYVE bigram as well as the FYVE-GAF bigram found in myo-
sin proteins in all analyzed oomycetes (Richards & Cavalier-Smith 2005). Still, some of 
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the bigrams could be artificial due to false negatives or false positives in the domain 
predictions. The remaining, species-specific bigrams could be the result of artificial fu-
sion of genes due to wrong gene annotation or an actual biological signal in one of the 
analyzed oomycete species. The derived results are not only dependent on the qual-
ity of the genome sequences of the analyzed oomycetes but also on that of the other 
eukaryotes. Wrong predictions of bigrams in these species would lead to false nega-
tives in oomycetes. Hence, the number of derived oomycete-specific bigrams is only 
an approximation, and the true set of oomycete-specific bigrams needs to be further 
analyzed. Recent analyses of the underlying molecular mechanisms of domain gain in 
animals have shown that in fact gene fusion, tightly linked with gene duplication, is the 
major mechanism that shaped novel protein architecture (Buljan et al. 2010; Marsh 
& Teichmann 2010). The contributions of this mechanism in forming lineage- or even 
species-specific bigrams in oomycetes and the probable role of the flexible genomes 
have to be further analyzed. The bigrams presented here form a comprehensive start-
ing point for an in-depth bioinformatic and experimental analysis of promising gene 
families coding novel domain combinations.

Common domain types form the majority of the observed oomycete-specific bi-
grams, emphasizing the importance of novel combinations rather than novel domain 
types as a source for species-specific functionality. Only a minority of proteins contain-
ing oomycete-specific bigrams are secreted, and none of these proteins is predicted to 
contain a RXLR or Crn motif. We are aware that the total number of predicted proteins 
containing the RXLR or Crn motif is lower than reported in other studies where those 
were predicted using multiple complementary methods (Haas et al. 2009). However, 
when directly comparing the number of proteins predicted to contain the RXLR motif by 
HMMER alone, the reported numbers are similar to our predictions. Together with the 
observation that RXLR proteins do not contain known Pfam-A domains in the C-terminal 
domain (Haas et al. 2009), our data are not in conflict with RXLR protein predictions 
from previous studies. Of the known Crn genes in P.  infestans, 40% do not encode a 
secretion signal (Haas et al. 2009); hence, these sequences are not considered in the 
prediction of Crn motifs in our analysis and explain the discrepancy between the previ-
ously reported numbers and our predictions. Haas et al. (2009) have reported a huge 
number of different C-terminal structures in P.  infestans Crns that contained up to 36 
different domains, of which 33 are not described in Pfam. Several of these domains 
induce necrosis in plants. Since we focused in our analysis exclusively on Pfam domains, 
we did not expect to find these proteins containing specific bigrams.

The majority of proteins containing oomycete-specific bigrams seem to be functional 
in the pathogen cytoplasm. Moreover, domains involved in mediation between macro-
molecules or lipids (e.g. the FYYE or the phox-like domain) as well as signaling domains 
(e.g. Ser/Thr kinase-like or the DEP domain) are highly abundant in oomycete-specific 
bigrams. Ser/Thr kinase domain-like is overrepresented in oomycetes compared with 
fungal plant pathogens and is particularly expanded within the  Phytophthora species 
(Supplementary Table S2-5). This expanded repertoire together with the high abun-
dance of this domain in oomycete-specific bigrams strongly suggests that oomycetes 

Thesis.indb   49 3/17/13   7:22 PM



50 Chapter 2

have the capacity to recombine existing signaling pathways in a novel and complicated 
network that is distinct from other eukaryotes. This might also be true for other in-
teraction networks, since several domains mediating interactions between macromol-
ecules (e.g. DNA-binding zinc finger [IPR007087] or protein-protein interaction like 
 WW / Rsp5 / WWP [IPR001202]) are also highly abundant in oomycete-specific bigrams. 
Whether this reflects a general phenomenon in all oomycetes, specific for the plant 
pathogenic species analyzed in this study, or only for  Phytophthora species, can only be 
answered when more oomycetes, including saprophytes and pathogens with different 
hosts, are sequenced.

We outlined a complex but comprehensive picture of the domain repertoire of fila-
mentous plant pathogens focusing on oomycetes and showed how differences com-
pared with other eukaryotes are reflecting the biology of these groups of organisms. 
Especially the expansion of certain domain families is directly linked with the lifestyle 
of oomycete plant pathogens and allowed the generation of a set of candidate domains 
likely to play important roles in the interaction with the plant host. Proteins contain-
ing overrepresented domains are enriched in the predicted secretome of the analyzed 
species. Moreover, the expression analysis of genes encoding domains during infec-
tion of the plant revealed a significant enrichment of genes encoding overrepresented 
domains within the differentially expressed genes. Furthermore, we observed a sig-
nificantly higher than expected abundance of genes encoding a signal peptide within 
the set of differentially expressed genes containing expanded domains. This added ad-
ditional, independent evidence for the biological significance of our observations. Fur-
thermore, oomycete genomes encode a set of proteins containing oomycete-specific 
domain combinations that are formed by common domain types and include several do-
mains involved in signaling and/or mediation of interactions between macromolecules. 
Oomycetes, therefore, might possess altered regulatory and signaling networks that 
differ from other eukaryotes. If the described and discussed differences in the domain 
repertoire of oomycetes have a direct influence on plant pathogenicity or are gener-
ally useful in these organisms needs to be analyzed further. Nevertheless, they provide 
promising starting points that will aid our understanding of the biology of oomycetes in 
general and plant pathogens in particular.

MATERIAL & METHODS 

Species Used in the Analysis

In the performed analysis, 67 eukaryotic species representing four of the five eukar-
yotic supergroups (excluding Rhizaria) were considered (Figure 2-1A; for species abbre-
viations, see Supplementary Table S2-1). We used the predicted best model proteomes 
for all subsequent analyses.
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Identification of Domain Composition

We predicted the domain repertoire of all proteins encoded in the diverse genomes 
using hmmpfam (HMMER package version 2.3.2) and a local Pfam-A database (version 
23). We applied a domain model-specific gathering cutoff and used HMM models that 
are optimized to search for full-length entities in the query sequence.

In order to obtain the non-overlapping domain architecture of multidomain proteins, 
we resolved overlapping domains according to certain rules. We defined two domains 
as overlapping if more than 10% of the predicted domain locations were overlapping 
(based on the relative length of the domains). If, in the case of overlapping domains, 
the e-value difference was larger than 5 (on a –log10 scale), we kept the domain with the 
highest e-value. In cases where the difference was smaller, we kept the longest model. If 
both overlapping models had the same length, we considered differences in e-value and 
bit score. In the case of the Pfam-based predictions for 15 proteins, the applied rules 
did not resolve overlapping entities. Therefore, we considered the Conserved Domain 
Database (version 2.16) superfamily annotation, which automatically clusters domain 
entities that resemble evolutionarily related domains. If both domains corresponded to 
the same family, we choose one entity.

Based on the nonoverlapping domain architecture, we derived different metrics for 
each proteome. We counted the abundance for every domain and the resulting number 
of different domain types per analyzed proteome. We defined domain bigrams as two 
consecutively located domains in a single protein. We discriminated between recipro-
cal domain pairs, so that the bigram (A|B) is not identical to (B|A), and took repeating 
domains into account, such as (A|A). Based on the set of bigrams, we also determined 
the versatility of all individual domains in a given proteome, which is defined by the 
number of different direct N- and C-terminal partners, also including reciprocal and 
self-repeated pairs.

Prediction of Secreted Proteins

Secreted proteins were predicted using SignalP (version 3.0; Bendtsen et al. 2004) in 
combination with TMHMM (version 2.0; Krogh et al. 2001). We restricted the analysis 
to the first 70 amino acids of the protein and accepted signal peptide predictions if both 
the neural network and the HMM implemented in SignalP predicted the presence of a 
signal peptide under default parameters. Moreover, we declined predicted signal pep-
tides if TMHMM predicted more than one transmembrane region in the protein. If only 
a single transmembrane helix was predicted and the predicted region was overlapping 
with the SignalP prediction for more than 10 amino acids and positioned within the first 
35 amino acids from the start, we included the protein in the set of secreted proteins.

Domain Overrepresentation

Domain overrepresentation was calculated using a one-sided Fisher’s exact test. The 
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derived P values were Bonferroni-corrected for multiple testing by multiplying the  P 
  value with the number of conducted tests. The corrected P values were compared with 
an α = 0.001 to infer domain overrepresentation. For the overrepresented domains 
in oomycete plant pathogens compared with fungal plant pathogens, we considered 
domains that occur at least once in a single plant pathogen but nevertheless could also 
occur in other eukaryotic species.

Gene Expression Analysis of Phytophthora infestans

We extracted NimbleGen expression data of P. infestans during infection of potato 
(Solanum tuberosum) 2 to 5 dpi from the Gene Expression Omnibus    (http://www.ncbi. 
nlm.nih.gov/geo/). The setup and initial analysis of the NimbleGen data are described 
by Haas et al. (2009). The log2-transformed and mean-centered array intensities were 
analyzed for differential expression using Multiexperiment Viewer (Saeed et al. 2006). 
The t tests were conducted between two groups (group A, different media types; group 
B, replicates for one of the days post inoculation). The test was applied for each day 
after inoculation, and significant up-/ down-regulated genes were reported applying 
a P values cutoff of 0.05. False discovery rates were addressed using R and the qvalue 
package by computing q values for each of the comparisons and subsequently apply-
ing a q value cutoff of 0.05 (Storey & Tibshirani 2003). Visualization of the heat maps 
was done using R and the Bioconductor package utilizing Spearman correlation as a 
distance measurement and hierarchical clustering (average linkage; Gentleman et al. 
2004). Gene expression intensities relative to the average expression intensities in me-
dia types (V8, RS, Pea) were computed in R. 

Clustering of Domain Profiles

We created abundance profiles for each domain based on the abundance in each 
individual proteome. We excluded domains that were only identified in a single spe-
cies. The rows (domains) were multiplied by a scaling factor so that the sum of squares 
was 1, and subsequently the columns (species) were normalized in the same way. We 
performed a hierarchical clustering (average linkage) of the profiles using the Spear-
man correlation matrix as a distance measurement. The normalization and clustering 
were performed using Cluster (Eisen et al. 1998), and the visualization was done using 
TreeView (http://rana.lbl.gov/EisenSoftware.htm).

Domain Promiscuity

We calculated the domain promiscuity for every domain in the analyzed species 
based on weighted bigram frequency (Basu et al. 2008). We took a relatively moderate 
cutoff for determining promiscuous domains; every domain with a higher promiscuity 
score than a domain that is only present once in the genome and is participating in one 
bigram type is called promiscuous.
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Prediction of the RXLR and Crn Motifs in Oomycetes

We identified the presence of the RXLR motif in all predicted proteins in the analyzed 
oomycetes using three different HMMER models (R.H.Y. Jiang, personal communica-
tion). The first model was created using P.  ramorum and P.  sojae RXLRs and included the 
RXLR motif itself and 10 amino acids downstream and upstream of the motif. The two 
other models were based separately on RXLRs from  P .   infestans and H.  arabidopsidis 
and included 10 amino acids upstream from the RXLR motif and five amino acids down-
stream of the DEER motif. We used HMMER (hmmsearch) with an e-value cutoff of 10 
and subsequently combined all predictions. Furthermore, we demanded the presence 
of a predicted signal peptide (SignalP) cleavage site within the first 30 amino acids of 
the protein, the gap between the cleavage site and the start of the motif to be 30 or 
less, the start of the motif to be within the first 100 amino acids of the protein, and 
the starting position of the RXLR motif to be downstream of the cleavage site. For the 
identification of the Crn LFLAK motif, we used a HMMER model of that region (B.J. Haas, 
personal communication) and the same sequence demands as for the RXLRs.

Phylogenetic Analysis of the GAF Domain

We derived all sequences containing a GAF domain from the selected proteomes 
and extracted the amino acid sequence of the domain based on the start and end 
points of the domain model. We conducted a similarity search with the extracted do-
mains using BLASTP (version 2.2.20) with an e-value cutoff of 1 X 10-5 and a low-com-
plexity filter against a set of 295 bacterial predicted proteomes (downloaded from the 
National Center for Biotechnology Information ftp server on January 27, 2009). In the 
homologs that were obtained, domains were predicted using hmmpfam as described 
above. Subsequently, prokaryotic GAF domains were extracted and aligned together 
with the eukaryotic domains using mafft (version 6.713b) with the local alignment strat-
egy (Katoh et al. 2002). A phylogenetic tree was constructed with RAxML (version 7.0.4) 
using the GAMMA model of rate heterogeneity and the WAG amino acid substitution 
matrix (Stamatakis 2006).
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SUPPLEMENTARY MATERIAL
Due to the amount of data, some of the Supplementary additional files, Supplemen-

tary tables S2-1 to S2-13 and Supplementary data S2-1, are only accessible online at 
Plant Physiology (http://www.plantphysiol.org/content/155/2/628/suppl/DC1).
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Figure S2-1 Relationship between the number of domain and/or bigram types and the proteome sizes.
(A) Dependence of the number of domain and bigram types excluding singletons observed in the analyzed 
species. (B) Relationship between the proteome size and the number of distinct domain types as well as 
(C) the number of bigram types. The species names corresponding to the abbreviations (A, B and C) can be 
found in Supplementary Table S2-1.
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Figure S2-2 The predicted secretome of the 67 analyzed eukaryotic species. 
The absolute size as well as the percentage of the predicted secretome is displayed. The analyzed plant 
pathogens are indicated with a star and species abbreviations are shown in Supplementary Table S2-1.
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Figure S2-3 The average abundance and versatility of 
all observed domains in a log2-log2 plot . 
The graph displays a linear positive correlation be-
tween the abundance and versatility of different 
domains (regression line in black). Domains that are 
highly abundant and do not have a high number of 
different N- or C-terminal partners are shown in the 
lower right sector of the plot. Domains that show an 
uneven distribution of versatility in the examined spe-
cies might have a low average versatility, even if they 
have many different partners in some species

Thesis.indb   55 3/17/13   7:22 PM



56 Chapter 2

REFERENCES
Agrios GN. 2005. Plant Pathology. 5th ed. Academic Press, New York.
Amann M, Wanner G, Zenk MH. 1986. Intracellular compartmentation of two enzymes of berberine biosyn-

thesis in plant cell cultures. Planta. 167:310–320.
Aravind L, Ponting CP. 1997. The GAF domain: an evolutionary link between diverse phototransducing pro-

teins. Trends Biochem. Sci. 22:458–459.
Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. 2000. A kingdom-level phylogeny of eukaryotes based on 

combined protein data. Science. 290:972–977.
Bashton M, Chothia C. 2007. The generation of new protein functions by the combination of domains. Struc-

ture. 15:85–99. 
Basu MK, Carmel L, Rogozin IB, Koonin EV. 2008. Evolution of protein domain promiscuity in eukaryotes. 

Genome Res. 18:449–461. 
Baurain D et al. 2010. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, hapto-

phytes, and stramenopiles. Mol. Biol. Evol. 27:1698–1709.
Bendtsen JD, Nielsen H, Heijne von G, Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. 

J. Mol. Biol. 340:783–795.
Blair JE, Coffey MD, Park S-Y, Geiser DM, Kang S. 2008. A multi-locus phylogeny for Phytophthora utilizing 

markers derived from complete genome sequences. Fungal Genet. Biol. 45:266–277.
Buljan M, Frankish A, Bateman A. 2010. Quantifying the mechanisms of domain gain in animal proteins. 

Genome Biol. 11:R74.
Cosentino Lagomarsino M, Sellerio AL, Heijning PD, Bassetti B. 2009. Universal features in the genome-level 

evolution of protein domains. Genome Biol. 10:R12.
Dean RA et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 434:980–

986.
Doolittle RF. 1995. The multiplicity of domains in proteins. Annu. Rev. Biochem. 64:287–314.
Eddy SR. 1998. Profile hidden Markov models. Bioinformatics. 14:755–763.
Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression 

patterns. Proc. Natl. Acad. Sci. U.S.A. 95: 14863–14868
Erwin DC, Ribeiro OK. 1996. Phytophthora diseases worldwide. American Phytopathological Society (APS 

Press).
Facchini PJ, Penzes C, Johnson AG, Bull D. 1996. Molecular Characterization of Berberine Bridge Enzyme 

Genes from Opium Poppy. Plant Physiol.
Finn RD et al. 2010. The Pfam protein families database. Nucleic Acids Res. 38:D211–22. doi: 10.1093/nar/

gkp985.
Gentleman RC et al. 2004. Bioconductor: open software development for computational biology and bioin-

formatics. Genome Biol. 5:R80.
Gijzen M, Nürnberger T. 2006. Nep1-like proteins from plant pathogens: recruitment and diversification of 

the NPP1 domain across taxa. Phytochemistry. 67:1800–1807.
Govers F, Gijzen M. 2006. Phytophthora genomics: the plant destroyers’ genome decoded. Mol. Plant Mi-

crobe Interact. 19:1295–1301.
Groves MR et al. 1996. The prosequence of procaricain forms an alpha-helical domain that prevents access 

to the substrate-binding cleft. Structure. 4:1193–1203.
Haas BJ et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora 

 infestans. Nature. 461:393–398.

Thesis.indb   56 3/17/13   7:22 PM



57Domain Analysis in Oomycete Plant Pathogens

He SY, Collmer A. 1990. Molecular cloning, nucleotide sequence, and marker exchange mutagenesis of the 
exo-poly-alpha-D-galacturonosidase-encoding pehX gene of Erwinia chrysanthemi EC16. J. Bacteriol. 
172:4988–4995.

Inohara N, Nuñez G. 2002. ML - a conserved domain involved in innate immunity and lipid metabolism. 
Trends Biochem. Sci. 27:219–221.

Itoh T, Hashimoto W, Mikami B, Murata K. 2006. Substrate recognition by unsaturated glucuronyl hydrolase 
from Bacillus sp. GL1. Biochem. Biophys. Res. Commun. 344:253–262.

Iyer LM, Anantharaman V, Wolf MY, Aravind L. 2008. Comparative genomics of transcription factors and 
chromatin proteins in parasitic protists and other eukaryotes. Int. J. Parasitol. 38:1–31.

James TY, et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 
818–822.

Katoh K, Misawa K, Kumar S, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment 
based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066.

Kawamukai M et al. 1991. Nucleotide sequence and characterization of the sfs1 gene: sfs1 is involved in 
CRP*-dependent mal gene expression in Escherichia coli. J. Bacteriol. 173:2644–2648.

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:605–618.
Klis FM, Sosinska GJ, de Groot PWJ, Brul S. 2009. Covalently linked cell wall proteins of Candida albicans and 

their role in fitness and virulence. FEMS Yeast Res. 9:1013–1028.
Krogh A, Larsson B, Heijne von G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a 

hidden Markov model: application to complete genomes. J. Mol. Biol. 305:567–580.
Kulkarni RD, Kelkar HS, Dean RA. 2003. An eight-cysteine-containing CFEM domain unique to a group of 

fungal membrane proteins. Trends Biochem. Sci. 28:118–121.
Kutchan TM, Dittrich H. 1995. Characterization and mechanism of the berberine bridge enzyme, a covalently 

flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J. Biol. Chem. 270:24475–
24481.

Latijnhouwers M, de Wit PJGM, Govers F. 2003. Oomycetes and fungi: similar weaponry to attack plants. 
Trends Microbiol. 11:462–469.

Lévesque CA et al. 2010. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals 
original pathogenicity mechanisms and effector repertoire. Genome Biol. 11:R73.

Liu Z et al. 2005. Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora 
infestans. Mol. Biol. Evol. 22:659–672.

Marcotte EM et al. 1999. Detecting protein function and protein-protein interactions from genome sequenc-
es. Science. 285:751–753.

Marsh JA, Teichmann SA. 2010. How do proteins gain new domains? Genome Biol. 11:126. 
Martens C, Vandepoele K, Van de Peer Y. 2008. Whole-genome analysis reveals molecular innovations and 

evolutionary transitions in chromalveolate species. Proc. Natl. Acad. Sci. U.S.A. 105:3427–3432.
Martinez SE, Beavo JA, Hol WGJ. 2002. GAF domains: two-billion-year-old molecular switches that bind cyclic 

nucleotides. Mol. Interv. 2:317–323.
McLeod A, Smart CD, Fry WE. 2003. Characterization of 1,3-beta-glucanase and 1,3;1,4-beta-glucanase 

genes from Phytophthora infestans. Fungal Genet. Biol. 38:250–263.
Meijer HJG, Govers F. 2006. Genomewide Analysis of Phospholipid Signaling Genes in Phytophthora spp.: 

Novelties and a Missing Link. Mol. Plant Microbe Interact. 19:1337–1347.
Montgomery BL, Lagarias JC. 2002. Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci. 

7:357–366.
Morris PF et al. 2009. Multiple horizontal gene transfer events and domain fusions have created novel regu-

Thesis.indb   57 3/17/13   7:22 PM



58 Chapter 2

latory and metabolic networks in the oomycete genome. PLoS ONE. 4:e6133.
Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M. 2004. Patterns of gene expression upon infection of 

soybean plants by Phytophthora sojae. Mol. Plant Microbe Interact. 17:1051–1062.
Okamura K et al. 2000. Comparative genome analysis of the mouse imprinted gene impact and its nonim-

printed human homolog IMPACT: toward the structural basis for species-specific imprinting. Genome 
Res. 10:1878–1889.

Oliveros JC (2007) VENNY: An Interactive Tool for Comparing Lists with Venn Diagrams. http://bioinfogp.cnb.
csic.es/tools/venny/index.html (October 7, 2010)

Orengo CA et al. 1997. CATH-a hierarchic classification of protein domain structures. Structure. 5:1093–1108.
Orsomando G et al. 2001. Phytotoxic protein PcF, purification, characterization, and cDNA sequencing of a 

novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J. 
Biol. Chem. 276:21578–21584.

Park F et al. 2004. Crystal structure of YIGZ, a conserved hypothetical protein from Escherichia coli k12 with 
a novel fold. Proteins. 55:775–777.

Park J, Lappe M, Teichmann SA. 2001. Mapping protein family interactions: intramolecular and intermolecu-
lar protein family interaction repertoires in the PDB and yeast. J. Mol. Biol. 307:929–938.

Pathak D, Ashley G, Ollis D. 1991. Thiol protease-like active site found in the enzyme dienelactone hydrolase: 
localization using biochemical, genetic, and structural tools. Proteins. 9:267–279.

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 1999. Assigning protein functions by 
comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. U.S.A. 96:4285–4288.

Raffaele S, Win J, Cano LM, Kamoun S. 2010. Analyses of genome architecture and gene expression reveal 
novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics. 11:637. 

Richards TA, Cavalier-Smith T. 2005. Myosin domain evolution and the primary divergence of eukaryotes. 
Nature. 436:1113–1118.

Richards TA, Talbot NJ. 2007. Plant parasitic oomycetes such as Phytophthora species contain genes derived 
from three eukaryotic lineages. Plant Signal Behav. 2:112–114.

Rossmann MG, Moras D, Olsen KW. 1974. Chemical and biological evolution of nucleotide-binding protein. 
Nature. 250:194–199.

Ruttkowski E et al. 1990. Cloning and DNA sequence analysis of a polygalacturonase cDNA from Aspergillus 
niger RH5344. Biochim. Biophys. Acta. 1087:104–106.

Saeed AI et al. 2006. TM4 microarray software suite. Meth. Enzymol. 411:134–193.
Sharrock RA, Quail PH. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, 

and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3:1745–1757.
Simpson AGB, Roger AJ (2004). The real ‘kingdoms’ of eukaryotes. Curr Biol 14: R693–R696.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of 

taxa and mixed models. Bioinformatics. 22:2688–2690.
Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 

100:9440–9445.
Terashima H et al. 2002. Sequence-based approach for identification of cell wall proteins in Saccharomyces 

cerevisiae. Curr. Genet. 40:311–316.
Tyler BM et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of 

pathogenesis. Science. 313:1261–1266.
Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA. 2004. Structure, function and evolution of multi-

domain proteins. Curr. Opin. Struct. Biol. 14:208–216.
Vogel C, Teichmann SA, Pereira-Leal J. 2005. The relationship between domain duplication and recombina-

Thesis.indb   58 3/17/13   7:22 PM



59Domain Analysis in Oomycete Plant Pathogens

tion. J. Mol. Biol. 346:355–365.
Yang YD et al. 2008. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Na-

ture. 455:1210–1215.
Yin QY. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of 

proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. 
Journal of Biological Chemistry. 280:20894–20901.

Yoon HS, Hackett JD, Pinto G, Bhattacharya D. 2002. The single, ancient origin of chromist plastids. Proc. Natl. 
Acad. Sci. U.S.A. 99:15507–15512.

Zoraghi R, Corbin JD, Francis SH. 2004. Properties and functions of GAF domains in cyclic nucleotide phos-
phodiesterases and other proteins. Mol. Pharmacol. 65:267–278.

Thesis.indb   59 3/17/13   7:22 PM



Thesis.indb   60 3/17/13   7:22 PM



3

Genome Biol Evol. 4:199–211 (2012)
Copyright Oxford University Press

1Theoretical Biology and Bioinformatics, Department of Biology, Utrecht 
University, Utrecht, The Netherlands

2Centre for BioSystems Genomics, Wageningen, The Netherlands

3Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, 
The Netherlands 

4Laboratory of Phytopathology, Wageningen University, Wageningen, The 
Netherlands

Michael F Seidl1,2, Guido Van den 

Ackerveken2,3, Francine Govers2,4, and 

Berend Snel1,2

Reconstruction of Oomycete 
Genome Evolution Identifies 
Differences in Evolutionary 

Trajectories Leading to Present-
Day Large Gene Families

Thesis.indb   61 3/17/13   7:22 PM



62 Chapter 3

ABSTRACT
The taxonomic class of oomycetes contains numerous pathogens of plants and 

animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have 
flexible genomes comprising large gene families that play roles in pathogenicity. The 
evolutionary processes that shaped the gene content have not yet been studied by 
applying systematic tree reconciliation of the phylome of these species. We analyzed 
evolutionary dynamics of ten Stramenopiles. Gene gains, duplications, and losses were 
inferred by tree reconciliation of 18,459 gene trees constituting the phylome with a 
highly supported species phylogeny. We reconstructed a strikingly large last common 
ancestor of the Stramenopiles that contained ~10,000 genes. Throughout evolution, 
the genomes of pathogenic oomycetes have constantly gained and lost genes, though 
gene gains through duplications outnumber the losses. The branch leading to the plant 
pathogenic Phytophthora genus was identified as a major transition point characterized 
by increased frequency of duplication events that has likely driven the speciation within 
this genus. Large gene families encoding different classes of enzymes associated with 
pathogenicity such as glycoside hydrolases are formed by complex and distinct patterns 
of duplications and losses leading to their expansion in extant oomycetes. This study 
unveils the large-scale evolutionary dynamics that shaped the genomes of pathogenic 
oomycetes. By the application of phylogenetic based analyses methods, it provides ad-
ditional insights that shed light on the complex history of oomycete genome evolu-
tion and the emergence of large gene families characteristic for this important class of 
pathogens.
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INTRODUCTION
Recent comparative genome analyses of Stramenopiles have facilitated initial in-

sights into the evolution and lifestyle of the individual species within this lineage and 
in particular of pathogenic oomycetes (Tyler et al. 2006; Martens et al. 2008; Haas et 
al. 2009; Gobler et al. 2011; Seidl et al. 2011). The extensive Stramenopile lineage com-
prises species that cover diverse ecological niches and lifestyles ranging from photo-
synthetic diatoms and brown algae to filamentous heterotrophic oomycetes. According 
to the controversial Chromalveolate hypothesis, Stramenopiles are grouped together 
with other chlorophyll-c containing lineages such as Cryptophytes, Alveolates, and 
 Haptophytes into one monophyletic supergroup (Cavalier-Smith 1999; Keeling 2009), 
sometimes also referred to as CASH. This grouping has been rationalized on the hypoth-
esis that the last common ancestor (LCA) of these lineages acquired its plastid from a 
single initial event of secondary endosymbiosis with a red alga that has been subse-
quently inherited strictly vertically. Consequently, plastid-lacking species within CASH 
lineages have lost their plastids secondarily and independently. The competing serial 
eukaryotic–eukaryotic endosymbiotic (SEEE) hypothesis proposes an independent 
spread of plastids within CASH lineages, and hence, dependent on the time point of ac-
quisition, no secondary losses are needed to explain the lack of plastids in several taxa 
throughout all lineages (Cavalier-Smith et al. 1994; Archibald 2009; Baurain et al. 2010).

The plastid-lacking oomycetes are saprophytes or pathogens of plants and animals 
with huge economic as well as ecological impact (Govers & Gijzen 2006). Well known are 
the notorious late blight pathogen  Phytophthora  infestans that infects both tomato and 
potato and the animal pathogen  Saprolegnia  parasitica that causes saprolegniasis, for 
example, in salmon. Within the oomycetes studied so far, the genomes of  Phytophthora 
spp. have by far the largest genomes, ranging from 65 up to 240 Mb (Supplementary  
Figure S3-1A). This broad variation in genome sizes is also observed among fungi, many 
of which are pathogens that exploit infection strategies similar to oomycetes (Latijnhou-
wers et al. 2003). Within  Ascomycetes, for example, the rice blast fungus Magnaporthe 
grisea has a relatively small genome (38 Mb, ~12,000 predicted genes), whereas the re-
cently sequenced genome of the obligate biotrophic powdery mildew fungus Blumeria 
graminis is considerably larger (~100 Mb); the expansion is mainly caused by transpos-
able elements (Spanu et al. 2010; Duplessis et al. 2011). It has been speculated that 
Phytophthora spp. might have undergone a whole-genome duplication or at least sev-
eral large-scale duplications. That, together with their divergent repertoire of transpos-
able elements, probably contributed to the increased genome size and gene content of 
the Phytophthora spp. (Jiang et al. 2005; Haas et al. 2009; Martens & Van de Peer 2010).

Oomycete pathogens have a large and diverse repertoire of expanded gene families 
(Tyler et al. 2006; Haas et al. 2009; Baxter et al. 2010; Lévesque et al. 2010; Seidl et al. 
2011). These mainly encode proteins that are secreted and implied to be directly or in-
directly involved in pathogenicity, such as the NEP1-like proteins (Gijzen & Nürnberger 
2006) or glycoside hydrolases (Ospina-Giraldo et al. 2010; Seidl et al. 2011). Two nota-
ble classes of highly abundant genes that are identified in several oomycete genom-
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es encode secreted proteins characterized by the presence of either the RXLR or the 
 LXLFLAK (Crinkler) motif (Whisson et al. 2007; Dou et al. 2008; Jiang et al. 2008; Haas et 
al. 2009). These motifs, located in the N-terminal region of the mature protein, play a 
role in translocation of the proteins from the apoplast to the cytoplasm of the host cell; 
however, the process is not yet fully understood (Govers & Bouwmeester 2008; Kale et 
al. 2010; Stassen & Van den Ackerveken 2011).

Initial analyses of the evolution of several pathogenic oomycetes led to the identi-
fication of large gene families. However, the individual contributions and the exact se-
quence of different evolutionary processes such as gene gains, duplications, and losses 
that caused the enormous increase in gene families sizes are still unknown. We studied 
these dynamics, and also the general evolution of the gene content, by a phylogenet-
ic approach that reconciled 18,459 individual gene trees that constitute the phylome 
of Stramenopiles with a reliable species phylogeny. This systematic and comprehen-
sive analysis of the evolutionary events is now feasible because several genomes of 
 oomycetes and their sister lineages have been sequenced, a substantial increase to pre-
vious studies. We have utilized the predicted proteomes of six pathogenic oomycetes 
and four nonpathogenic Stramenochromes (Supplementary Material and Methods S3-
1), a sublineage within the Stramenopiles (Patterson 1999). The six oomycetes comprise 
the fish pathogen S. parasitica and five plant pathogens: the necrotrophic wide host 
range pathogen Pythium ultimum, the obligate downy mildew pathogen of Arabidopsis 
Hyaloperonospora arabidopsidis, and three  Phytophthora species, P.  infestans, P.  sojae, 
and P.  ramorum. The latter two cause stem and root rot on soybean and sudden oak 
death, respectively. The four aquatic photosynthetic  Stramenochromes include the 
brown alga Ectocarpus siliculosus, the golden-brown alga Aureococcus anophageffer-
ens, and two diatoms: Phaeodactylum tricornutum and Thalassiosira pseudonana. Our 
phylogeny-based approach resulted in an overview of the fundamental evolutionary 
dynamics underlying major transition points in the evolution of pathogenic oomycetes 
and how these differences are reflected in the expansion and contraction pattern of dis-
tinct functional classes, such as transcription regulation or carbohydrate metabolism. 
Moreover, we were able to elucidate the evolutionary history of large gene families in 
oomycetes, such as glycoside hydrolases and peptidases. These families show distinct 
evolutionary trajectories that caused their abundance in extant taxa, an observation 
that would not have been possible solely on parsimony- or abundance-based methods. 
This, together with our other results, highlights the needs for an advanced phylogeny-
based analysis of the expansion of large gene families in the future.

MATERIAL & METHODS
To define protein families in the ten analyzed Stramenopiles, we created a sparse 

network based on Blast (Altschul et al. 1990) all-versus-all sequence similarity search 
(e-value cut-off: 1 X 10-3). Spurious connections between short segments of similarity 
were removed, and the network was portioned into families using the Markov cluster-
ing algorithm (Van Dongen 2000; Enright et al. 2002). The presence of transposable 
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elements in the proteomes was predicted by two independent methods and families 
containing at least one identified transposable element were removed.

A maximum likelihood phylogenetic tree was inferred using RAxML (Stamatakis 
2006) (v7.0.4) with a gamma model of heterogeneity and Whelan and Goldman amino 
acid substitution matrix. A phylogenetic marker was created by concatenation of indi-
vidual alignments of single-copy families derived by mafft (Katoh et al. 2002) (L-INS-I 
algorithm). The robustness of the topology was assessed by 1,000 bootstrap replicates. 
Relative divergence times within the Stramenopiles were estimated with BEAST under a 
strict clock model (Drummond & Rambaut 2007). The age prior for the last  Stramenopile 
common ancestor (LSCA) was arbitrarily set to 100. We ran ten independent chains with 
4,000,000 generations and subsequently averaged the estimates on the relative diver-
gence times. The probability of the deviation between the observed and the expected 
number of evolutionary events at each branch was assessed by Poisson distribution.

We aligned the individual protein families, subsequently constructed RAxML maxi-
mum likelihood trees and assessed the robustness of these with 100 bootstrap repli-
cates. We used NOTUNG (Chen et al. 2006; Durand et al. 2006) (v2.6; 1.5 duplication 
and 1 loss cost) to reconcile these trees with the species phylogeny. Uncertainties in the 
protein tree topology were assessed and weakly supported branches (<80% bootstrap 
support) were rearranged to minimize duplication/loss costs. Orthologous groups (OGs) 
were formed based on duplications at the LSCA. Consequently, each OG represents a 
single gene at LSCA or at the point of gain. All OGs are deposited under http://bioinfor-
matics.bio.uu.nl/michael/index_supplementary.html.

Individual OGs were functionally annotated by transfer of clusters of orthologous 
groups (COG) classification from eggNOG (Muller et al. 2010), by functional annotation 
of chloroplast-associated proteins via gene ontology utilizing Blast2GO (Conesa et al. 
2005), and by prediction of secretion signals and/or of host-cell translocation motifs 
(RxLR/ LxLFLAK) or based on differential expression of the encoding genes during infec-
tion of the host. The prediction of signature Pfam domains identified OGs containing 
glycoside hydrolases and peptidases. Significant over- or underrepresentation of evo-
lutionary events was assessed using Fisher’s exact test, and multiple testing correction 
was applied.

Complete information regarding all methods and material used for the analyses is 
reported in Supplementary Material and Methods S3-1.

RESULTS

Protein Family Assignment

To systematically study the evolutionary dynamics of protein families in ten 
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 Stramenopile species, we classified the combined set of 148,744 predicted proteins 
into families (Materials and Methods). In total, 18,979 families were formed, and for 
27,342 single sequences (singletons), no homology could be established.

Filtering for transposable elements resulted in the removal of 7,905 proteins rep-
resenting 519 families and 267 singletons. Stramenopiles, in particular oomycetes and 
the brown alga E.  siliculosus, contain a large and diverse repertoire of transposable 
elements (Jiang et al. 2005; Tyler et al. 2006; Haas et al. 2009; Cock et al. 2010). Relics 
of those have been observed in high abundance in the predicted proteomes and would 
have biased our analysis (Seidl et al. 2011). In total, this resulted in 45,535 families 
including 27,075 singletons (Supplementary Figure S3-2A). Other large-scale studies 
conducted in closely related phyla revealed a comparable number of singletons per 
genome (Supplementary Figure S3-2B) (see e.g., Martens et al. 2008; Cock et al. 2010). 
However, a direct comparison is not feasible because different species sets were used 
in the other studies. The remaining 18,459 multisequence families were used for tree 
reconciliation.

Species Phylogeny Utilizing Concatenated Single-Copy Genes

The quality of tree reconciliation is highly dependent on a correct species phylog-
eny. Furthermore, individual gene trees do not necessarily reflect the true relationship 
between species. In order to elucidate a reliable species phylogeny, we concatenated 
multiple families of single-copy genes, that is, families with only one member in each 
of the ten species included in this study (Figure 3-1). We concatenated alignments of 
189 single-copy families and inferred the species phylogeny using a maximum likelihood 
approach implemented in RAxML (Stamatakis 2006). The robustness was assessed by 
1,000 bootstrap replicates. The obtained species phylogeny is highly supported with 
bootstrap values >95% for all nodes. It mostly resembles the known topology of the 
tree of life, clearly separating the pathogenic oomycetes from the nonpathogenic 
 Stramenochromes. However, the exact relationships within the genus Peronosporales 
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Figure 3-1 Phylogeny of the analyzed Stramenopiles.
Maximum likelihood phylogeny of the analyzed Stramenopiles based on 189 concatenated marker families 
(branch lengths in ‘‘substitutions per site’’ are displayed in italics). The robustness of the topology was as-
sessed using 1,000 bootstrap replicates (bold numbers).
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contradict previous studies that either grouped P. sojae and P.  infestans (Blair et al. 
2008) or proposed the paraphyly of  Phytophthora by grouping P.  infestans as a sister 
taxa to H.  arabidopsidis (Runge et al. 2011). Our phylogenetic analysis revealed a closer 
relationship between P. ramorum and P. sojae, and we show that this topology is more 
parsimonious in reconciliation of evolutionary events; hence, it was used for all further 
analyses (Supplementary Figure S3-3A).

Systematic Tree Reconciliation Guides Genome Reconstruction

We obtained a comprehensive and dynamic picture of Stramenopile genome evolu-
tion by projecting gene gains, duplications, as well as losses onto the species phylogeny 
(Figure 3-2). For each of the 18,459 families, we inferred maximum likelihood trees, rec-
onciled these with the predicted species phylogeny of Stramenopiles, and subsequently 
formed 19,596 OGs that represent single genes either at the LSCA or at the respective 
point of gain of individual OGs. To appropriately describe the evolutionary events that 
can affect an OG, these groups can also contain genes that descend from a duplication 
event subsequent to the reference speciation event (LSCA in our case), so called in-par-
alogs: these genes are related to the other genes within the group with respect to the 
reference speciation event (LSCA) and are hence orthologous (Fitch 2000; Sonnhammer 
& Koonin 2002). Consequently, an OG can reflect single-copy orthologs, but also more 
complex 1:n, n:m relationships, and is used as such throughout the manuscript.

Over 50% of OGs are present in the LSCA. We found homologs outside of 
 Stramenopiles for 95% (~9,750) of these groups, and hence, they predate the LSCA. 
Based on our data set, the reconstructed genome of the LSCA contained at least 10,280 
genes and is consequently remarkably large compared with the genome content of the 
Stramenochromes. The genes present in the LSCA are enriched for basic cellular func-
tions, like transcription and translation. It is striking to see that of the remaining gains, 
30% is observed at the LCA of oomycetes and the LCA of the Pythium + Peronosporales 
clade (1,311 and 1,437, respectively); the highest number of gene gain observed at 
any branch (P value < 0.01, one-sided Wilcoxon rank sum test). This demonstrates that 
gains, accompanied by duplications, have caused the increase in genome content of 
pathogenic oomycetes.

Despite the fact that Stramenochromes, unlike pathogenic oomycetes, show only 
small net changes in the number of encoded proteins (Figure 3-2), their genomes are 
not static. Similar to oomycete genomes, they are in constant flux: High numbers of 
duplications are balanced by an equally high number of losses. The contribution of in-
dividual duplications and losses on the same branch and the effect on the size of the 
OG could not have been observed with parsimony-based methods because many of 
these duplications and losses occur in the same OG on the same branch. Globally, we 
observed an average of 1.77 duplication and 2.06 losses per OG; however, only few OGs 
contribute to the majority of evolutionary events (e.g. members of the major facilitator 
superfamily or amino acid transporters).
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To assess whether the observed duplication or loss events per individual branch de-
viate from the expected number, we calculated the relative frequency of these events 
per branch. Hence, we inferred branch length by estimating the relative divergence time 
of Stramenopiles using BEAST (Drummond & Rambaut 2007) and artificially dating the 
LSCA to 100 units of time (Supplementary Figure S3-3B). We predicted the position of 
the root by adding the ciliate  Paramecium  tetraurelia as an outgroup species. Based on 
the cumulative branch lengths (Supplementary Figure S3-3B) and the duplication and 
loss events (Figure 3-2), we estimated the relative frequency of duplications and losses 
to be 67 and 78 per unit of time, respectively. We contrasted the observed number 
of duplications/losses with expected numbers based on the global frequency and the 
length of the individual branch. The probability that the observed events deviate from 
the expectations was calculated using Poisson distribution. The abundance of observed 
duplications and losses significantly deviate from the expected number of events at 
each branch (Supplementary Figure S3-4). Within the Peronosporales clade, duplica-
tions and losses are significantly higher than expected (Supplementary Figure S3-4; 
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duplications up to a maximum of ~7-fold; 2.83 log2 fold), indicating an increased turno-
ver of gene families in this clade. Interestingly, also at the LCA of Stramenochromes as 
well as the LCA of diatoms/golden-brown algae, the abundance of losses is significantly 
higher than expected, pointing to the contraction of OGs within the Stramenochromes.

A notable example of genome contraction is observed in the downy mildew H. 
 arabidopsidis. An accumulation of losses is accompanied by a lower number of duplica-
tion events. It is the only branch in the phylogeny where the majority of duplications 
occurs in lineage-specific groups. Hence, the H. arabidopsidis genome encodes a unique 
repertoire of expanded OGs, while at the same time, ancestral OGs, that is, OGs that 
were already gained before the point of duplications, were either completely lost or 
contracted in size.

The increased genome content of the extant oomycetes is mainly caused by three 
events: gains, continuous duplications at internal branches of the species phylogeny, 
and a high number of duplications at branches leading to the extant taxa, for example, 
P. infestans, S. parasitica, and P. ultimum. Duplications at the LCAs are in general of 
lower abundance and affect ancestral OGs. A notable exception is the observed accu-
mulation of duplications at the LCA of Phytophthora spp. (2.83-fold (log2) higher than 
expected) (Figure 3-2; Supplementary Figure S3-4); this is 1.5 times higher compared 
with the other duplications at internal branches. The increased number of duplications 
is even more pronounced when considering the relative number of duplication events 
per branch instead of the absolute abundance and hence points to a major duplication 
event in the evolution of the Phytophthora genus (Figure 3-3 and Supplementary Figure 
S3-5).

Differences in the Evolutionary Dynamics of Biologically Distinct Functional Classes

OGs can be assigned to functional classes by projecting the biological function of its 
individual proteins to the entire OG. We formed broad classes of functionally related 
OGs by transferring functional annotations from homologs based on the COG functional 
classification schema (Tatusov et al. 1997) and from predictions, for example, signal 

Figure 3-3 Number of duplication events in 
P.   ramorum. 
Absolute and relative numbers of duplication 
events for P. ramorum and all its ancestors. 
The absolute number of duplications is dis-
played in black, whereas the relative number 
of duplications (per unit of time) is shown in 
dark grey. The light grey bar represents the 
abundance of duplications (absolute and 
relative) including duplications occurring in 
lineage-specific OGs in P. ramorum.
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peptides or host cell translocation motifs (RXLR and LXLFLAK) (Supplementary Material 
and Methods S3-1). These broad functional classes behave strikingly different with re-
spect to their evolutionary pattern of expansion (duplications) and contraction (losses): 
They are either significantly overrepresented or significantly underrepresented at vari-
ous points in the evolution of Stramenopiles (Figure 3-4 and Supplementary Figure S3-
6).

Overall, OGs belonging to COG ‘information processing and storage’ or ‘cellular 
processes and signaling’ have significantly more duplications at the LCA of oomycetes 
and within the Stramenochromes than at other branches. In contrast, OGs implied in 
host–pathogen interaction such as functional classes that contain RXLR and LXLFLAK 
motifs, secretion signals, as well as genes differentially expressed during infection of 
the host, predominantly expand within pathogenic oomycetes, both on internal as well 
as external branches. OGs containing predicted secreted proteins significantly expand 
at the LCA of Phytophthora spp. and throughout the genus, even though the analyzed 
Stramenopiles do not differ in absolute and relative size of the predicted secretomes 
(Supplementary Figure S3-1B).

Pathogenicity is not the only characteristic that discriminates the analyzed oomy-
cetes and Stramenochromes, because Stramenochromes are plastid-harboring photo-
synthetic active organisms. This lifestyle difference is clearly reflected in the observed 
evolutionary pattern of OGs containing proteins with functional association to the chlo-
roplast (Figure 3-4; Supplementary Figure S3-7). Like the pathogenicity related OGs, 
these OGs are also highly dynamic in their evolution: They significantly expand at the 
LCAs within the Stramenochromes as well as at the branch leading to A.  anophagefferens 
and significantly contract at the terminal branches and at the LCA of the diatoms. In-
terestingly, even though oomycetes do not harbor any plastids, we observed a consid-
erable number of genes within the oomycete genomes that belong to ~450 different 
chloroplast-associated OGs (Supplementary Figure S3-7). At the same time, as expect-
ed, losses of chloroplast-associated OGs are enriched at the LCA of oomycetes (Supple-
mentary Figure S3-8).

Notably, OGs related to signal transduction, defense and also transcription predomi-
nantly expand early in evolution. It has been previously noted that in prokaryotes, the 
major changes in regulation of transcription and signal transduction often occur at the 
origins of major lineages (Cordero et al. 2008). Our observations suggest a similar ex-
pansion within the Stramenopile lineage, which may hold true for other eukaryotes as 
well.

Moreover, OGs characterized as metabolism-related are enriched for duplications 
at all internal branches throughout the Stramenopiles. Interestingly, OGs related to car-
bohydrate as well as amino acid transport and metabolism significantly expand at the 
LCA of oomycetes or throughout the clade. Glycoside hydrolases belong to the class of 
CAZymes (carbohydrate-active enzymes), which contains proteins involved in synthesis 
and breakdown of carbohydrates that are found, for example, in the cell wall of both 
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pathogen and host. It has been shown before that glycoside hydrolases are abundant in 
oomycetes and that the majority of those are potentially secreted (>50%) (Tyler et al. 
2006; Ospina-Giraldo et al. 2010; Seidl et al. 2011); however, the evolutionary history of 
expansion has so far not been uncovered.

Evolutionary Dynamics of Glycoside Hydrolases

Our systematic analysis of the evolution of glycoside hydrolases revealed that in-
dividual OGs that are highly abundant in plant pathogenic oomycetes exhibit distinct 
evolutionary trajectories (Figure 3-5A and Supplementary Figure S3-9). Ninety-four OGs 
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Figure 3-4  Differences in evolutionary trajectories between distinct functional classes.
Over- or underrepresentation of duplication events at distinct branches of the species phylogeny observed 
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are predicted to contain glycoside hydrolases; they cover a total of 1,005 proteins of 
which the majority (85%) is present in oomycetes (e.g., 179 in P.  infestans and 214 in P. 
 sojae) (Figure 3-5A). The repertoire of glycoside hydrolases in oomycetes is dominated 
by a few large OGs such as, for example, exo-beta-1,3-glucanase (glycoside hydrolase 
family 17, GH17); >60% of all glycoside hydrolases in oomycetes belong to only ten OGs. 
The high abundance of proteins within OGs is not due to isolated duplication events 
on single branches but is instead caused by consecutive duplications along the internal 
branches of the oomycete phylogeny. In addition to the high abundance of lineage-
specific duplications that are partially balanced by losses, we observed a pronounced 
accumulation of duplications at the LCA of Peronosporales and especially at the LCA of 
 Phytophthora (66 duplication events).

Extracellular hydrolases like the exo-beta-1,3-glucanase OG199 and OG225 are ex-
amples of OGs that are expanded in oomycetes and lost in Stramenochromes (Figure 
3-5B). The expansion in P.  sojae and P.  ramorum within OG199 is mainly caused by line-
age-specific expansion as well as early duplications followed by subsequent losses in H. 
 arabidopsidis and P.  infestans. In contrast, the expansion of OG225 is dominated by con-
secutive duplications that occur late in evolution, mainly at the LCA of  Peronosporales, 
the LCA of  Phytophthora, and lineage specific within P. sojae. These duplications are 
balanced by subsequent losses in all extant Peronosporales. Even though these OGs 
share similar biological functions, their high abundance, especially in the    Phytophthora 
spp., is caused by different evolutionary trajectories.

These OGs do not only differ in their individual evolutionary trajectories but also the 
whole repertoire of glycoside hydrolases displays a different global pattern of expan-
sion and contraction compared with other functional classes. Another class of highly 
abundant enzymes in pathogenic oomycetes that have a potential role during infection 
are peptidases (Tyler et al. 2006; Haas et al. 2009). Whereas the LSCA contains only few 
glycoside hydrolases (33% of the repertoire observed in P.  sojae), many peptidases are 
already present at the LSCA (225 OGs), and the repertoire of the extant taxa is either 
of similar size or reduced (Supplementary Figure S3-10). Nevertheless, these peptidase 
OGs are not static but in constant flux. We demonstrated that pathogenicity related 
functional classes evolve along different, even opposing trajectories, while still resulting 
in the observed high abundance in the present day pathogenic oomycetes.

DISCUSSION
What are the evolutionary events that caused the expansion of OGs in pathogenic 

oomycetes, and when and how did the dynamic processes that shaped the genome con-
tent of these species take place? To address these questions, we systematically studied 
evolutionary events directly inferred from phylogenetic analysis and tree reconciliation.

Initial work on gene family evolution in Stramenopiles and in particular in pathogen-
ic oomycetes has been limited to a few species and was based on parsimony methods to 
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Figure 3-5 Global and local pattern of expansion and contraction of OGs containing glycoside hydrolase. 
(A) The reconciled evolutionary events are projected on the species phylogeny as well as the total abun-
dance of hydrolases at each taxon (ancestral and extant). Heat maps on the different branches display the 
deviation from the median number of events (i.e., gains, duplications, or losses). The expansion and con-
traction pattern of the ten largest OGs is displayed next to the phylogeny by a heat map (expansion: yellow; 
contraction: blue; abundance of duplications/losses saturating at -4 and 4). (B) The number of proteins of 
two glycoside hydrolase families (OG199 and OG225) in individual species is shown in the table. A heat map 
displays the expansion and contraction pattern of these two families throughout oomycetes (expansion: yel-
low; contraction: blue; abundance of duplications/losses saturating at -4 and 4).
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reconstruct gain and losses of gene families (Martens et al. 2008; Cock et al. 2010). The 
expansion of families was inferred based on differences in the presence/absence and 
abundance pattern between species (Tyler et al. 2006; Martens et al. 2008; Haas et al. 
2009; Baxter et al. 2010; Lévesque et al. 2010; Seidl et al. 2011). These analyses already 
provided initial insights into the genome evolution and led to the identification of large 
gene families that are implied to play a role in host-pathogen interaction. However, the 
evolutionary trajectories, that is, the patterns of gene gain, duplications, and losses 
that caused this abundance were not yet systematically analyzed. This study is an addi-
tional step toward uncovering these dynamics by a comprehensive phylogenetic analy-
sis and subsequent tree reconciliation of ten Stramenopiles including six pathogenic 
 oomycetes revealing the patterns of gene gains, duplications, and losses that caused 
this large gene families.

We reconciled the phylome constituted by 18,459 individual protein trees sampled 
from ten Stramenopiles with a species phylogeny derived by concatenating 189 single- 
copy genes (Figure 3-1). The species phylogeny is highly supported and mainly resem-
bles the known topology of the tree of life. It should be noted that the exact topology 
of the three  Phytophthora spp. contradicts the topology published by Blair et al. (2008) 
that suggested a close association of P.  sojae with P.  infestans. However, these authors 
also tested alternatives and concluded that they could not significantly reject the to-
pology in which P.  sojae and P.  ramorum are closely associated, a grouping that we 
predict in this study with high support. The number of evolutionary events derived by 
reconciliation with the topology proposed by Blair et al. (2008) is higher (2,900 events), 
and hence, our topology is more parsimonious (Supplementary Figure S3-3A). In most 
cases, reconciliation with either topology did not result in major differences, whereas 
in some cases, the numbers of evolutionary events are even more pronounced with the 
topology proposed by Blair et al. (2008), for example, in the case of the accumulation 
of duplications at the LCA of  Phytophthora spp. Recently, Runge et al. (2011) proposed 
a topology that places H.  arabidopsidis as a sister taxon to P.  infestans. It has been 
previously indicated that some clades of   Phytophthora are paraphyletic with respect to 
the downy mildews (Cooke et al. 2000; Göker et al. 2007); however, our reconstructed 
species phylogeny groups all three analyzed  Phytophthora spp. in a single cluster. The 
number of evolutionary events derived by tree reconciliation with the topology pro-
posed by Runge et al. (2011) is much (~7,200 events) higher than our more parsimoni-
ous topology (Supplementary Figure S3-11). The disagreement between our topology 
and the two alternatives does not mean that these alternatives are wrong. Neverthe-
less, we preferred to use the phylogeny that was reconstructed from our concatenated 
alignment containing 189 loci. When reconciling a large number of gene families, this 
topology is the most parsimonious and hence conservative, therefore further support-
ing our choice.

A comprehensive and dynamic picture of the genome evolution in Stramenopiles 
was obtained by projecting gene gains, duplications, and losses that were derived by 
reconciliation of the phylome onto the species phylogeny (Figure 3-2). Our analysis 
demonstrates that throughout evolution, the genomes of Stramenopiles are not static 
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but in constant flux; a dynamic that is at least partially disguised by parsimonious-based 
methods when duplications and losses occurred in the same OG at the same branch. 
Whereas the genome content of Stramenochromes is of comparable size to the LSCA, 
genomes of pathogenic oomycetes have been growing by gains and by continuous du-
plications on both the internal as well as the terminal branches. The LSCA is large and 
contained ~10,000 genes of which the majority predate the LSCA.

Some of these genes might have not transferred vertically but instead descended 
from a horizontal gene transfer (HGT). Consequently, we may overestimate the num-
ber of genes in the LSCA, introduce unnecessary losses in the derived lineages, and 
underestimate gains in internal branches. So far, there are only few comprehensive 
studies that have investigated the fraction of HGTs in Stramenopiles from origins, such 
as bacteria or eukaryotes (Richards et al. 2006; 2011; Richards & Talbot 2007; Morris 
et al. 2009). A recent analysis of HGT between fungi and oomycetes has revealed 33 
high-confidence HGTs that together contributed to up to ~8% of the secretome of P. 
 ramorum and hence to plant parasitic mechanisms of oomycetes (Richards et al. 2011). 
Indeed, one of their discussed examples, a sugar transporter called AraJ (Richards et 
al. 2006; 2011), is annotated as ancestral (gained at the LSCA or before) in our analysis. 
More quantitatively, if we consider all OGs that consistently have their best blast hits to 
eukaryotes or bacteria as potential sources of HGT, only a minority (excluding singletons 
because these are not considered in our reconstruction) is specific to either oomycetes 
or  Stramenochromes (Supplementary Figure S3-12). These are the only cases where an 
erroneous placement of the gains at the LSCA could influence our results because OGs 
that have members in both lineages will be invariably placed at the LCSA. These num-
bers are of course upper limits because real losses of ancestral OGs at either ancestor 
of the two lineages also occur or are included in the reported numbers (Supplementary 
Figure S3-12). Consequently, the quantitative influence of these events to our analysis is 
marginal, even though it highlights the mosaic nature of the analyzed species.

The interpretation of the inferred gene content of LSCA and the genome evolution 
of Stramenopiles also depends on the contribution of the plastid to their gene content. 
If the LCA contained a plastid, as proposed by the Chromalveolate hypothesis (Cavalier-
Smith 1999; Keeling 2009), then our estimated size of the LSCA as well as the derived 
evolutionary events do not change (Figure 3-2). However, our results would be affected 
if the acquisition of the plastid by the photosynthetic Stramenochromes occurred after 
the speciation of oomycetes as suggested by the SEEE hypothesis (Cavalier-Smith et al. 
1994; Archibald 2009; Baurain et al. 2010). If the plastid endosymbiosis mainly affected 
chloroplast-associated genes, we would slightly overestimate the size of the LSCA by 
295 genes (2.8%) and an equivalent number of losses and gains at the branches lead-
ing to oomycetes and Stramenochromes (Supplementary Figure S3-7). However, if the 
plastid endosymbiosis contributed a wide array of cellular functions to the Strameno-
chrome ancestor, we would overestimate the size of the LSCA by up to 2,300 genes 
(Figure 3-2). This number has to be seen as the upper limit because we obtained it by 
assuming that every OG that we inferred to be lost at the branch leading to oomycetes 
has descended from the plastid endosymbiosis (Figure 3-2). In contradiction to the SEEE 
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hypothesis, we observed 432 OGs that are chloroplast-associated and retained in the 
genomes of both nonphotosynthetic oomycetes and Stramenochromes since the LSCA 
(Supplementary Figure S3-7). Similarly, 88 and 14 oomycete-specific OGs have their 
best blast hits in green and red algae genomes, respectively (Supplementary Figure S3-
12). These results, together with studies by others (Andersson & Roger 2002; Tyler et al. 
2006; Maruyama et al. 2009), seem to slightly favor the early acquisition of the plastid 
before the speciation of Stramenochromes and oomycetes. However, recent molecular 
data support a more complex scenario and later acquisition of the plastid thereby re-
jecting the Chromalveolate hypothesis (Stiller et al. 2009; Baurain et al. 2010; Felsner et 
al. 2011; Woehle et al. 2011). Nevertheless, our results do not change dramatically and 
are hence independent of the precise history of the plastid. Dedicated future research, 
also facilitated by additional genomes from related lineages, will gather additional evi-
dence for either of the two hypotheses and thereby shed light on this controversially 
discussed event and hence also on our reconstructions.

The massive accumulation of duplications at the LCA of  Phytophthora spp. points 
to a large-scale duplication event (Figure 3-3; Supplementary Figure S3-5). It has been 
postulated that the accumulation of duplications at a constrained point in time can be 
indicative for duplications that affect either large parts of the genome or the whole ge-
nome (McLysaght et al. 2002; Jaillon et al. 2004; Kellis et al. 2004; Jiao et al. 2009). This 
accumulation of duplication events was already observed earlier by Martens and col-
leagues who used an independent method to time the age of paralogs in  Phytophthora 
spp. (Martens & Van de Peer 2010). The usage of additional outgroup species allows 
us to more precisely estimate the time of these events, which seem to have happened 
after the speciation of H.  arabidopsidis and before the radiation of  Phytophthora spp. 
Nevertheless, the usage of the less parsimonious topology of the analyzed Peronospo-
rales proposed by Runge et al. (2011) introduces an accumulation of duplications at 
the LCA of Peronosporales (Supplementary Figure S3-11). Hence, if this proposed to-
pology is correct, it is tempting to speculate that the analyzed Peronosporales shared 
this large-scale duplication event. Considering our predicted topology, such an earlier 
timing of this event could also be possible; the genome contraction of H.  arabidopsidis 
might lead to the loss of both duplicates and hence at least partially obscure events 
happening at the LCA of  Peronosporales. Nevertheless, neither the analysis performed 
by Martens and colleagues nor ours is able to elucidate the exact mode of expansion 
because of the lack of long-distance intra-species co-linearity of genes. Alternative 
scenarios, such as segmental duplications that occurred at a constrained point in time 
followed by reorganization, are at least equally likely, especially given the observed dy-
namics in genome organization of  Phytophthora spp. and the genome contraction in H. 
 arabidopsidis. Independent of the underlying mechanism, this coordinated expansion 
of gene families marks a major transition point in their evolution. Together with subse-
quent lineage-specific losses, the expansion could be the driving force of the speciation 
and adaptation to different hosts within the  Phytophthora genus (or even within the 
Peronosporales); a process that has been proposed before for other organisms, such as 
yeast (Kellis et al. 2004) or plants (Jiao et al. 2009).
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The number of duplications and losses events at each branch is determined by tree 
reconciliation. This procedure is not only dependent on a reliable species phylogeny, 
but also on the alignment as well as the gene tree, or in this case, protein tree. Errone-
ously inferred protein trees, either based on inaccurate alignments or due to biases in 
the tree predictions itself, will artificially increase the number of duplications at internal 
branches and losses at terminal branches of the tree. To address if the incorporation 
of low-quality alignments in our analysis interferes with our main results, we divided 
the families into high-quality and low-quality alignments (see Supplementary Material 
and Methods S3-1 and Supplementary Figure S3-15). If we remove the 477 families and 
their derived OGs that have a low-quality alignment in our analysis, we observe that the 
absolute numbers of evolutionary events decrease as the analysis is now based on less 
data (Supplementary Figure S3-15). More importantly, the relative numbers and the 
major trends observed in our analysis, such as the accumulation of duplication in the 
common ancestor of  Phytophthora spp., are independent of the exclusion of the lower 
quality alignments (Supplementary Figure S3-15). Consequently, our results are robust 
to the possible bias introduced by the retention of the full set of families. To reduce the 
possible bias in the tree prediction and to apply an explicit model of evolution, we used 
a maximum likelihood method to predict the tree topology of the protein trees. More 
importantly, we used NOTUNG (Chin et al. 2005; Durand et al. 2006) for tree reconcili-
ation that allows to explicitly address this uncertainty in protein trees. NOTUNG allows 
the rearrangement of weakly supported parts of the tree topology to reduce the evolu-
tionary events needed for reconciliation while keeping strongly supported parts fixed. 
Throughout this study, we used a bootstrap support of >80% to indicate strongly sup-
ported clades of the protein trees. Hence, parts of the tree topology that are not sup-
ported with a bootstrap of at least 80% are rearranged to minimize evolutionary events. 
When we compared the results derived with >80% cutoff to a less conservative cutoff 
of >60%, leading to less rearrangement, we indeed observed more duplications at the 
internal branches and more losses at terminal branches, especially within  oomycetes 
(Supplementary Figure S3-13). When we applied an even stricter cutoff of >90%, which 
resulted in more rearrangement, some duplications at the internal branches, for ex-
ample, at the LCA of Stramenochromes and especially at the LCA of Peronosporales, 
were removed; consequently, fewer losses in the terminal taxa were introduced (Sup-
plementary Figure S3-13B. Regardless of the choice of the cutoff (60%, 80%, or 90%), 
the changes in the abundance of the reconciled evolutionary events did not interfere 
with our global results indicating the robustness of our framework to this bias.

Our results are directly dependent on the availability, quality, and completeness of 
the predicted proteomes derived from the various sequenced genomes. The robust-
ness of gene annotation has been observed to have only small effects on the analy-
sis of gene family losses in related species (Martens et al. 2008). In general, more se-
quenced genomes of closely related oomycetes, preferably sister taxa to the already 
existing genomes, would enable a more precise timing of the duplication events, espe-
cially at the terminal branches. Moreover, our analyses are currently limited to patho-
genic  oomycetes. Including sequenced genomes of saprophytic species would eluci-
date whether evolutionary events at the LCA of oomycetes are specific to pathogenic 
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 oomycetes or are instead a general pattern for all oomycetes.

CONCLUSIONS
We systematically analyzed the genome evolution of pathogenic oomycetes by rec-

onciliation of the Stramenopile phylome with a highly supported species phylogeny. 
Our analysis uncovered that oomycete genomes, emanating from a common ancestor 
of Stramenopiles that had a rather large genome encoding for ~10,000 genes, were 
growing by continuous duplications that predominantly affected ancestral OGs. The 
massive accumulation of duplication events at the LCA of the  Phytophthora genus sug-
gests a large-scale duplication event that predates the speciation and hence might be 
driving the adaptive radiation within this genus. Different functional classes have dis-
tinct evolutionary trajectories: not only between classes but also within a single class. 
Different evolutionary trajectories are proposed to lead to the observed abundance of 
pathogenicity-related functional classes, for example, glycoside hydrolases and pepti-
dases, an observation that was not yet apparent by previous analyses. Consequently, 
we unveiled both large-scale evolutionary processes that shape the genomes of extant 
oomycetes as well as the complex evolution trajectories that lead to highly abundant 
gene families in this important class of pathogens.
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Supplementary Material & Methods S3-1

Gene family assignment

We acquired the predicted protein sequences from ten Stramenopiles:

Species Version Source URL Reference

Ectocarpus siliculosus v1 BOGAS http://bioinformatics.psb.ugent.be/genomes/ (Cock et al. 2010)

Aureococcus anophagefferens v1 JGI http://genome.jgi-psf.org/ (Gobler et al. 2011)

Phaeodactylum tricornutum v2 JGI http://genome.jgi-psf.org/ (Bowler et al. 2008)

Thalassiosira pseudonana v3 JGI http://genome.jgi-psf.org/ (Armbrust et al. 2004)

Hyaloperonospora arabidopsidis v8.3 VBI http://vmd.vbi.vt.edu/ (Baxter et al. 2010)

Saprolegnia parasitica v1 BROAD http://www.broadinstitute.org/scientific-community/data NA

Pythium ultimum v4 BROAD http://www.broadinstitute.org/scientific-community/data (Lévesque et al. 2010)

Phytophthora infestans v1 BROAD http://www.broadinstitute.org/scientific-community/data (Haas et al. 2009)

Phytophthora ramorum v1 BROAD http://www.broadinstitute.org/scientific-community/data (Tyler et al. 2006)

Phytophthora sojae v1 BROAD http://www.broadinstitute.org/scientific-community/data (Tyler et al. 2006)

To define protein families, we created a sparse network of nodes (proteins) connect-
ed by edges (sequence similarity) by conducting a blastp (Altschul et al. 1990) all-vs.-all 
sequence similarity search (e-value cutoff 1 X 10-3, enabled soft filtering). We subse-
quently removed edges that were formed between proteins due to short segments of 
similarity thereby eliminating spurious connections within the network. We removed 
edges between proteins if the matched area was ≤50% or the ‘actual-matching’ area 
was ≤20% of either the query or the subject. The matching area is defined as the area 
from the start position of the first segment to the end position of the last segment and 
the ‘actual-matching’ area as the sum of the covered area by each individual segment. 
Subsequently, we partitioned the resulting network into protein (gene) families using 
the markov clustering algorithm (MCL) (Van Dongen 2000; Enright et al. 2002) with an 
inflation value of 3.0.

Detection of transposable elements

The presence of transposable elements or their signatures within the predicted pro-
teomes of the analyzed species was assessed using two complementary methods; (i) by 
screening for the presence of 86 signature domains and the MULE transposase domain 
within predicted proteins (Zdobnov et al. 2005) and (ii) by screening for sequences that 
show similarity to position-specific scoring matrices for several families of transpos-
able elements. For (i) we predicted the domain repertoire for all proteins using hm-
mer3 (Eddy 1998) and a local Pfam database (v24) (Finn et al. 2010) applying a domain 
model specific cutoff (gathering cutoff). For (ii) we used TransposonPSI (Haas BJ, http://
transposonpsi.sourceforge.net/) to scan the predicted proteomes for the presence of 
different families of transposable elements. Subsequently, we removed all families con-
taining predicted proteins that have one or more signature domains that are specific for 
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transposable elements or exhibit similarity to transposable elements.

Phylogenetic analysis

We constructed a phylogenetic tree of the analyzed Stramenopiles using 189 fami-
lies whose members occur in a single copy gene in each of the ten species. Each set of 
ten single copy genes was first aligned using mafft (Katoh et al. 2002) (v6.713b, L-INS-I 
algorithm) and the aligned sequences were subsequently concatenated. We removed 
columns with more than 80% gaps. Furthermore, we removed adjacent divergent posi-
tions both up- and downstream of the gap-position until a column with a median of 
pair-wise BLOSUM62 scores ≥ 0 was found. The resulting alignment was used to infer 
a maximum likelihood phylogenetic tree using RAxML (Stamatakis 2006) (v7.0.4) with 
gamma model of heterogeneity and estimated alpha parameter (-PROTGAMMA) as 
well as a WAG amino acid substitution matrix. The robustness of the tree topology was 
assed using 1,000 bootstrap replicates. To address if few long alignments dominate the 
concatenated alignment, we removed all families whose alignments (after removing 
gaps as outlined above) exceeded a length cutoff that was empirically defined by the 
length distribution of the 189 single copy families (Supplementary Figure S3-14A). This 
length cutoff was set to be the 3rd quartile + 0.5 * inter quartile range of the length 
distribution and yielded 168 families that were subsequently concatenated. The phylo-
genetic tree was inferred as described above and robustness was assessed using 1,000 
bootstrap replicates (Supplementary Figure S3-14B). The tree topology as well as the 
bootstrap support for the individual branches is identical to the predicted topology that 
was based on the full set of 189 single copy markers.

To estimate the relative divergence times of the analyzed Stramenopiles, we inferred 
the phylogeny including the ciliate Paramecium tetraurelia (v1.41,  ParameciumDB 
(Aury et al. 2006; Arnaiz et al. 2007; Arnaiz & Sperling 2011)) as explicit outgroup. We 
identified 35 single copy families in Stramenopiles and P. tetraurelia and utilized these 
as a concatenated marker that was prepared and analyzed as described above. The 
relative divergence times were estimated with BEAST (Drummond & Rambaut 2007) 
under strict clock assumption and a gamma model of site heterogeneity (invariant sites 
+ 4 gamma categories; WAG substitution matrix). We used a defined tree topology and 
starting branch lengths derived from the beforehand maximum likelihood analysis. Fur-
thermore, we set the age of the last common ancestor of Stramenopiles arbitrary to 
100. We ran ten independent chains, each containing 4,000,000 generations of which 
we sampled every 400 generations. The resulting posterior distributions for parameter 
estimates were manually assessed using Tracer (v1.5). Subsequently, maximum cred-
ibility trees were calculated with TreeAnnotator (1.6.1) after removing 10% burn-in. The 
estimated branch lengths were averaged over the ten chains. The probability to observe 
less, equal or more than the abundance of evolutionary events given the expectation 
values at each individual branch was assessed by Poisson distribution. The expected 
values were estimated using the global relative frequency of duplications/losses. 
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Reconstruction of gene family evolution

We reconstructed the evolutionary history of protein families (excluding singletons) 
to monitor macro-evolutionary events like duplications and losses along the species 
tree. The sequences of the gene families were aligned using different alignment algo-
rithms similar to a strategy outlined by Muller and colleagues (2010b). We used mafft 
(v6.713b; L-INS-I, E-INS-I and default parameters) (Katoh et al. 2002) and muscle (v3.7; 
with default parameter) (Edgar 2004) to align the protein sequences. Moreover, we cor-
rected all alignments with rascal (Thompson et al. 2003) and subsequently assessed the 
alignment quality with norMD (v1.3) (Thompson et al. 2001). Per individual family the 
highest scoring alignment out of the refined and original alignments was chosen. We 
constructed phylogenetic trees using RAxML (Stamatakis 2006) (PROTGAMMA, WAG) 
for families >3, excluding families >500 members, and the robustness of the trees were 
assessed using 100 bootstrap replicates.

We reconciled the protein trees with the species tree of Stramenopiles using NO-
TUNG (Chen et al. 2000; Durand et al. 2006) (modified v2.6, personal communication). 
The trees were reconciled using a cost of 1.5 for a duplication event and 1 for a loss 
event. Subsequently, the tree was rooted so that the number of duplication and loss 
events are minimized. Furthermore, NOTUNG allows the rearrangement of the gene 
tree topology on weak branches to account for errors in the gene tree that would lead to 
bias in the derived number of evolutionary events. Weakly supported branches (boot-
strap <80%) were rearranged to minimize the number of evolutionary events, while at 
the same time strongly supported topologies remained intact. Furthermore, we created 
orthologous groups by dividing families based on duplications occurring at the last com-
mon ancestor of Stramenopiles. Consequently, each orthologous group represents a 
single gene either in the last common ancestor of Stramenopiles or at the point of gain. 
Subsequently, we used maximum parsimony to project the derived evolutionary events 
of all orthologous groups, including species-specific groups, on the species phylogeny 
of Stramenopiles.

To assess the contribution of potential low quality alignments to the evolutionary 
events we subdivide the set of alignments (optimal score per family) into high quality 
and low quality subsets. Low quality alignments are defined by a norMD score of <0.75 
(Supplementary Figure S3-15), i.e. families with a norMD score of <0.6 (127) and those 
which exceed this cutoff by 25% (477). The norMD score cutoff of 0.6 was proposed to 
be of high quality and hence more reliable (Thompson et al. 2001; Muller et al. 2010b). 
Subsequently, we projected the evolutionary events based on the derived OGs of the 
high and low quality families onto the species phylogeny (Supplementary Figure S3-15). 

To further elucidate the origin of each individual orthologous group we searched for 
homologs utilizing best hits identified by a blast search (e-value cutoff 1 X 10-3; enabled 
low complexity filtering; query & coverage filtering as described above) against a local 
version of the eggNOG database(v2) (Muller et al. 2010a). If a homolog of a group in 
eggNOG could be identified we assumed an origin before the last common ancestor of 
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Stramenopiles and introduced, if necessary, subsequent losses.

Functional annotation of OGs

We projected functional annotation to each individual OG using five independent 
methods: (i) COG functional classification (Tatusov et al. 1997) was assigned by identifi-
cation of homologs in the eggNOG database utilizing best hits identified by blast search 
(e-value cutoff 1 X 10-3; enabled low complexity filter) (Muller et al. 2010a). If a pro-
tein was consistently assigned to a functional class derived from homologs in eggNOG 
and the OG contained >30% proteins with the identical classification, the functional 
annotation was projected to the whole OG. (ii) The presence of potentially secreted 
proteins within an OG was predicted using SignalP (Bendtsen et al. 2004) (v3.0) in com-
bination with TMHMM (v2.0) (Krogh et al. 2001). Secretion signal within the first 70 
amino acids of a protein was accepted if both the neural network as well as the HMM 
consistently predicted the presence of the motif. Signal peptides were rejected if TM-
HMM predicted more than a single transmembrane region within the protein or a sin-
gle region that overlapped with the SignalP prediction for less than 10 amino acids or 
was positioned outside the first 35 amino acids. OGs that contain >30% proteins with 
a predicted secretion signal were annotated as secreted OG. (iii) Host-cell transloca-
tion motifs were predicted using hmmer3 (Eddy 1998) and manually created HMM-
profiles of the RXLR and the LXLFLAK motif (R.H.Y. Jiang, personal communication). Next 
to the RXLR/LXLFLAK motif itself, we also demanded the presence of a predicted secre-
tion signal within the first 30 amino acids, the gap between the RXLR/LXLFLAK motif to 
the secretion signal to be ≤50 amino acids and the RXLR/LXLFLAK motif to start within 
the first 100 amino acids. OGs that contained >30% proteins with a predicted RXLR or 
LXLFLAK motif were annotated. (iv) Gene expression data of P. infestans during infec-
tion of the host were acquired from the Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/) (Haas et al. 2009). Differentially expressed genes were identified as 
described elsewhere (Haas et al. 2009; Seidl et al. 2011). OGs containing significantly 
differentially expressed P. infestans genes were annotated as potentially differentially 
expressed during host-pathogen interaction. (v) Chloroplast associated proteins were 
identified by transferring the gene ontology (GO) annotation using Blast2GO (default 
parameters) (Conesa et al. 2005). All proteins that received GO annotations that could 
be traced back to GO:0015979 (photosynthesis), GO:0009536 (plastid) or GO:0009507 
(chloroplast) were annotated as chloroplast associated. OGs containing these proteins 
were annotated as potentially chloroplast associated. Significantly enriched GO terms 
of individual proteins present in OGs predicted to be lost at the LCA of oomycetes were 
defined by BiNGO (version 2.44) (Maere et al. 2005). Significantly enriched GO terms 
were summarized by removing redundancies using REVIGO (default settings) (Supek 
et al. 2011). (vi) All OGs that could not been annotated with one of the four methods 
described above were classified as ‘unknown’.

The significant over-/underrepresentation of evolutionary events for individual 
functional classes at each branch of the phylogeny was assessed by applying a Fisher’s 
exact test (significance level of <0.05). Multiple-testing was addressed using false dis-
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covery rates calculated by the qvalue package (Storey & Tibshirani 2003) and a q-value 
significance level of 0.05 was applied. 

OGs defined as glycoside hydrolase or peptidase were annotated based on the 
presence of one or more signature domains acquired from the Pfam database which 
contains in total 72 different Pfam domains for glycoside hydrolases and 171 for pepti-
dases (Finn et al. 2010). We annotated OGs that contained >30% proteins that have on 
of these predicted signature domain as defined by hmmer3 (gathering cutoff) (Eddy 
1998). Additional annotation was transferred based on identified homologs in the egg-
NOG database (Muller et al. 2010a) (see above). 

Distribution of best blast hits

To elucidate the phylogenetic affinity of the OGs to different group of organisms, 
we searched for the best blast hit (e-value cutoff 1 X 10-3; enabled low complexity fil-
ter; query & coverage filtering as described above) of each protein that comprises the 
individual OG. These searches were conducted against the eggNOG database as well 
as individual proteomes of several algae species (the effective length of the database 
was fixed for the blast search): the red alga Cyanidioschyzon merolae (http://merolae.
biol.s.u-tokyo.ac.jp/) and the green algae Volvox carteri (v2; http://genome.jgi-psf.
org/), Ostreococcus tauri (v2; http://genome.jgi-psf.org/) and Micromonas pusilla (v3; 
http://genome.jgi-psf.org/).  An OG was considered to be affine to a certain group or 
subgroup of species if >50% of its containing proteins consistently had their best blast 
hit within this group. 
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Figure S3-1 Genome and proteome size of the analyzed Stramenopiles
(A) The estimated genome sizes in Mb and the number of predicted proteins, (B) and the absolute (grey) and 
relative (white) number of predicted secreted proteins in the proteomes of the ten Stramenopiles
analyzed in this study.
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Figure S3-2 Distribution of gene family sizes and comparison of the number of singletons to other studies.
(A) The size distribution of gene families formed by our analysis is displayed in grey (y-axis in log10-scale). 
Families that have at least a single copy in all oomycetes or in all Stramenopiles are displayed in green or red, 
respectively. (B) Number of singletons per analyzed Stramenopiles as well as the number of sequences in 
species-specic families is shown in the table. Reported numbers of singletons in the same species identified 
in other studies are reported, either by the respective genome paper or by comparative genome analysis.
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Figure S3-3 Ultrametric phylogeny of the analyzed Stramenopiles and deviation from alternative species 
phylogeny .
(A) Evolutionary events reconciled and projected on the alternative species phylogeny proposed by Blair 
et al (2008). Numbers of gene gains, duplications and losses are indicated along the branches and the esti-
mated genome size is displayed in the boxes. The bar plots on the right show the differences between the 
number of evolutionary events determined by tree reconciliation with our and the alternative species phy-
logeny; positive numbers indicate and increase of evolutionary events when considering the alternative phy-
logeny (black bar – gain, light-grey – duplication, grey – loss). Events that differ outside of the Phytophthora 
spp. due to the alternative, optimal reconciliation of a single OG are averaged and the range is displayed in 
brackets. (B) Ultrametric tree of Stramenopiles derived by a maximum likelihood analysis of 35 concatenated 
single copy marker families identified in the ten Stramenopiles and the ciliate Paramecium tetraurelia. P. 
tetraurelia is included as an explicit outgroup to the analyzed Stramenopiles. Averaged divergence times per 
branch (in bold and standard deviation in italics) are reported relative to an arbitrary age of the last common 
ancestor of Stramenopiles set at 100.
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Figure S3-4 Deviation of observed evolutionary events to the expected number of events at each indi-
vidual branch.
Deviation of observed evolutionary events from the expected number of events at each individual branch. 
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displayed above the bars). Significance of the deviation from the expectation is described by the cumulative 
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Figure S3-5 Absolute and relative num-
bers of duplication events for P.  infestans 
and its ancestors.
Absolute and relative numbers of du-
plication events for P. infestans and its 
ancestors. The absolute number of du-
plications is displayed in black, whereas 
the relative number of duplications per 
relative divergence time of the branch 
is shown in grey. The light-grey bar indi-
cates the abundance including duplica-
tions of lineage specific OGs.
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Figure S3-7 Projected evolutionary 
events of OGs containing genes associ-
ated to chloroplast function on the Stra-
menopile phylogeny.
Projected evolutionary events of OGs 
containing genes associated to chloro-
plast function (according to GO annota-
tion) on the Stramenopile phylogeny. The 
number of evolutionary events, i.e. gene 
gains, duplications and losses, are pro-
jected to each branch.
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Figure S3-8 Gene ontology term enrich-
ment of OGs that are lost at the LCA of 
oomycetes .
Gene ontology term enrichment of OGs 
that are lost at the LCA of oomycetes. The 
fifteen most significant terms as identi-
fied by BiNGO (Maere et al. 2005) are 
displayed by bar charts (log10 of the cor-
rected p-value). Beforehand, redundant 
gene ontology terms were summarized 
using REVIGO (Supek et al. 2011).
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Figure S3-10 Comparison of the reconciled evolutionary events for 94 glycoside hydrolase and 225 pepti-
dase OGs .
Comparison of the reconciled evolutionary events for 94 glycoside hydrolase (left) and 225 peptidase (right) 
OGs. The reconciled evolutionary events and the abundance at each taxon (ancestral/extant) are projected 
onto the species phylogeny.
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Figure S3-11 Estimated evolutionary events for alternative species phylogeny proposed by Runge et al. 
(Runge et al. 2011) and deviation from our results.
Evolutionary events reconciled and projected on the alternative species phylogeny proposed by Runge et 
al. (Runge et al. 2011). Numbers of gene gains, duplications and losses are indicated along the branches 
and the estimated genome size is displayed in the boxes. The bar plot on the right shows the differences 
between the number of evolutionary events determined by tree reconciliation with our and the alternative 
species phylogeny; positive numbers indicate an increase of evolutionary events when considering the al-
ternative phylogeny (black bar – gain, light-grey – duplication, grey – loss). Events that differ outside of the 
Peronosporales due to the alternative, optimal reconciliation of a single OG are averaged and the range is 
displayed in brackets.
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Figure S3-14 Length distribution of individual alignments used to construct the Stramenopile species phy-
logeny .
(A) Histogram depicting the length distribution of the 189 individual alignments (after removing gaps and 
adjacent divergent positions, see additional le 2). Median of the alignment lengths is shown with black verti-
cal line and the 3rd quartile + 0.5*inter quartile range (IQR) is displayed with the grey vertical line. (B) Species 
phylogeny of the ten analysed Stramenopiles based on a concatenated marker of 168 single copy families. 
These concatenated marker excluded all alignments that were longer than the 3rd quartile + 0.5* IQR of the 
length distribution of all alignments. The predicted species phylogeny and the support for each individual 
branch do not differ from the phylogeny that is based on the complete marker.
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Figure S3-12 Fraction of the best blast 
hits of all analyzed OGs to different spe-
cies groups.
Number and distribution of the best blast 
hits of all analyzed OGs to Eukaryota, Bac-
teria or Archaea. Additionally, best hits to 
Cyanobacteria as well as red and green 
algae are indicated as a subset within 
the Bacteria and the Eukaryota, respec-
tively. OGs were separated into three 
different groups based on the distribu-
tion of the Stramenopiles species: (i) OGs 
that are found in both Stramenochromes 
and oomycetes (black), (ii) OGs only in 
observed Stramenochromes (light-grey) 
and (iii) OGs only observed in oomycetes 
(grey). Numbers of singletons that are 
part of the OGs are indicated in brackets.
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Figure S3-15 Distribution of the norMD alignment scores of the analyzed families and the impact of low 
quality alignments to our results.
(A) Distribution of the norMD alignment scores of the analyzed families. The vertical black line indicates the 
applied norMD score cutoff for low quality alignments of 0.75 and alignment scores are reported in log10-
scale. (B) Projected evolutionary events on the Stramenopile phylogeny divided for OGs derived by high 
quality alignments (black) and low quality alignments (grey). The number of evolutionary events, i.e. gene 
gains, duplications and losses, are projected to each branch of the phylogeny. The predicted gene content of 
the ancestors and of the extant taxa (excluding singletons and transposable elements) is displayed in termi-
nal boxes. Average OG size (median in brackets), number of duplications and losses of high and low quality 
derived OGs are shown in the table next to the phylogeny.
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ABSTRACT
Plant infection by oomycete pathogens is a complex process. It requires precise ex-

pression of a plethora of genes in the pathogen that contribute to a successful inter-
action with the host. Whereas much effort has been made to uncover the molecular 
systems underlying this infection process, mechanisms of transcriptional regulation of 
the genes involved remain largely unknown.

We performed the first systematic de novo DNA motif discovery analysis in 
   Phytophthora. To this end, we utilized the genome sequence of the late blight patho-
gen Phytophthora infestans and two related  Phytophthora species (P.  ramorum and   P. 
 sojae), as well as genome-wide in planta gene expression data to systematically predict 
19 conserved DNA motifs. This catalog describes common eukaryotic promoter ele-
ments whose functionality is supported by the presence of orthologs of known general 
transcription factors. Together with strong functional enrichment of the common pro-
moter elements towards effector genes involved in pathogenicity, we obtained a new 
and expanded picture of the promoter structure in P.  infestans. More intriguingly, we 
identified specific DNA motifs that are either highly abundant or whose presence is 
significantly correlated with gene expression levels during infection. Several of these 
motifs are observed upstream of genes encoding transporters, RXLR effectors, but also 
transcriptional regulators. Motifs that are observed upstream of known pathogenicity-
related genes are potentially important binding sites for transcription factors. Our anal-
yses add substantial knowledge to the as yet virtually unexplored question regarding 
general and specific gene regulation in this important class of pathogens. We propose 
hypotheses on the effects of cis-regulatory motifs on the gene regulation of pathogenic-
ity-related genes and pinpoint motifs that are prime targets for further experimental 
validation.
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INTRODUCTION
Oomycetes are an important class of eukaryotic pathogens that have severe eco-

logical and economic impact (Govers & Gijzen 2006), which only recently entered the 
genomic era (Judelson 2007; 2012). The genus Phytophthora contains several well-
known species such as the potato and tomato late blight pathogen Phytophthora 
 infestans (Haas et al. 2009), the stem and root pathogen of soybean Phytophthora 
 sojae (Tyler et al. 2006; Tyler 2007) and the sudden oak death pathogen Phytophthora 
 ramorum (Tyler et al. 2006; Grunwald et al. 2012). The genome sequence of these path-
ogens facilitated insights into the large repertoire of proteins involved in the interaction 
with the host (Stassen & Van den Ackerveken 2011). For example, proteins containing 
the amino-acid motifs RXLR and LXLFLAK (Crinkler) belong to two distinct classes of ef-
fectors that are targeted to the inside of the plant cell presumably to promote infection 
of the host (Whisson et al. 2007; Jiang et al. 2008; Haas et al. 2009). Elicitins (ELIs) are 
proteins that elicit defense responses and induce necrosis whereas the related elicitin-
like proteins (ELLs) do not exhibit such an activity (Jiang et al. 2006). Present hypotheses 
on the functions of ELLs are still inconclusive, but some members seem to be associated 
with the cell wall or the cell membrane (Jiang et al. 2006). Genes encoding effectors and 
also other proteins that are involved in the host-pathogen interaction require a precise 
spatial and temporal expression to facilitate the successful colonization of the host.

There is rich and continuously expanding knowledge on the regulation of the spatio-
temporal expression of genes in human and in eukaryotic model organisms such as 
yeast and fruit fly (e.g. Singer et al. 1990; Kutach & Kadonaga 2000; Majewski & Ott 
2002; Müller et al. 2007; Yang et al. 2007; Hahn & Young 2011; Hoskins et al. 2011). 
In eukaryotes, regulation of transcription is accomplished by the complex interplay of 
several elements. These include DNA motifs in the upstream regions of genes (cis-regu-
latory elements), which are bound by diverse transcription factors, and the remodeling 
of the chromatin structure. Elements in proximity to the transcription start site (TSS) 
include the eukaryotic core promoter elements as well as specific regulatory elements. 
The basic transcriptional activity is determined by the eukaryotic core promoter, which 
is typically present within 70 nucleotides (nt) surrounding the transcription start site 
and directs the mediator complex, general transcription factors, and the RNA polymer-
ase II (RNA Pol II) into a functional pre-initiation complex (Verrijzer & Tjian 1996; Roeder 
1998; Woychik & Hampsey 2002). The core promoter in many eukaryotes consists of 
different combinations of functional DNA motifs: the transcription factor-B recognition 
element (BRE), followed by the TATA-box, the initiator (Inr) (located at or around the 
TSS), and the downstream promoter elements (DPE). The CCAAT-box, another common 
eukaryotic promoter element, mainly occurs upstream of the core promoter elements. 
In contrast to other eukaryotes, oomycetes seem to lack canonical TATA-box elements 
(Judelson et al. 1992). However, many genes have an Inr-element that resembles the 
general eukaryotic Inr-element (Pieterse et al. 1994; McLeod et al. 2004); an element 
that is sufficient to direct the accurate transcription in the absence of other elements 
(Purnell et al. 1994; Javahery et al. 1994; McLeod et al. 2004). Interestingly, oomycetes 
have a flanking promoter region (FPR) downstream of the Inr-element that has not yet 
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been described as an important functional region in other eukaryotes (McLeod et al. 
2004). Our knowledge on specific promoter elements in oomycetes is limited: The up-
stream regions of the sporulation-specific genes Cdc14 and Pks1 contain, next to the 
Inr- or Inr/FPR- element, specific but distinct elements that are required for correct 
gene expression (Ah-Fong et al. 2007; Xiang et al. 2009). Additionally, a short (7 nt) 
motif named cold-box mediates temperature-induced expression of zoosporogenesis-
specific genes (Tani & Judelson 2006). This small number of experimentally character-
ized  cis-regulatory elements in Phytophthora is in sharp contrast to the abundance of 
the predicted genes encoding the diversity of transcription factors in  Phytophthora and 
related non-pathogenic species (Supplementary Table S4-1A) (Rayko et al. 2010). This 
raises questions about the nature and abundance of the accompanying and not yet 
described cis-regulatory elements in the genomes of Phytophthora spp.

To expand our knowledge on the transcriptional regulation in  Phytophthora spp., we 
systematically inferred and analyzed DNA motifs. We adopted in silico methodologies 
that have been successfully applied to other eukaryotic pathogens, such as the malaria 
parasite  Plasmodium  falciparum (van Noort & Huynen 2006), and plants (Vandepoele 
et al. 2006). It is assumed that co-expressed genes share similar cis-regulatory motifs 
(Roth et al. 1998) and that functional motifs are conserved both within and between 
species to a higher extent than non-functional DNA. With the availability of genomic 
and transcriptomic data of several  Phytophthora spp. (Tyler et al. 2006; Haas et al. 2009) 
similar methodologies can now also be applied to analyze cis-regulatory motifs in these 
important plant pathogens. We combined the upstream regions of co-expressed genes 
in P. infestans with the upstream regions of their orthologs in P. sojae and P. ramorum 
and predicted in total 19 motifs. The analysis of this repertoire revealed a complex pic-
ture of the Phytophthora promoter and allowed the identification of biologically rel-
evant motifs. Several of these motifs are predicted upstream of genes encoding known 
effector genes or transcriptional regulators, e.g. Myb-like transcription factors. These 
motifs thus represent interesting candidates for further experimental validation. Hence, 
our study represents the first systematic characterization of cis-regulatory elements in 
Phytophthora spp. and expands our knowledge on the regulation of gene expression in 
this important class of pathogens.

MATERIAL & METHODS

Identification of Co-expressed P. infestans Genes

We retrieved NimbleGen microarray data of P. infestans containing three in vitro 
stages (different media types) and four in planta stages (Haas et al. 2009) from GEO 
(Barrett & Edgar 2006). The initial analysis and summary of the NimbleGen data has 
been described by Haas et al. (Haas et al. 2009). Differentially expressed genes dur-
ing in planta growth were identified using t-tests between two groups (group A, differ-
ent media types; group B replicates for a single data point post inoculation). The tests 
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were independently applied for each day after inoculation and genes were deemed 
significantly differentially expressed (up- and down-regulated) with a p-value cutoff of 
0.05. False discovery rates were assessed by computing q-values (q-value cutoff of 0.05) 
for each comparison. Subsequently, the identified significantly differentially expressed 
genes were clustered based on their expression profiles, i.e. intensities relative to the 
average expression intensity in growth media, using Spearman correlation coefficient 
utilizing the Markov clustering algorithm (version 09-308, 1.008, inflation 5) (Van Don-
gen 2000; Enright et al. 2002). The cutoff for the correlation coefficient was empiri-
cally determined by computing the distribution of Spearman correlation coefficients 
between 1,000 randomly drawn P.  infestans genes. The correlation coefficient cutoff 
was determined by the 95 percent quantile, corresponding to value of 0.86. Single, non-
clustered genes were discarded before further analysis. 

Identification of Orthologs and Extraction of the 1 kb Upstream Regions in 
Phytophthora spp .

We identified orthologs (exclusive in-paralogs within P.  infestans) of all predict-
ed proteins in the analyzed  Phytophthora spp. using OrthoMCL (version 2.0; default 
settings; e-value cutoff 1 X 10-5) (Li et al. 2003). OrthoMCL covers the vast majority 
of the predicted proteome by grouping on average 84 percent of the predicted pro-
teins into orthologous groups, ranging from 77 percent for P. infestans to 91 percent 
in P.   ramorum. Subsequently, we combined the upstream regions of co-expressed P. 
 infestans genes (clusters with size ≥ 2) with their orthologs in P.  ramorum and P.  sojae 
(inclusive in-paralogs) and used these to identify conserved DNA motifs. The upstream 
region per gene was defined as the 1,000 nt upstream of the translation start site ‘ATG’ 
as annotated by the coding sequence. Upstream sequences without an associated an-
notated coding gene were discarded. If a coding gene occurred within the 1,000 nt, the 
upstream region was truncated. For genes located on the negative strand the extracted 
DNA sequence was converted to its reverse complement. The upstream regions were fil-
tered for the remnants of non-annotated genes by similarity search against the NCBI nr 
database (downloaded 24.10.2011, blastx (Altschul et al. 1990); e-value cutoff 1 X  10-3) 
and the presence of transposable elements identified by TransposonPSI and against the 
Repbase database (Jurka et al. 2005) (downloaded 19.01.2012, blastn; e-value cutoff 
 1 X 10-3). Subsequently, all significant hits within the sequences were masked from all 
further analyses. Furthermore, we tried to reduce the number of false positives during 
motif prediction by removing highly similar upstream regions as defined by 95 percent 
identity over an area of at least 50 percent of the length of the informative sequences 
(one of the sequences was retained). 

Identification of DNA Motifs Within Clusters of Co-expressed P. infestans Genes 
and their Orthologs in P. ramorum and P. sojae

DNA motifs in the upstream regions of different clusters of co-expressed P. infestans 
genes and their orthologs (clusters with size ≥ 5) were identified using the expectation 
maximization algorithm implemented in MEME (version 4.6.1; e-value cutoff 1) (Bailey 
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& Elkan 1994). We applied the zoops model allowing for zero or single occurrence of 
a motif per upstream region, inclusion of the reverse complement DNA strand in the 
motif identification, a motif length between 4-16 nt, maximally 30 distinct motifs per 
cluster of co-expressed genes and an empirical 3rd order background Markov model 
based on the upstream region of all  Phytophthora spp. genes (this background model is 
also used for all other analyses).

Similar motifs were clustered into families based on their pairwise similarity using 
the Markov clustering algorithm (inflation 2). Combined motif logos were produced us-
ing Weblogo 3 (Crooks et al. 2004). The genome-wide abundance of each motif-family 
was predicted per individual motif constituting the motif-family and the combined mo-
tif using FIMO (part of the MEME/MAST package) (Grant et al. 2011). FIMO calculates 
a score for each position within the searched sequence based on the position-specific 
frequency matrix of the ab initio determined motifs. These scores are transformed to 
p-values and subsequently to q-values to address false discovery rates due to multiple 
testing. We applied a q-value cutoff 0.1 to define the genome-wide abundance for each 
motif. The location of the motifs in the upstream regions is displayed for the first 1,000 
nt using bins of the size 50. To account for shorter upstream regions due to coding genes 
within the first 1,000 nt, the abundance was weighted accordingly. Similarity to known 
motifs was assessed using Tomtom (e-value 0.5; min overlap between motifs 3) (Gupta 
et al. 2007) against the JASPAR Core and JASPAR PolII database. 

To estimate the evolutionary conservation of the identified motifs, we calculated a 
conservation score that is based on the network-level conservation principle (Pritsker 
et al. 2004; Elemento & Tavazoie 2005). Assuming that the global gene expression be-
tween two closely related species is largely conserved, the network-level conservation 
principle requires that most of the target sites, i.e. the DNA motifs, are retained. There-
fore, we identified the presence of each motif in the upstream regions of orthologous 
groups between two of the  Phytophthora spp. (as determined by OrthoMCL groups, 
see above). We subsequently calculated the number of cases where both orthologous 
groups maintained the motif and assessed the significance of the overlap (Fisher exact 
test, conservation scores are reported as the –ln). The values were compared to a set 
of randomized motifs (the column of each identified motif was shuffled twenty times); 
the poly-C motif-6 was excluded for this and all subsequent analyses. As expected, the 
majority of these motifs did not yield any significant hits against the Phytophthora up-
stream regions. Based on the motifs with significant hits we chose the 95 percent quan-
tile as a conservation cutoff, corresponding to a p-value of 0.04. Applying this cutoff to 
the set of motif families yields a conserved subset that exceeds this score between P. 
infestans and at least one of the other Phytophthora. 

The identified motifs, their genome wide abundance, their conservation score and 
location (global as well as per individual gene) are accessible as ‘Supplementary data 
S4-1’.
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Correlation of Conserved DNA Motifs with Gene Expression Levels upon Infection

Functional cis-regulatory motifs are DNA elements that modulate the expression 
of genes upon binding of a transcription factor. They were identified in P. infestans by 
searching for motifs where their presence within the upstream regions significantly cor-
relates with expression levels of the downstream genes similar to the approach out-
lined by Bussemaker and colleagues (2001). We searched the upstream region of each 
of the differentially expressed genes for the binding of one of the individual members 
of the motif-family using FIMO (default settings, no q-value computation) (Grant et al. 
2011). For each motif, we retrieved the maximum score per motif-family; the score per 
hit is defined by the sum of the entries of the position specific scoring matrix. Subse-
quently, the maximum score is scaled based on the length of the highest scoring motif 
and the scores for each motif was rescaled in the range [0,10] resulting in a scoring 
matrix with the dimensions of the number of differentially expressed genes times the 
number of motifs. Significantly correlated motif scores with the expression level at one 
of the three different time points (2-4 dpi), expressed as the log2-fold change compared 
to the growth media, were identified by forward variable selection as implemented in R 
and multiple testing correction was applied to the p-values by computing q-values (false 
discovery rate). Motifs with a q-value < 0.01 were deemed significant. For each motif in 
each condition a ‘time course value’ (T-value) was calculated: the correlation between 
the motif score and the expression level at each time point (growth media+2-5 dpi) was 
transformed into a T-value by multiplying the correlation (r) with the square root of the 
number of genes (G) (T=r*sqrt(G)) (van Noort & Huynen 2006).

Functional Annotation of Genes in the Three Analyzed Phytophthora spp .

Genes in the analyzed  Phytophthora spp. were functionally annotated using 
 BLAST2GO algorithm (default parameters) (Conesa et al. 2005). Functional enrichment 
of GO terms of genes sharing predicted motifs was conducted with the BiNGO package 
2.44 (default parameters) (Maere et al. 2005) included in Cytoscape 2.8.1 (Smoot et al. 
2011). Significantly enriched GO terms were summarized by removing redundancies us-
ing REVIGO (similarity cutoff 0.5) (Supek et al. 2011). Moreover, additional annotation 
for genes such as RXLRs, Crinklers, elicitins, and elicitin-likes was added based on the 
annotation provided by Haas et al. (2009), Jiang et al. (2006) and the BROAD website 
(http://www.broadinstitute.org/). Significance of this overrepresentation was assessed 
using Fisher exact test (p-value cutoff 0.05).

Identification of Known Transcription Factors Binding Common Eukaryotic DNA 
Elements

Known transcription factors that bind to common eukaryotic promoter elements 
were identified by determining orthologs of the human genes (proteins) in oomycetes 
using OrthoMCL (version 2.0; default settings; e-value cutoff 1 X 10-5) (Li et al. 2003). 
The version and source of the nineteen proteomes included in this analysis are shown 
in Supplementary Table S4-1C. In the case of CBF-B, OrthoMCL clustered the human 
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gene solitarily and the orthologs of the Arabidopsis thaliana CBF-B gene were reported. 

Description of the Transcription Factor Repertoire in Phytophthora spp .

We predicted the repertoire of potential transcription factors in the proteomes of 
the three analyzed  Phytophthora spp. and four non-pathogenic sister taxa (Supplemen-
tary Table S4-1C) using Pfam models that describe DNA binding sites. The majority of 
models have been obtained from DBD (Wilson et al. 2008) and some, e.g. Myb-like 
DNA binding domain, have been added manually (see Supplementary Table S4-1A for 
details). Domains were identified using HMMER3, applying the gathering cutoff (Eddy 
1998). 

RESULTS

Identification of Conserved DNA Motifs in Promoters of Phytophthora genes

To predict potential cis-regulatory elements in the upstream regions of  Phytophthora 
genes, we assumed that co-expressed genes are co-regulated by shared cis-regulatory 
elements (Roth et al. 1998). In total, 1,667 differentially expressed P. infestans genes 
were selected from NimbleGen microarray data of in vitro growth (three plant extract 
media) and in planta growth (four conditions) 2-5 days post inoculation (dpi) of potato 
plants (Haas et al. 2009). The first three conditions (2-4 dpi) coincide with the formation 
of haustoria, specialized infection structures that are formed inside the plant cells. The 
later stage of infection (5 dpi) corresponds to necrotrophic growth on dead plant mate-
rial where the expression of many genes show similar expression profiles to growth in 
plant extract media (Haas et al. 2009). By clustering the expression profiles of the dif-
ferentially expressed P.  infestans genes using Spearman correlation and a graph based 
clustering algorithm (MCL) (Van Dongen 2000), we obtained 159 groups of co-expressed 
genes (Figure 4-1A; Material & Methods). For each gene within the co-expressed cluster 
we identified orthologs in two related species (P.  sojae and P.  ramorum) and filtered the 
upstream regions for remnants of transposable elements (see Material & Methods). 

Within 136 co-expressed clusters, we identified 80 motifs representing putative 
regulatory DNA elements in the upstream regions of co-expressed P.  infestans genes 
and their orthologs. Similar motifs, especially common eukaryotic DNA elements, were 
identified in different clusters of co-expressed genes. Hence, we grouped the total of 
80 motifs into 24 distinct motif families (called ‘motifs’ throughout the remainder of 
the manuscript), based on the assumption that all motifs within a family represent a 
binding site for a specific DNA binding protein or complex. To enrich our results for 
conserved functional DNA motifs, these were filtered by applying an evolutionary con-
servation filter between P. infestans and at least one of the other  Phytophthora yielding 
19 conserved DNA motifs for which the genome-wide abundance was determined using 
FIMO (Data Supplementary S4-1; Material & Methods).
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Figure 4-1 Analysis pipeline used to identify 
conserved DNA motifs in the three analyzed 
Phytophthora spp .
(A) Co-expressed P. infestans genes were 
identified and their upstream regions were 
combined with the ones from orthologous 
genes in P. sojae and P. ramorum. In total 
80 motifs were identified and similar mo-
tifs were grouped into 24 motif families of 
which 19 remained after conservation filter-
ing. These were automatically and manually 
inspected for similarity to known eukaryotic 
promoter elements. (B) To further assess the 
biological relevance of the motifs, scores de-
scribing the occurrence of motifs in each in-
dividual upstream region were assigned. The 
motif score was correlated with the gene ex-
pression level of the downstream genes; an 
approach similar to the one applied by Busse-
maker and colleagues (2001). Subsequently, 
motifs that have a significant correlation with 
the expression level of genes during infection 
were identified (q<0.01).
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Promoters of Phytophthora Contain Common Eukaryotic Promoter Elements in 
High Abundance

To validate our method, we first surveyed the 19 obtained motifs for similarity to 
known eukaryotic promoter elements. Pre-genome analyses of the upstream regions 
of a small set of oomycete genes have identified a Inr/FPR-element as a core promoter 
element (Pieterse et al. 1994; McLeod et al. 2004). Indeed, our in silico approach recov-
ered the previously described oomycete-specific Inr/FPR element (motif-0). In the set of 
1,493 P. infestans genes included in the motif search it occurs 652 times. Genome-wide, 
the Inr/FPR-element is the most abundant motif (Material & Methods): It is predicted 
in 18,138 upstream regions of all annotated genes in the three analyzed  Phytophthora 
spp., and in 6,511 or 37 percent of all P.  infestans. It has a distinct localization at a 
median of 81 nt upstream of the translation start site (TLS) (Figure 4-2A). In other eu-
karyotes, the transcription factors TAF1 and TAF2 are associated with the transcription 
factor II D complex during the initiation of transcription at the Inr-element (Chalkley & 
CP 1999; Müller et al. 2007).  Phytophthora spp. and also other oomycetes have TAF1 
and TAF2 orthologs (Supplementary Table S4-1B), suggesting the association of these 
transcription factors with the Inr/FPR-element and further supporting its role as a ubiq-
uitous core promoter element in oomycetes.

Among the 19 automatically derived motifs, motif-4 is significantly similar to the 
eukaryotic CCAAT-box, also named NFYA- or CBF-B binding box (Figure 4-2B & Supple-
mentary Table S4-2). This common eukaryotic DNA element was so far only reported for 
a few  Phytophthora genes (Judelson & Michelmore 1989). In the three  Phytophthora 
spp., we predicted the CCAAT-box in the upstream regions of 8,225 genes, 3,418 of 
which are from P.  infestans. It is primarily localized at 192 nt upstream of the TLS. When 
the CCAAT-box co-occurs with the Inr/FPR-elements (3,321 genes), these motifs are ap-
proximately 180 nt apart (80nt for the 25th percentile). Interestingly, we found more 

Figure 4-2 Common eukaryotic promoter ele-
ments in Phytophthora.
Sequence motif of the (A) Inr/FPR-elements and 
the (B) CCAAT-box identified in the upstream re-
gions of Phytophthora spp. genes. The location of 
the motif in relation to the TLS is indicated by bar 
charts (bin size 50 nt). The frequency of the motif 
per bin was weighted according to the underlying 
length distribution of the upstream regions.
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occurrences of the  CCAAT-box on the negative strand than on the positive strand (4,310 
vs. 3,915), consistent with the observation that the CCAAT-box is found in both orienta-
tions (Mantovani 1998; Maity & De Crombrugghe 1998). The CCAAT-box binding factor 
is a heterotrimeric protein complex composed of CBF-A, CBF-B and CBF-C (Kim et al. 
1996). We found orthologs of all three CBF-encoding genes in all  Phytophthora and 
in other oomycetes species analyzed (Supplementary Table S4-1B), showing additional 
support for a function of this motif in the regulation of gene expression in oomycetes.

Enrichment of Distinct Functional Classes in the Sets of Genes with Common 
Eukaryotic Promoter Elements

To assess whether the described common eukaryotic promoter elements are ob-
served upstream of distinct set of genes, we searched for enrichment of functional 
Gene Ontology categories as well as other classes associated with host-pathogen in-
teraction, e.g. RXLR effector genes. The sets of genes of which the upstream region 
contains the Inr/FPR-element or the CCAAT-box are enriched for different functional 
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Figure 4-3 Enrichment/depletion of functional classes in the set of genes with Inr/FPR- or CCAAT-box ele-
ments .
(A) Log2-fold enrichment/depletion displayed for four classes of genes (RXLR, Crinkler, ELI and ELL) predicted 
to contain the Inr/FPR- or the CCAAT-box in their promoter sequence. (B) Overrepresentation of GO func-
tional annotation of genes that contain the Inr/FPR- or the CCAAT-box elements in their promoter sequence. 
Heat map shows the -log10(p-value) of the significant enrichments detected by BiNGO (Maere et al. 2005). 
Non-redundant GO terms (see Material & Methods) with a -log10(p-value) > 5 are displayed (see Supplemen-
tary Table S4-3A for the full list). 
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categories (Figure 4-3 & Supplementary Table S4-3A). The set with the Inr/FPR-element 
is highly enriched for RXLR effector, ELI- and ELL genes, and also other genes with pre-
dicted functions in pathogenesis, carbohydrate metabolism, glycoside hydrolysis-, oxi-
doreductase, lyase- or transporter activity; many have a predicted extracellular localiza-
tion (Supplementary Table S4-3A). Strikingly, 869 of the 1107 predicted RXLR effector 
genes in the three  Phytophthora spp. contain the Inr/FPR-element in their upstream 
regions including several up-regulated RXLR effectors (Table 4-1). In contrast, the set of 
genes with promoters that contain the CCAAT-box is depleted of RXLR effector, ELI and 
ELL genes and enriched for Crinkler genes (160 out of 600 Crinkler genes). Furthermore, 
the CCAAT-box set is enriched for genes encoding proteins with a predicted intracellular 
localization, as well as gene products involved in gene expression, translation, reproduc-
tion and developmental- or metabolic processes. The surprisingly strong adjustment of 
common eukaryotic promoter elements, such as the Inr/FPR, towards pathogenicity 
and the strong, opposing functional enrichment of genes regulated by either CCAAT-box 
or Inr/FPR-element is yet another striking example of successful genome adaptation 
towards pathogenicity within  Phytophthora.

Candidate Cis-regulatory Elements that Correlate with Gene Expression Levels 
upon Infection

To further assess the functional significance of the 19 motifs, we correlated the gene 
expression levels of the differentially expressed genes with the occurrence of the motifs 
with a regression-based approach similar to the one described by Bussemaker and col-
leagues (Bussemaker et al. 2001) (Figure 4-1B; Material & Methods). Four motifs show 

Table 4-1 Motifs in the upstream regions of a subset of differentially expressed P. infestans genes .
Fold (log2)

Motif Gene Description Gene ID Position$ Sequence* 2dpi 3dpi 4dpi 5dpi

Motif-0 avr4 PITG_07387 -36 cgagcTCAGTCTTCAATTCTCccttt 2.06 1.42 0.90 0.37

Motif-0 Pred. RXLR effector PITG_00821 -62 cagcaTCATTCTTCAACTCGCaacac 0.80 0.23 -0.002 0.12

Motif-0 Pred. RXLR effector PITG_02860 -49 cacccTCATTCTTCAATTCTTcgact 1.68 1.97 1.15 0.26

Motif-0 Pred. RXLR effector PITG_12057 -24 agtagTCATTTCGCTTCTTGCaggtg 2.27 1.65 1.15 0.30

Motif-1 avr1 family PITG_16663 -389 cgaacTACATGTATATcccgc 1.42 0.99 0.38 0.07

Motif-1 avr2 family PITG_08278 -119 ctcagTACATGTAAccccg 0.98 0.96 0.42 0.39

Motif-1 Mannitol dehydrogenase PITG_00972 -352 acatgTACATGTATtaata 2.06 2.67 0.85 -0.11

Motif-1 Polygalacturonase PITG_21247 -108 gatggTACATGTACacggg 0.67 0.01 -0.21 0.13

Motif-3 Pred. RXLR effector PITG_09218 -108 ttgaaTGCAAATACTAAGTCAaactg 2.48 1.89 1.15 -0.59

Motif-3 avrblb2 family PITG_20303 -181 aagtcTTACTAATATCAAGTCgattt 2.02 2.03 1.34 0.23

Motif-3 Myb-like transcription factor PITG_00513 -709 agttaACTTGTTTTATGTAAGtccca 0.73 0.58 0.33 0.32

Motif-3 Aldose1-epimerase PITG_14720 -279 aagtaTACAGAAGTCAAGTCAaatga 1.86 0.96 0.55 -0.50

Predicted motifs in the upstream region of a selected subset of differentially expressed P. infestans genes. 
The fold (log2) expression change is compared to the average expression level in growth media.
$Position of the start of the motif relative to the translation start site (TLS) of the gene.
*Sequence of the motif (capital letters and bold) and 5 nt upstream and downstream of the motif (small let-
ters) are shown for P. infestans genes.
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significant positive correlation between the level of motif occurrence and expression 
levels at one or more of the three time points post inoculation (2-4 dpi; q<0.01). Hence, 
these four motifs are likely functional binding sites for transcription factors and involved 
in the regulation of expression of the upstream genes during infection.

We identified a novel DNA motif (motif-1) that does not show any significant simi-
larity to known motifs as determined by a Tomtom search against the JASPAR database 
(Supplementary Table S4-2). Motif-1 is a highly abundant and conserved motif that is 
characterized by the consensus inverted repeat sequence TACATGTA and is identified in 
total in the upstream regions of 12,070  Phytophthora genes, 44% of which are from P. 
 infestans (Figure 4-4A). The inverted repeat structure is suggestive of a binding site for 
a homodimeric transcription factor. The presence of motif-1 is significantly correlated 
with the up-regulation of P.  infestans genes at 2-4 dpi. Interestingly, the set of genes 

T
−4

−2

0

2

4

Fo
ld

 c
ha

ng
e 

(lo
g2

)

Pe
a

R
S V8

D
ay

2

D
ay

3

D
ay

4

D
ay

5

A

B

C

Pe
a

R
S V8

D
ay

2

D
ay

3

D
ay

4

D
ay

5

−4

−2

0

2

4

Fo
ld

 c
ha

ng
e 

(lo
g2

)

Motif-1

0.0

1.0

2.0
bi

ts

5
T

A
T

G
A

A

C
G
A

G

CA

G
C
A
T

G
A

A
G
T
C

Motif-7

TA0.0

1.0

2.0

bi
ts

C
A
TAG

A

T
C

5
C
TTAG

A
10

A

Motif-9

TA A0.0

1.0

2.0

bi
ts

G
C
A

C
A
T

C
T
G

C
T

5
TG

CCGG
10

Pe
a

R
S V8

D
ay

2

D
ay

3

D
ay

4

D
ay

5

T

−5

0

5

−5

0

5
T

Pe
a

R
S V8

D
ay

2

D
ay

3

D
ay

4

D
ay

5

−5

0

5

T

Pe
a

R
S

D
ay

2

D
ay

3

D
ay

4

D
ay

5

V8

−4

−2

0

2

4

Fo
ld

 c
ha

ng
e 

(lo
g2

)

Pe
a

R
S V8

D
ay

2

D
ay

3

D
ay

4

D
ay

5
Figure 4-4 Three cis-regulatory elements that correlate with gene expression levels during infection.
Nucleotide conservation of (A) motif-1, (B) motif-7 and (C) motif-9 is displayed as sequence logos. The T-val-
ues for each motif are displayed for each data point as well as gene expression of all differentially expressed 
genes that contributed to the correlation (see Material & Methods) are displayed.

Thesis.indb   109 3/17/13   7:22 PM



110 Chapter 4

that contain this motif in their upstream region is enriched in genes encoding RXLR ef-
fectors and genes involved in cell wall organization, carbohydrate metabolism as well 
as for genes that encode catalytically active proteins, e.g. glycosyl-hydrolases and oxi-
doreductases (Figure 4-4A & Table 4-1 & Supplementary Table S4-3). The differentially 
expressed mannitol-dehydrogenase gene (PITG_00972) is an example of an oxidore-
ductase within the enriched class of catalytic enzymes that is up-regulated early during 
infection (Table 4-1). Mannitol can suppress ROS-related plant responses upon secre-
tion in the apoplast and could act as a carbohydrate reservoir (Lewis & Smith 1967; 
Chaturvedi, Wong, et al. 1996b; Chaturvedi, Flynn, et al. 1996a; Voegele et al. 2005). It 
has been suggested that mannitol-dehydrogenases (e.g. MAD1) in the biotrophic fun-
gal plant pathogen Uromyces fabae are responsible for the production of mannitol in 
haustoria (Voegele et al. 2005), an activity that could also occur in oomycete pathogens. 
Another example of a stress response gene is a highly expressed (11-fold increased ex-
pression at 2 dpi) secreted catalase-peroxidase (PITG_07143) that could act in counter-
acting the burst of reactive oxygen species (ROS) by the plant as a defense mechanism 
upon pathogen infection (Mittler et al. 2004).

We also identified an inverted repeat, AT-rich motif (motif-7) in 1,388  Phytophthora 
genes, 940 of which are from P. infestans (Figure 4-4B). This motif shows remote simi-
larity to the eukaryotic TATA-box; a eukaryotic core promoter element that is found in 
the upstream regions of a quarter of all genes in yeast and human (Yang et al. 2007). 
Previous analyses of the transcriptional regulation of oomycetes have indicated that 
oomycete promoters do not contain a canonical TATA-box (Judelson et al. 1992), how-
ever non-canonical TATA-box elements that resemble functional TATA-box elements 
have been discovered in oomycetes before (Judelson & Michelmore 1989; Škalamera 
& Hardham 2006). Unlike the Inr/FPR element and CCAAT-box, the TATA-like motif does 
not have a strong positional preference compared to the canonical TATA-box observed 
in other eukaryotes or the Inr/FPR-element and CCAAT-box in oomycetes. The set of 
genes with the TATA-like motif in their upstream regions is enriched for genes encoding 
RXLRs and ELIs and otherwise do not show any significant enrichment for Gene Ontol-
ogy categories.

Another novel and abundant conserved DNA motif that shows correlation with gene 
expression during the infection is motif-9. This inverted repeat motif occurs upstream 
of 1,284 genes and the set of genes is enriched for RXLR effectors (3 fold). These con-
served DNA motifs (motif-1, motif-7 and motif-9) are highly abundant in  Phytophthora 
genomes, are correlated with the infection-related gene expression levels and are en-
riched in specific functional categories. Moreover, one of the four positively correlated 
motifs is the Inr/FPR-element, further emphasizing the adaptation of basic cellular 
machinery towards pathogenicity (Supplementary Figure S4-1). Hence, the four DNA 
motifs are relevant candidates for cis-acting transcriptional regulatory DNA motifs in 
pathogenic oomycetes.

Thesis.indb   110 3/17/13   7:22 PM



111Transcription factor binding sites in Phytophthora infestans

Highly Abundant Motifs in the Genomes of Phytophthora spp. are Candidate 
Binding Sites for Transcriptional Regulators

We expanded the number of candidate motifs by focusing on the ten most abun-
dant motifs within the set of the 19 automatically derived conserved DNA motifs in 
the upstream regions of the three  Phytophthora species. These ten motifs include the 
two common promoter elements (Inr/FPR and CCAAT-box) earlier described, three mo-
tifs whose presence is correlated with gene expression levels during infection (motif-1, 
motif-7 and motif-9) and five additional candidate motifs (Figure 4-5). Whereas the re-
maining nine motifs occur in less than 100 different upstream regions, these five motifs 
occur in high abundance in the upstream regions of  Phytophthora spp., ranging from 
12,034 for motif-2 down to 1,397 occurrences for motif-18.

The most abundant of the five motifs is motif-2 which occurs upstream of 12,034 
genes. It is a highly conserved CTTCAAC nucleotide motif that shows localization pref-
erence at 260 nt upstream of the translation start site (Figure 4-5A). The set of genes 
with motif-2 in their upstream region is significantly enriched in proteins with acyl-CoA 
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Figure 4-5 Highly abundant cis-reg-
ulatory elements .
Nucleotide conservation of the five 
(A-E) highly abundant cis-regulato-
ry motifs is displayed as sequence 
logos. The location of the motif 
in relation to the TLS is indicated 
by bar charts (bin size 50 nt). The 
frequency of the motif per bin was 
weighted according to the underly-
ing length distribution of the up-
stream regions.

Thesis.indb   111 3/17/13   7:22 PM



112 Chapter 4

dehydrogenase and transporter activity (Supplementary Table S4-3C). In total, 606 of 
the 12,034 genes encode proteins involved in transporter activity, including e.g. a MOP 
flippase (PITG_00021) as well as a potential sugar transporter (PITG_00917).

Motif-3, the second most abundant motif, is identified upstream of 5,249 genes, 
1,767 of which belong to P.  infestans (Figure 4-5B). Twelve of the 105 differentially ex-
pressed RXLR effector genes in P.  infestans have this motif in their upstream region, 
including a member of the Avrblb2 family (Table 4-1). In contrast to motif-2, the set of 
genes containing this motif in their promoter is enriched for genes encoding proteins 
with DNA binding functions (GO: 0003677), many of which are targeted to intracellular 
organelles (GO: 0043229) such as the nucleus. Of the total of 5,249 genes, 727 genes 
have either of the two functional annotations and 119 genes share both. These 119 
genes include members of the Myb-like transcription factor family (e.g. PITG_00513 
that is significantly up-regulated during infection; see Table 4-1), genes encoding for 
transcription factors with basic leucine zipper domains (e.g. PITG_00964), but also 
genes encoding chromatin remodelers such as histone deacetylases (e.g. PITG_01897). 
However, the majority of these genes in P.  infestans does not show differential expres-
sion during the infection process. The high abundance of motif-3 in the genomes of 
 Phytophthora spp. and the highly significant enrichment of genes with predicted func-
tions as transcriptional regulators highlight the prominent role of motif-3 as a protein-
binding site. Hence, the transcription factor binding motif-3 is a central regulator and 
an important target for identification of the binding transcription factors and further 
experimental studies.

Moreover, we identified three additional highly abundant motifs, motif-17, mo-
tif-16 and motif-18 (Figure 4-5C-E, Supplementary Table S4-3C). These motifs are found 
upstream of 1,938, 1,724 and 1,397 genes, respectively. The set of genes containing 
motif-17 in their upstream region is enriched for genes encoding proteins involved in 
transferase-activity and amino-acid metabolism, whereas the sets containing motif-16 
and motif-18 are enriched for functions such as ATPase activity or intracellular trans-
port, respectively (Supplementary Table S4-3C). Even though the presence of these five 
motifs is not correlated with the expression levels at 2-4 dpi, they are interesting candi-
dates because of their high abundance and the functional enrichment within the set of 
genes that have these motifs in their promoter.

DISCUSSION
Infection of host plants by an oomycete is a complex process that requires the pre-

cise expression of proteins encoded in the pathogen’s genome. Infection-related pro-
teins directly or indirectly facilitate the tight interaction with the host by suppressing 
immune responses triggered by the pathogen. How the expression of this complex ar-
senal of genes, but also other genes encoded in their genomes, is precisely regulated 
is still largely unknown. To identify cis-regulatory motifs that characterize the promoter 
regions in  Phytophthora genes, we adopted methods that utilize genome and transcrip-
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tome data to systematically predict conserved DNA elements in genes co-expressed 
during infection. Our approach yielded 19 potentially active cis-regulatory elements, a 
number that is comparable to similar studies conducted in plants that yielded 34 po-
tential DNA binding sites (Vandepoele et al. 2006). Only very few of the 19 motifs show 
significant similarity to known cis-regulatory motifs (Supplementary Table S4-2). The 
discovery of novel cis-regulatory elements is an important first step towards under-
standing the regulation of gene expression in oomycetes.

We identified a complex promoter structure that expands our view of the central 
transcriptional regulation machinery of oomycetes (Figure 4-6). Next to the Inr/FPR-
element, we identified and quantified other known eukaryotic elements such as the 
highly abundant CCAAT-box (Figure 4-2). We identified an AT-rich motif (motif-7) that 
could represent a functional TATA-like element. Whether the observed AT-rich element 
is in fact functionally equivalent to the TATA-box element observed in other eukaryotes 
is unknown. We identified an ortholog of the TATA-box binding protein (TBP) that is en-
coded in the genomes of all analyzed  Phytophthora spp. (Supplementary Table S4-1B). 
The presence of the TBP suggests that AT-rich promoter elements can be bound by the 
TBP, thereby recruiting the RNA Pol II to the TSS to initiate transcription, especially since 
it has been shown that TBP binds to a huge variety of AT-rich sequences. Hence, the 
AT-rich TATA-like box together with the TBP suggests that oomycetes contain functional 
TATA-box-like elements similar to that of other eukaryotes.

Our analysis did not identify motifs with similarity to the eukaryotic BRE-element or 
downstream promoter element (DPE), two motifs that are frequently observed as core 
elements in eukaryotic promoters. However, we found orthologs of the transcription 
factor II B (TFIIB) as well as the binding factors for the DPE-elements in all Phytophthora 
spp. and in the other oomycetes (Supplementary Table S4-1B). Hence, the presence of 
the necessary molecular factors encoded in the genomes of oomycetes is an indication 
for the presence of these elements or of non-canonical, functional replacements in the 
promoter of oomycete genes. 

Only 37% of all genes have an Inr/FPR-element; a percentage that is lower than 
reported for the eukaryotic Inr-element present in various eukaryotes such as human 
and yeast (46% and 40%, respectively) (Yang et al. 2007). It is possible that our pipeline 

BRE DPECCAAT Inr FPR

+1

TATA-like
??? ???

Inr FPR

A

G
C
T

T
A

CA
G
T
C

A
T

G

A

C
T

G
C
T

G
T
C

A
G
C

T

C
G
A

C

T
A

G

A

C
T

A

C
T

G
C
T

T
C
A
G

G

T
A
C0.0

1.0
2.0

bi
ts

10 155

CCAAT

0.0
1.0
2.0

bi
ts

10 155
AA

T
G
A
T

G
C
A
T

A

C
T

G
A

T
A
GC

T
G

CAG
CTT

G
C

T

C
G
A

G
C
AA TC

A
TAG

A

T
CT C

TTAG
A A

TATA-like 

0.0
1.0
2.0

bi
ts

105

???

Figure 4-6 Architecture of Phytophthora promoter .
Structure of the Phytophthora promoter defined by identified DNA motifs determined by our analysis or pro-
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the AT-rich TATA-like- and the Inr/FPR-element. Gene names of the orthologs of the TFs described to bind 
BRE and DPE are in Supplementary Table S4-1B.
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did not automatically predict core promoter elements (e.g. BRE/DPE) or that we under-
estimated the overall abundance of other motifs, since we searched for motifs within 
the upstream regions of genes co-expressed under a distinct biological condition. The 
thereby derived motifs might be biased towards certain nucleotide conservation at po-
sitions that do not necessary reflect the consensus. Hence, in combination with a strin-
gent significance cutoff, the biased motifs would not be able to identify all occurrences 
in the genome and consequently underestimate the true abundance. This is indeed the 
case for the upstream region of ipiO1 gene in which the Inr/FPR-element was initially 
described (Pieterse et al. 1994). If we specifically searched for the occurrence of this 
motif in the upstream region, we could identify its occurrence at 28 nt upstream of 
the TLS. However, on a genome-wide search, the occurrence is not significant due to 
multiple-testing corrections. For a more elaborate unbiased quantification of the core 
promoter and also other DNA motifs, the identification of these elements under biolog-
ical conditions other than the infection process is necessary. Currently, the number of 
different microarray experiments that monitor the changes in gene expression genome-
wide is limited. Additional experiments probing different biological conditions would 
help to reduce the number of false negatives as well as false positives and provide a 
concise set of differentially expressed genes that could be used for the identification of 
stage-specific regulatory elements.

Interestingly, the set of genes that are regulated by different combinations of com-
mon eukaryotic promoter elements is enriched for distinct functional classes ranging 
from metabolism to effector genes (Figure 4-3). This functional adaptation of common 
eukaryotic promoter elements has been observed for yeast: TATA-box containing genes 
are stress-induced and expressed in extremely high or low levels, linking the TATA-box 
to transcriptional plasticity (Basehoar et al. 2004). Moreover, in plants and humans 
the CCAAT-box has been reported upstream of genes involved in development, gene 
expression, translation and general metabolism (Vandepoele et al. 2006; Dolfini et al. 
2009; Jiao et al. 2009), corroborating our observed enrichments in  Phytophthora (Figure 
4-3). Many of the studied gene families, but especially RXLR as well as Crinklers effec-
tors, underwent recent expansions in  Phytophthora (Jiang et al. 2006; Haas et al. 2009; 
Schornack et al. 2010; Seidl et al. 2012). Identical upstream regions due to very recent 
duplications could influence the observed opposing enrichment of these classes in the 
set of genes containing either the Inr/FPR or the CCAAT-box. To test this hypothesis, we 
removed upstream regions that exceed similarity that could be expected due to func-
tional DNA elements before assessing the enrichment (95% identity over 50 percent of 
the sequence). Even though quantitatively the results vary slightly, we overall still ob-
served the opposing patterns of enrichment in GO categories and RXLRs as before, indi-
cating the independence of our observation from bias due to very recent duplications. 

We identified 17 additional conserved DNA motifs next to the two common eukary-
otic promoter elements (Data S1). Several of these motifs are candidates for function-
ally active cis-regulatory elements because: (i) they are highly abundant in the Phy-
tophthora species analyzed, (ii) their presence in the promoter of genes significantly 
correlates with the gene expression level during infection and (iii) the set of corre-
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sponding proteins is enriched for interesting functions. Within the four motifs whose 
presence significantly correlates with up-regulation during infection, we revealed, next 
to the Inr/FPR and the putative AT-rich TATA-like element, two novel abundant motifs. 
This number is slightly lower, most likely due to limitations in the gene expression data, 
but still comparable to a study in Plasmodium falciparum that identified twelve mo-
tifs which are significantly correlated with gene expression levels (van Noort & Huynen 
2006). Notably, motifs that are positively correlated occur in a high number of different 
upstream regions and are inverted repeats, suggesting binding by a homodimeric tran-
scription factor.

Motif-1 is highly abundant and correlates with up-regulation of gene expression lev-
els during infection. The set of genes containing this motif in their upstream region is 
enriched for RXLR effector genes as well as genes with catalytic activity such as glyco-
syl-hydrolases. In Caenorhabditis elegans, taCATGta motifs are rare footprints of Tc1 
transposable elements excision (Eide & Anderson 1988). Given the strong conservation 
of this motif and the high abundance in the analyzed of Phytophthora genomes, we 
do not expect motif-1 to be a transposon footprint. Moreover, a recent analysis of the 
binding preference of homeodomain DNA-binding domains has identified TACATGTA 
as the preferred binding site for Irx family transcription factors (Berger et al. 2008); a 
group of transcription factors that is observed in Drosophila as well as in vertebrates 
and containing the Homeobox KN domain (PF05920). Interestingly, this domain is also 
present in several predicted transcription factors in the analyzed Phytophthora (Supple-
mentary Table S4-1A); hence, these might be interesting candidate transcription factors 
for motif-1 binding.

Like motif-1, motif-3 is highly abundant. Notably, it is also present upstream of ~700 
genes that encode proteins with predicted organelle localization such as the nucleus 
or DNA binding activity. Of these, 119 have both predicted functional annotations and 
include several transcription factors of the Myb-like family. The majority of P.  infestans 
genes in this set is not differentially expressed during infection. Nevertheless, the high 
abundance of this motif in the  Phytophthora genomes and its enrichment in genes en-
coding nuclear and DNA binding proteins suggests that motif-3 is a functional binding 
site for an unknown transcription factor that in turn regulates many other transcription 
factors.

The identification of potential biologically relevant motifs solely by correlating their 
presence with the gene expression levels is a simplified approach. This is especially ap-
parent in the high variability of expression levels between genes that have one of the 
correlated motifs in their upstream region (Figure 4-4). In vivo there are many factors 
that influence the transcription of genes such as the chromatin state, the availability of 
the binding transcription factors and also the presence of other motifs in the proximity 
that may act together or antagonistic in a regulatory module. Nevertheless, the com-
bination of different criteria, including significant correlation of motif presence with 
the gene expression level, allows us to generate a concise list of interesting candidates 
for pending experimental validation; both of the motif itself as well as of the binding 
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transcription factor.

This analysis provides the first systematic insights in the transcriptional regulation of 
the late blight pathogen P.  infestans and two closely related  Phytophthora species. The 
identified cis-regulatory elements are promising candidates for further experimental 
validation and identification of the binding transcription factors. In general, biochemi-
cal and genetic approaches such as ChIP-Seq are lagging in oomycetes and pathogenic 
fungi. However, whole genome transcriptomics and thereby derived gene expression 
data as well as genomic sequences of close relatives will be available in the close future. 
In silico methods such as the one outlined in this study are in an exceptional position 
to take advantage of these data to gradually close the knowledge gap between well-
established model organisms and these important and intriguing groups of pathogens.
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ABSTRACT
Associations between proteins are essential to understand cell biology. While this 

complex interplay between proteins has been studied in model organisms, it has not yet 
been described for the oomycete late blight pathogen Phytophthora infestans. 

We present an integrative probabilistic functional gene network that provides as-
sociations for 33 percent of the predicted P. infestans proteome. Our method unifies 
available genomic, transcriptomic and comparative genomic data into a single com-
prehensive network using a Bayesian approach. Enrichment of proteins residing in 
the same or related subcellular localization validates the biological coherence of our 
predictions. The network serves as a framework to query existing genomic data using 
network-based methods, which thus far was not possible in Phytophthora. We used the 
network to study the set of interacting proteins that are encoded by genes co-expressed 
during sporulation. This identified potential novel roles for proteins in spore formation 
through their links to proteins known to be involved in this process such as the phos-
phatase Cdc14. 

The functional association network represents a novel genome-wide data source for 
P. infestans that also acts as a framework to interrogate other system-wide data. In both 
capacities it will improve our understanding of the complex biology of P. infestans and 
related oomycete pathogens.
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INTRODUCTION
The late blight pathogen Phytophthora infestans is one of the most destructive 

pathogens of tomato and potato, and a continuous threat to global food production 
(Haas et al. 2009). P. infestans belongs to the lineage of oomycetes which assembles di-
verse saprophytic and pathogenic species that share morphological similarities to true 
fungi (Latijnhouwers et al. 2003), yet are closely related to non-pathogenic diatoms 
and brown algae. Over the last two decades, P. infestans gradually developed into a 
model organism not only for oomycetes, but also for filamentous plant pathogens. The 
releases of its genome sequence and that of other closely related oomycetes (Tyler et 
al. 2006; Haas et al. 2009) have greatly increased our understanding of their complex 
biology, pathology and evolution (e.g. Seidl et al. 2012; Judelson 2012). So far, how-
ever, only individual gene products, mostly in the context of pathogenicity, have been 
intensively studied (Stassen & Van den Ackerveken 2011). Genome-wide experiments 
elucidating functional associations among proteins have not yet been performed and 
as a result, the complex interplay of proteins within a cell and its contribution to funda-
mental cellular processes is poorly understood.

Even though some proteins operate solitarily, the majority is associated with other 
proteins. They are embedded in a complex network in which assemblies of proteins syn-
ergistically mediate a biological function (Gavin et al. 2002; Krause et al. 2004). Proteins 
can associate directly by physical interaction, e.g. in protein complexes, or indirectly, 
e.g. in the same pathway or cellular process. Functional association networks represent 
the compendium of all possible associations in a cell. In vivo, however, these associa-
tions are dynamic and depend on physiological conditions such as external stimuli or 
changes during the life cycle. 

A considerable number of functional association networks in many species have 
been described. These networks are not only derived from large-scale experimentally 
determined physical associations (Gavin et al. 2002; 2006) but also from integrative 
approaches combining diverse functional and comparative genomics data. Such inte-
grative networks made a substantial contribution in system-wide understanding of the 
biology of well-studied model organisms such as Saccharomyces cerevisiae (budding 
yeast) and Arabidopsis thaliana (thale cress) (Jansen et al. 2003; Lee et al. 2004; 2010). 
Many of these studies used a Bayesian framework to integrate heterogeneous data into 
a single unified network (Jansen et al. 2003; Lee et al. 2004): every data source adds 
a certain level of evidence to the combined evidence of functional linkage between 
two proteins. At the same time, this approach accounts for differences in the quality of 
the individual data sources. The resulting network maximizes the coverage of the pro-
teome while ensuring an acceptable level of confidence (Lee et al. 2004). The reliability 
of these integrative approaches has been benchmarked using experimental data that 
are available in these model organisms. While very few protein-protein interactions or 
functional associations have been reported in P. infestans (Blanco & Judelson 2005), a 
considerable amount of transcriptomic and comparative genomic data for P. infestans 
and other oomycetes is available (Randall et al. 2005; Tyler et al. 2006; Judelson et al. 
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2008; Haas et al. 2009).

In this study, we present the first functional association network in the oomycete 
model organism P. infestans. Our method integrates diverse functional and comparative 
genomics data sets into a unified network. The first data set is composed of projected 
interactions based on interolog mapping, the transfer of protein-protein interactions 
from one organism to another: proteins in the species of interest interact if their or-
thologs in another species have been shown to interact (Walhout et al. 2000). The sec-
ond data set adds predicted associations between proteins encoded by co-expressed 
genes (Hughes et al. 2000; Gollub et al. 2003). Thirdly, we used conserved co-expres-
sion, i.e. orthologs of co-expressed genes in one species are also co-expressed in a relat-
ed species, to increase the moderate predictive power of gene co-expression towards 
functional association (van Noort et al. 2003). As a fourth line of evidence we predicted 
interacting proteins by conserved phylogenetic co-occurrence of the two encoding 
genes across a considerable amount of divergent species (Pellegrini et al. 1999). This 
approach assumes that interaction partners should either be gained or lost together, 
as a single interaction partner cannot perform the full function. We adapted a scoring 
schema that assesses the merit of each individual data set and subsequently integrates 
the data using a Bayesian approach yielding a comprehensive functional association 
network, covering over 30% of the predicted proteome of P. infestans. Our predicted 
network enables the in-depth analysis of complex omics data such as microarrays. For 
example, in the predicted functional association network we identified functional mod-
ules of differentially expressed genes during distinct life phases of P. infestans, highlight-
ing dynamic features of this network. These functional modules place unknown gene 
products in a cellular context. The functional association network represents a valu-
able addition to the growing genomic resources for P. infestans serving as an important 
framework for in-depth analyses of existing and yet to appear omics data. We anticipate 
that its availability will add significant knowledge to our understanding of the complex 
biology of this devastating plant pathogen.

RESULTS & DISCUSSION

Adaptation of a Bayesian Scoring Schema in P. infestans

To integrate four complementary large-scale transcriptomic and comparative 
genomic data sets of gene-to-gene (protein-to-protein) associations we adopted a uni-
fied scoring schema (Figure 5-1A) that has been applied successfully in other eukary-
otes (Lee et al. 2004; 2010). This scoring schema is derived from Bayesian statistics and 
describes the (log) likelihood score (LLS) of association under given evidence and is cor-
rected for the background expectation of association. Therefore, the LLS is proportional 
to the confidence of the given experiment to successfully recall known associations 
(Lee et al. 2004); a LLS of 0 corresponds to random association. More importantly, this 
unified scoring schema allows accounting for the variability in the predictive quality 
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between both binary data, such as predicted protein-protein interactions, as well as 
continuous data with an intrinsic scoring schema, such as the similarity between gene 
expression profiles. The continuous data is transformed into a range of LLS scores for 
different values of the intrinsic score (Material and Methods). Due to the lack of experi-
mentally defined protein associations (true positives) and consequently also true nega-
tives in P. infestans, we approximated such a set using KEGG maps and Gene Ontology 
(biological process). Based on these approximations, we derived the prior odds (Supple-
mentary Table S5-1A), i.e. the ratio of probability of functional association and its nega-
tion without evidence, and the posterior odds, i.e. the ratio of probability of functional 
association and its negation given the evidence, for each dataset (Supplementary Table 
S5-1B) and subsequently determined the LLS.
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Figure 5-1 Prediction of functional asso-
ciation network in P. infestans.
(A) Integration of four distinct data sourc-
es to predict the functional association 
network in P. infestans. We predicted 
protein-protein interactions by projec-
tion of interactions from three source or-
ganisms (yeast, human, thale cress) to P. 
infestans; co-expression, conservation of 
co-expression between P. infestans and 
P. sojae and phylogenetic co-occurrence 
in 51 species. Before the integration of 
the four data sources into a single net-
work, these were scored based on their 
relative confidence using KEGG maps. (B) 
Number of orthologous groups between 
P. infestans and the three source organ-
isms used for projecting physical interac-
tions. (C) Projection of physical interac-
tions via orthologous groups. In cases 
where the mapping was unclear, different 
genomic features such as co-expression 
and shared functional annotation were 
considered to disentangle these specific 
cases.
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Protein-protein Interactions from Three Model Organisms are Projected to P. 
infestans

We projected a substantial number of physical interactions between protein pairs 
based on interolog mapping. To this end, we identified orthologs using an orthology 
detection algorithm (similar to Orthologous MAtrix OMA (Altenhoff et al. 2011)) that 
we applied to a selection of 51 diverse eukaryotic species. We identified 3,507 ortholo-
gous groups (orthologous pairs + inparalogs) between P. infestans and at least one of 
the three genomes (Homo sapiens (human), S. cerevisiae and A. thaliana), of which 
1,781 orthologous groups are shared between all four genomes (Figure 5-1B). Using 
the 3,507 orthologous groups, we projected protein-protein interactions from six differ-
ent databases that aggregate information from H. sapiens, S. cerevisiae and A. thaliana 
to P. infestans (Supplementary Table S5-1C). The information available from BioGRID 
and IntAct enabled discrimination between different levels of confidence. Since these 
interactions are mapped using orthology, some of the orthologous groups also include 
inparalogs and in some cases it is not directly obvious to which of the possible pairs the 
functional interaction would be most reliably mapped (Figure 5-1C). These specific cas-
es were disentangled using additional data considering overlapping and complemen-
tary functional characteristics, such as gene co-expression and cellular co-localization 
(Material and Methods).

All sixteen predicted protein-protein interaction networks, derived from the six dif-
ferent databases, have a LLS score that is higher than random linkage (LLS > 0), ranging 
from 2.8 (IntAct attachments) to 6.1 (Complexome), reflecting their high quality (Figure 
5-2 & Supplementary Table S5-1B). The ranking of the LLS for the KEGG and GO bench-
mark yields similar results (Supplementary Table S5-1B), even though the two bench-
mark sets are fairly independent: They share only 4,470 pairs of true positives (12.6% 
of the true positives annotated in KEGG) (Supplementary Figure S5-1), indicating the 
robustness of the LLS approximation of the mapped datasets.

Complementary Comparative Genomic and Gene Expression Data are Integrated 
to Predict Functional Associations in P. infestans

To also add complementary data to the mapped physical interactions from distantly 
related organisms, we used three other large-scale (comparative-) genomic data sets 
that could be indicative for the association between a pair of proteins (Figure 5-1A); 
(i) similarity in co-expression patterns, (ii) conservation of co-expression between co-
expressed P. infestans genes and their orthologs in the soybean pathogen Phytophthora 
sojae and (iii) similarity in phylogenetic co-occurrence profiles measured in 51 eukary-
otic species (Material and Methods). 

These three genomic datasets score higher than random in our applied LLS scoring 
schema (Figure 5-2). As expected, their confidence is lower than the predicted protein 
interaction data, but the coverage of the proteome increases. Gene co-expression on 
its own has been shown to be a limited predictor of functional association; a correla-
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tion coefficient of 0.8 corresponds to a LLS of only 0.76. If orthologs of co-expressed 
genes in related species are also co-expressed, this conserved co-expression is a high 
quality proxy for functional association (van Noort et al. 2003); a score of 0.8, which is 
approximated by the average of both correlation coefficients (Material and Methods), 
corresponds to a LLS of 1.3. This higher quality of conserved co-expression as a proxy 
for functional association, in return for a smaller coverage, is an observation that is also 
visible in our scoring schema (Figure 5-2). 

The Prediction and Initial Survey of the Functional Association Network of P. 
infestans

To obtain a comprehensive picture of functional associations, we integrated the 
four above described large-scale gene association data sets using a naïve Bayesian ap-
proach: we additively derived a LLS describing the combined evidence for association 
among pairs of proteins (Material and Methods). Each individual data source, even 
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Figure 5-2 Relationship between the log-likelihood score and the coverage of different data sources.
The relationship between log-likelihood score and coverage (percentage of P. infestans proteome) of the dif-
ferent data sources is displayed. Projected physical interactions are shown by dots and for BioGRID (number 
of supporting pubmed entries (PM), e.g. 1PM or 3PM) and IntAct (core or attachment) further subdivided 
based on the reliability. Continuous data sources, e.g. co-expression, are indicated as a line. The dashed red 
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The coverage and log-likelihood score for the P. infestans association network is denoted with a red star.
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though less reliable by itself adds evidence for the functional linkage of two proteins. 
Thereby, we unified these diverse lines of evidence into a comprehensive functional 
association network in P. infestans while simultaneously controlling quality (expressed 
by the associated LLS) and coverage of these predictions. We applied a LLS cutoff of 2.1 
to each protein pair that corresponds to a very conservative Pearson correlation coeffi-
cient for co-expressed gene pairs of 0.97. This cutoff allows the inclusion of associations 
from genomic data sources if their score is above the LLS cutoff as well as the inclusion 
of lower scoring associations that require several independent lines of evidence to cu-
mulatively pass the LLS cutoff.

The predicted network in P. infestans links 5,942 proteins (~33% of the predicted 
proteome), with 108,530 functional associations (Supplementary Table S5-2). With a 
pairwise LLS cutoff of 2.1, the total confidence of the combined network is 2.76 (Figure 
5-2; Figure 5-3A). As expected given the applied cutoff, 56% of the functional associa-
tions are in part derived from protein interaction data in other species; consequently 
the P. infestans functional association network is mainly a physical interaction network. 
Moreover, 34,352 of these protein associations (~55%) have additional support based 
on other large-scale (comparative-) genomic data sets, giving further evidence for the 
robustness of the predictions. The network comprises 52 connected components (98% 
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Figure 5-3 The functional association network and the subcellular localization of its members.
(A) The predicted functional association network in P. infestans. Nodes, representing proteins, are colored 
according to their subcellular localization approximated by Gene Ontology term. (B) Correlation of subcel-
lular localization with predicted protein associations. The log2-fold enrichment/depletion of protein pairs 
where both partners are predicted to reside in the same/different subcellular localization compared to the 
expected numbers is displayed by the heat map (lower half of the symmetrical matrix) (values saturate 
at ±1.5); the corresponding raw numbers are shown in upper half. Significant enrichment/depletion (after 
multiple testing correction) is indicated by asterisk. The total number of proteins predicted to reside in a 
particular subcellular localization is displayed in brackets above the plot.
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of proteins reside in the largest component; Figure 5-3A). A characteristic path length 
of 3.4, which is smaller than e.g. the overall protein-protein interaction network of S. 
cerevisiae but similar to the subset of essential proteins (Said et al. 2004), and high clus-
tering coefficient (0.28) are indicative of a dense network that reflects the homology-
based projection of complexes and interactions.

Proteins that are part of the network show highly significant enrichment (all p-val-
ues <1 X 10-7) in central cellular processes such as gene expression (GO:0010467), trans-
lation (GO:0006412), cellular localization (GO:0051641) and cell cycle (GO:0007049). 
The majority (58%) of proteins in the network is at least partially projected based on 
physical interaction which favors evolutionary conserved processes and hence explains 
the enrichment in core cellular processes. Nevertheless this information is useful as it 
provides further insights into the wiring of these core processes in P. infestans.

The network also includes proteins with putative functions in pathogenicity or pro-
teins that have been shown to induce defense responses in the host (Stassen & Van den 
Ackerveken 2011); many of which are predicted to be secreted upon infection (Supple-
mentary Table S5-2). The network contains 284 secreted proteins; a 2.6-fold increase to 
the number we would have obtained if we only considered interactions derived by or-
thology projection of protein-protein interaction data. The RXLR- and Crinkler-effectors, 
two classes of host-targeted effectors that most likely promote infection of the host, are 
highly abundant in the proteome of P. infestans (596 RXLR- and 452 Crinkler-effectors) 
(Haas et al. 2009; Jiang et al. 2008), and also occur 18 and 3 times, respectively, in the 
predicted network. The associations of these proteins with others are solely based on 
(conserved-) co-expression data, indicating involvement in the same process, without 
any evidence for potential physical associations. Two notable classes of highly abun-
dant enzymes that are potentially linked to pathogenicity are glycoside hydrolases and 
peptidases (Tyler et al. 2006; Haas et al. 2009; Seidl et al. 2011; 2012). We observed 46 
glycoside hydrolases and 119 peptidases in the predicted network. This is a consider-
able increase of ~2 fold compared to a network that would only be based on projected 
physical data.

The Functional Association Network is Enriched for Co-localized Protein Pairs

Functionally associated proteins that show physical interaction are close together 
in the same subcellular compartment (Schwikowski et al. 2000; Gandhi et al. 2006). 
Subcellular localization therefore presents a suitable criterion to assess the biological 
significance of the predicted associations in P. infestans independently of the initial 
benchmark of (homology-based) KEGG pathways used to derive the LLS for each asso-
ciation. The network displays non-random distribution and local clustering of proteins 
with the same subcellular localizations, approximated by GO-cellular compartment 
(Figure 5-3A). To quantify this, we examined the enrichment/depletion in subcellular 
localization of associated proteins in the predicted P. infestans functional association 
network (Figure 5-3B, Material & Methods). Proteins with the same subcellular localiza-
tion are significantly enriched amongst associated proteins, in agreement with observa-
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tion on directly measured associations in other organisms and confirming the validity of 
our predicted network. Specifically, proteins residing in the endoplasmic reticulum, the 
Golgi apparatus and membranes are enriched for interactions, corroborating previous 
results in human (Gandhi et al. 2006). In accordance with the observations by Gandhi 
and colleagues (2006), proteins with predicted localization in the nucleus, the ribosome 
and to a smaller extent the mitochondrion do tend to not interact with proteins present 
in other sub-compartments. 

As homology is part of the initial source of the projected physical interactions – i.e. 
the LLS scoring via the KEGG benchmark as well as the prediction of subcellular locali-
zation via GO – we used two additional approaches to assess similarity in subcellular 
localization of predicted associations independent of homology. In the first approach, 
we divided the network into two components, one containing associations that are 
supported by at least one protein-protein interaction dataset (Supplementary Figure 
S5-2A), and the second, which is merely based on non-physical associations (co-expres-
sion, co-occurrence) (Supplementary Figure S5-2B). Both networks yield similar results 
in the (significant) enrichment of associated proteins predicted to co-localize. In a sec-
ond independent approach, we used WoLF PSORT that predicts subcellular localization 
merely on sequence features and not homology (Horton et al. 2007). Again, we found 
similar patterns of enrichments in proteins with the same subcellular localization. Pro-
teins residing in the nucleus and the mitochondrion showed depletions for associations 
with proteins predicted to reside elsewhere (Supplementary Figure S5-2C). These pat-
terns are less pronounced, most likely because the prediction algorithm is not optimally 
trained for oomycete sorting signals. These independently derived similar patterns in 
enrichment and depletion support our predicted functional associations, even though 
experimentally verified associations, as present for other species, would provide a su-
perior benchmark set to adjust confidence levels and assess the predicted associations. 

The Compendium of Protein Complexes Embedded within the Functional 
Association Network

One of the major steps in understanding the function of a cell is to identify and de-
termine the composition of its protein complexes. We mined the subset of the predict-
ed functional association network that is supported by at least a single protein-protein 
interaction to derive protein complexes. We applied the ClusterONE algorithm that de-
tects overlapping protein complexes in weighted networks by searching for sub-graphs 
that are characterized by many reliable interactions between proteins and separation 
from the remaining network (Nepusz et al. 2012). In total, we detected 299 protein 
complexes covering 3,146 proteins (Supplementary Table S5-3).

Due to incomplete proteome annotation, members of a protein complex are unlikely 
to be identified by functional annotation (GO terms) alone. For example, the Arp2/3 
complex, a central organizer of the actin filaments, contains seven subunits in yeast and 
human (Goley & Welch 2006). While its constitution can be completely retrieved in yeast 
and human based on its GO term (GO:0005885), the same is impossible in P. infestans: 
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the annotation of the encoding genes is limited (only a single member of the Arp2/3 
complex has this term) and higher-level terms such as cytoskeleton are too broad and 
retrieve too many results. The functional association network is therefore a necessary 
framework to predict and study the composition of protein complexes in P. infestans. 
Indeed, the Arp2/3 complex is one of the complexes we detected (complex 18). Besides 
Arp2 and Arp3, which have already been described (Ketelaar et al. 2012), the detected 
complex contains the remaining five together with an additional subunit (Figure 5-4A). 
The genes encoding the seven subunits display a high degree of co-expression, whereas 
the additional protein, a tubulin-tyrosine ligase like protein (TTLL), is not co-expressed 
(Figure 5-4B), and therefore likely not part of the core Arp2/3 complex. In-depth inves-
tigation revealed that the associations to TTLL have been projected via a read-through 
transcript containing an Arp2/3 subunit and TTLL from human, underscoring the neces-
sity to assess fusion transcripts in future analyses and to include gene expression data 
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Figure 5-4 Predicted Arp2/3 and eIF3 complexes in P. infestans.
(A) Automatically predicted Arp2/3 complexes (ClusterONE prediction in light green) include the seven con-
served subunits of the eukaryotic Arp2/3 complex (Arp2, Arp3 and the five associated subunits; highlighted 
in dark green). (B) Gene expression of the predicted Arp2/3 complex (note: there is no gene expression data 
for Arp2/3 subunit 5 [BROAD:PITG_00293]). The log2-fold change in expression at different time points/
developmental stages (averaged replicates) of three different gene expression experiments compared to 
the gene expression in mycelium/hyphae growth of the respective experiment is displayed in the graph. (C) 
Automatically predicted eIF3 complex (ClusterONE prediction in light blue), the annotated eIF3 complexes 
based on CORUM (yellow) and Complexome (red) database as well as the conserved eIF3 core (six subunits; 
orange). (D) Gene expression of the eIF3 core complex (orange) and the additional subunits predicted by 
either CORUM (yellow) or Complexome (red). The log2-fold change in expression at different time points 
(averaged replicates; description as in (C)) of three different gene expression experiments compared to the 
gene expression in mycelium/hyphae growth of the respective experiment is displayed in the graph.
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to validate and disentangle predicted protein complexes.

The analysis of another protein complex highlights the necessity of an integrative 
approach that combines different data sets from diverse organisms: The eukaryotic 
initiation factor 3 (eIF3) is among the largest translation initiation factors in eukary-
otes (Hinnebusch 2006). Its conserved ‘core’ contains five essential (eIF3a, eIF3b, eIF3c, 
eIF3g and eIF3i) and one nonessential subunit (eIF3j) (Hinnebusch 2006). Only three 
of them could have been predicted in P. infestans based on GO terms. The eIF3 core is 
a subset of one of the detected complexes (complex 110; Figure 5-4C) that also con-
tains several other subunits. The H. sapiens eIF3 complex described by the CORUM 
database contains six additional subunits, whereas the eIF3 complex described by the 
Complexome database contains four additional subunits, all of which have orthologs in 
P. infestans. Our predicted network unifies this information and consequently, the au-
tomatically inferred protein complex contains all these subunits, except a single protein 
from Complexome, and additional three, two of which are also eukaryotic translational 
initiation factors and hence likely functionally related. The genes encoding the eIF3 core 
proteins as well as the orthologs of the human complex are highly co-expressed and 
therefore likely forming a functional complex, whereas the orthologs of the yeast subu-
nits, especially pronounced for eIF5 [BROAD:PITG_01255], show a lower level of co-
expression (Figure 5-4D). The ATP-binding cassette protein RLI1 (yeast: [SGD:YDR091C]) 
is a conserved factor that has been implicated in several essential cellular processes 
such as translational initiation (Dong et al. 2004; Chen et al. 2006) and translational 
termination and recycling (Shoemaker & Green 2011). According to CORUM database, 
there is no interaction between human RLI (the ortholog to RLI1 in yeast) and eIF3 core 
factors, whereas the yeast complex in Complexome and consequently the predicted P. 
infestans network contain this experimentally determined interaction (Dong et al. 2004) 
(Figure 5-4C). 

Identification of Functional Modules during the Development of P. infestans

Microarray technologies are a valuable source for the identification of genes in-
volved in development and pathogenesis in P. infestans (Judelson et al. 2008; 2009; 
Haas et al. 2009). The interpretation of the results is challenging since a direct biological 
role for differentially expressed genes is not necessarily apparent, especially for un-
characterized gene products. The predicted functional association network provides a 
convenient framework to enhance the biological interpretation of gene expression data 
by placing functionally characterized and uncharacterized gene products in their wider 
cellular context.

We aimed to apply the predicted network to identify functionally related subsets 
of differentially expressed genes at defined time points in the lifecycle of P. infestans 
(Figure 5-5A). To prevent circularity in the analysis, we excluded associations within the 
network that were only supported by gene expression data, leaving us with a network 
of 62,000 associations between 3,500 proteins. We used the algorithm HEINZ (Beis-
ser et al. 2010) that automatically finds the subset of up-regulated genes that are also 
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Figure 5-5 Developmental stages of the asexual lifecycle of P. infestans and determined functional mod-
ules . 
(A) Transition between five distinct developmental stages in the asexual lifecycle of P. infestans. Gene ex-
pression data of these stages are available (Judelson et al. 2008) and were used to assess gene expression 
changes between the transitions. Transitions between different developmental stages are colored coded. (B) 
The gene expression changes and the membership of all 826 genes predicted in the five functional modules 
are displayed. The heat map shows the gene expression changes (log2) for the transitions of two subsequent 
life stages (same color code as in A; heat map saturated at ±2.5). Presence (black) or absence (white) of 
genes in a functional module is highlighted next to the heat map and membership is indicated by color 
code. C refers to the sporulation module as described in (C). (C) Determined functional module of genes up-
regulated during sporulation and their predicted associations. Examples discussed within the text and their 
directly associated proteins are highlighted with light green. The nodes are colored according to the fold 
change in expression in sporangia compared to hyphae (same scale as in B).
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interconnected by a significant amount of associations. Such an ensemble of genes is 
referred to as a functional module, and allows identifying and studying proteins like-
ly involved in a defined process and their associations. We studied five different time 
points during the asexual development of P. infestans (Judelson et al. 2008): in vitro 
growing nonsporulating hyphae, sporangia, cleaving sporangia, swimming zoospores 
and germinating zoospore cysts that contain specialized infection structures called ap-
pressoria (Figure 5-5A). We defined differentially expressed genes at each transition 
and subsequently detected functional modules (Figure 5-5A & Figure 5-5B).

Each developmental transition is represented by a functional module of associated 
differentially expressed genes. The modules display little overlap and a distinct pattern 
of gene expression changes (Figure 5-5B). They vary in size, ranging from nearly 400 
members at the transition from germinated cyst to hyphal growth, to only two members 
at the transition from cleaving sporangia to swimming zoospores (Supplementary Table 
S5-4). The latter transition contains only very few up-regulated genes (FDR 0.05) in the 
predicted network which is the reason for the small size of the module. Interestingly, 
the functional module at the former transition is enriched for proteins with a predicted 
function in proteolysis (GO:0006508; p-value << 1 X 10-4), including twelve, mostly intra-
cellular, peptidases. In contrast, the transition from hyphae to sporangia is significantly 
(p-value < 1 X 10-4) enriched for regulation of biological process (GO:0050789) and in 
particular signal transduction (GO:0007165). Among other proteins involved in regula-
tion we also found ten kinases. Four of these are also found in the functional module 
of the subsequent transition from sporangium to cleaved sporangium, a module that 
contains 17 kinases. Kinases have been reported to be among the genes with the high-
est fold expression change in this transition (Judelson et al. 2008). Oomycetes contain 
an extensive repertoire of these central regulators (Judelson & Ah-Fong 2010; Seidl et 
al. 2011). The high abundance of kinases in functional modules points to their promi-
nent role in regulation of sporangium formation. The associations of and amongst these 
kinases present important novel information that would not have been available using 
gene expression data alone.

The Sporangia Formation Module Contains Genes Encoding Known and Novel 
Proteins, and Novel Associations

To highlight the merit of the functional association network as a framework to study 
gene expression and the predicted associations between co-regulated proteins, we fur-
ther studied the initial phase of sporulation. In Phytophthora this major transition leads 
to the formation of sporangia, asexual spores that can either germinate directly and 
infect the host, or develop into a zoosporangium which cleaves and releases multiple 
zoospores that function as infectious propagules (Figure 5-5A). We identified a module 
that contains 130 interconnected proteins of which 126 are encoded by up-regulated 
genes during sporangium formation (Figure 5-5C). This functional module is signifi-
cantly enriched (p-value <0.05) for proteins with predicted functions in signal trans-
duction (GO:0007165), cell differentiation (GO:0030154) and developmental processes 
(GO:0032502). Interestingly, our predicted module contains most proteins known to be 
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involved in sporangia formation, but also many novel interactors that have not yet been 
associated with this important process. 

In the predicted functional module we observed Pigpa1 [BROAD:PITG_03612] and 
Pigpb1 [BROAD:PITG_06376], the alpha and beta subunit of the heterotrimeric G-
protein. The transcription of both genes is up-regulated early during spore formation 
(María Laxalt et al. 2002). Whereas Pigpb1 silenced mutants have malformed sporan-
gia and very few asexual spores (Latijnhouwers & Govers 2003), Pigpa1 silenced mu-
tants show altered zoospore mobility, reduction in zoospore release and appressorium 
formation (Latijnhouwers et al. 2004). Pigpa1 is predicted to interact with a predicted 
up-regulated cAMP dependent kinase [BROAD:PITG_12293] (Figure 5-5C), confirming 
that the cAMP pathway is indeed involved in processes regulated by Pigpa/b1 during 
sporulation as initially suggested by Latijnhouwers and colleagues (2003). One of the 
predicted interaction partners of both Pigpa1 and Pigpb1 is Rac1 [BROAD:PITG_06691], 
a small GTPase of the Ras-like superfamily. Its role as a central regulator is corroborated 
by several predicted interaction partners: eukaryotic protein kinases such as mitogen-
activated kinases [BROAD:PITG_02212/BROAD:PITG_17361/BROAD:PITG_12186] or 
the phosphatidylinositol-4-phosphate-5-kinase [BROAD:PITG_15552]. Next to Rac1, 
we observed other signal transduction components related to the Ras superfam-
ily of GTPases such as ARF-like [BROAD:PITG_08880/BROAD:PITG_13269] and Rab 
[BROAD:PITG_19907/BROAD:PITG_17136], highlighting the importance of these signal-
ing proteins and the associations of these novel candidates for spore formation. 

In the functional module we also observed the phosphatase Cdc14 [BROAD: 
PITG_18578]. In eukaryotes, it plays a role in a variety of processes including cell cycle 
regulation and termination of mitosis. In contrast to its orthologs, Cdc14 in P. infestans 
is specifically expressed during sporulation, and has a central role in spore formation 
(Ah-Fong & Judelson 2003). It also seems not to be involved in the regulation of mito-
sis during normal growth, even though it complements the function of Cdc14 in yeast 
(Ah-Fong & Judelson 2003) and therefore might still maintain this regulatory role dur-
ing sporulation (Ah-Fong & Judelson 2011). Additionally, recent evidence points to a 
possible role of P. infestans Cdc14 in the development of the flagellum due to its co-
localization with the known basal body marker DIP13 (deflagellation-inducible protein; 
[BROAD:PITG_13461]) (Ah-Fong & Judelson 2011). Even though Cdc14 and DIP13 show 
considerable (conserved) co-expression (Pearson correlation coefficient 0.76), this evi-
dence is insufficient to infer association within the framework of our network. Interest-
ingly, Cdc14 is predicted to interact with a 4.3-fold (log2) up-regulated tyrosine kinase 
[BROAD:PITG_17410] (Figure 5-5C). We observed an association between this kinase 
and DIP13 (Supplementary Table S5-2), therefore indirectly linking DIP13 to Cdc14 as 
initially suggested by the co-localization studies by Ah-Fong and colleagues (Ah-Fong & 
Judelson 2011). 

The up-regulated Cdc14 interaction partners within the functional module in-
clude several other kinases such as the 2.5-fold (log2) up-regulated Ser/Thr kinase 
[BROAD:PITG_00124]. Interestingly, we predicted a novel association between Cdc14 
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and NIFC1 [BROAD:PITG_11238], a protein that contains a nuclear LIM interactor-in-
teracting factors domain and is reported to be involved in transcriptional regulation 
(Judelson & Tani 2007). NIFC1 is highly expressed during zoospore-formation (cleav-
age) (Judelson & Tani 2007; Judelson et al. 2008), whereas Cdc14 is expressed early 
during sporangium formation and maintains a high expression level during zoospore-
formation. Together with the predicted association between Cdc14 and the sir2-like 
histone deacetylase [BROAD:PITG_10164], these interactions imply a role of Cdc14 as a 
transcription regulator to reprogram gene expression during zoospore formation.

We highlighted how the predicted functional association network serves as a valu-
able framework for the analysis of gene expression data. The delineation of functional 
modules generates a concise set of candidates and their associations for further stud-
ies. The sporangia formation module illustrates this nicely: firstly we identified proteins 
that have been already experimentally linked to this transition, e.g. Cdc14 and Pigpb1. 
Subsequently, we were able to place these in their wider cellular context allowing the 
identification of directly associated proteins. Since many of these have only putative 
functions (~50%) or are without functional annotation (18%) the functional network 
approach used in this study revealed interesting novel candidates that may play central 
roles in sporangia formation.

CONCLUSIONS
Proteins rarely act alone. They interact either directly or indirectly with other pro-

teins to synergistically mediate biological functions. So far, hardly anything is known 
about this complex interplay between proteins in oomycetes. The only large-scale ex-
perimental study in oomycetes investigated the interactions between effector proteins 
produced by the downy mildew Hyaloperonospora arabidopsidis with known proteins 
of the A. thaliana (thale cress) immune system (Mukhtar et al. 2011). Although this 
study emphasized the importance of functional association data, it solely addressed 
complex formation within plant cells and not in the pathogen. 

As an initial step on the way to fully expose the ensemble of all functional associa-
tions between proteins, we here present the first functional association network in P. 
infestans. We combined available genomic, transcriptomic and comparative genomic 
data to predict associations (interactions) between proteins resulting in a comprehen-
sive network of gene associations that covers 33 percent of the predicted proteome. As 
expected, this number is lower than previous studies in S. cerevisiae (Lee et al. 2004) or 
A. thaliana (Lee et al. 2010), reflecting the relative paucity of data in P. infestans com-
pared to these well studied model organisms. Nevertheless, the availability of these as-
sociations is crucial to provide insights into functional genomics. We balanced the cov-
erage with an acceptable level of confidence given all available large-scale data and our 
in silico benchmark. The lack of experimentally confirmed benchmark sets in P. infestans 
limits a completely independent assessment of our prediction. In the future, more com-
plementary gene expression data will most likely be available and consequently, to-
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gether with experimentally determined interactions in P. infestans and closely related 
species, the genome-wide prediction of functional associations will be enhanced. We 
showed that proteins that are predicted to be functionally associated are enriched to 
reside in the same, or related, cellular sub-compartments, further validating the bio-
logical coherence of our predictions and the merit of the applied integrative approach. 
We exemplified the usability of the predicted functional association network on two 
examples: We automatically determined protein complexes and subsequently studied 
their constitution; an analysis that is not possible by just applying functional annotation 
to the genome. Moreover, we highlighted how the availability of the functional asso-
ciation network together with gene expression data allowed us to predict modules of 
functionally related genes during distinct phases of development. We exemplified this 
by analyzing the sporulation module that contained several experimentally character-
ized proteins such as Cdc14 and Pigpb1. The predicted physical interaction partners 
to these well-described proteins allowed us to place a concise set of candidates into a 
prominent role in sporangia formation.

Our study created a so far lacking addition to the growing genomic resources in 
the plant pathogenic model organism P. infestans. We demonstrated that these data 
are needed to further improve the ability to retrieve biological knowledge from large-
scale data such as microarrays, RNA-seq or (phospho-) proteomics. The availability of 
the predicted functional association network allows a gradual transition from a single 
gene perspective to a more comprehensive understanding of the complex biology of P. 
 infestans and other oomycetes.

MATERIAL & METHODS

Prediction of Orthologs between 51 Eukaryotic Species

We defined the groups of orthologs for a set of 51 eukaryotic species that were 
selected based on the taxonomic diversity. The orthologous groups were computed fol-
lowing an OMA (Orthologous MAtrix)-like algorithm (Roth et al. 2008; Altenhoff et al. 
2011) which was adjusted to the specific requirements of the analysis. To also identify 
weaker similarity between sequences we modified the following steps: (i) the minimal 
alignment score for potential orthologs was reduced to 130, (ii) the minimal alignment 
coverage was reduced to 40% in the first clustering step (assembling doubly-connected 
components, as opposed to cliques in the original OMA algorithm) and (iii) alignments 
with only 25% sequence coverage were added to the best matching cluster. We em-
pirically determined the necessary cutoff values to maximize the inclusion of distant 
homologs while at the same time avoiding the excessive clustering of paralogs. This ap-
proach clustered in total 644,999 proteins into 58,533 orthologous groups. Each group 
represented all extant descendants from a single gene in the last common ancestor of 
eukaryotes; or, for a gene invented later, all descendants of that gene.
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Interolog Transfer of Protein-protein Interactions

We retrieved in total sixteen protein-protein interaction networks from six different 
sources (Supplementary Table S5-1C). Three of these data sets were subsequently sub-
divided, either to account for different levels of confidence expressed by the number of 
distinct publications (1PM-5PM) confirming an interaction (BioGRID) or to distinguish 
between core and attachments (IntAct). BioGRID interactions were mainly based on 
protein-protein interaction, however if at least a single publication reported the physi-
cal associations, also genetic interactions were considered to enhance the support for 
the specific association (2PM-5PM).

Interactions from the source databases were first mapped to the human Ensembl, 
yeast and Arabidopsis identifiers and subsequently projected from the source species 
to P. infestans using the identified orthologous groups. Since orthologous groups can 
also contain inparalogs, both in the source genomes (H. sapiens, A. thaliana and S. cer-
evisiae) and in P. infestans, we excluded all genes from the mapping with an alignment 
score to the source gene of less than 75% of the best matching inparalog, assuming 
that larger differences might be indicative of neo-functionalization of the paralog. If the 
mapped pairs still included inparalogs in P. infestans, we disentangled these specific 
cases by applying four different functional criteria to define which of the P. infestans 
proteins most likely retained the interaction. An interaction between two proteins is 
retained if both proteins (i) are on the same Kyoto Encyclopedia of Genes and Genomes 
(KEGG) map (Kanehisa et al. 2012), (ii) have protein domains that are known to medi-
ate protein-protein interactions, (iii) share a common Gene Ontology (Ashburner et al. 
2000) (GO) term (biological process or cellular component) at a depth of level ≤6 or ≤5, 
respectively, (iv) share a common GO term (biological process or cellular component) at 
a depth of level ≤4 and their expression profiles have a Pearson correlation coefficient 
≥0.4. If none of these criteria was applicable we chose the protein with the highest 
similarity to the source protein so that we kept minimally one interaction between a set 
of orthologous groups.

The details of these four criteria to disentangle inparalogs in P. infestans are as fol-
lows: (i) To define pairs that are on the same KEGG map, we retrieved 94 predicted 
KEGG maps for P. infestans from the KEGG database (01.05.2012; excluding maps 
pif01100 and pif01110) that contained in total 1,329 proteins from P. infestans (7.5% 
of the predicted proteome). (ii) Protein domains that are predicted to mediate protein-
protein interactions are retrieved from 3did (03.05.2012). Protein domains were pre-
dicted for the proteome of P. infestans using hmmer3 (Eddy 1998) (gathering cutoff) 
and a local Pfam-A database (v26) (Finn et al. 2010). (iii) We predicted the GO terms for 
all predicted proteins in P. infestans using the BLAST2GO algorithm (default parameters) 
(Conesa et al. 2005). Since GO is an acyclic graph, we first searched within each of the 
two domains (biological process or cellular component) for common GO terms between 
the two potentially interacting proteins. For all possible combinations of GO terms be-
tween the two proteins, we first searched all possible paths for common GO terms 
that minimize the distance to the initial GO term. If more than one GO term is equally 
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distant to the initial GO term, we chose the common term that minimized the distance 
to the root of the ontology. Subsequently, the depth of the common GO term that is 
shared between the proteins, which can be seen as a measure of functional similarity, 
is assigned to the pair by calculating the shortest path to the root of the ontology (Sup-
plementary Figure S5-1). (iv) In addition to the approach outlined in (iii), we added gene 
expression data as a complementary feature (details for the gene expression analysis 
can be found below). We calculated Pearson correlation coefficients between the ex-
pression profiles of two pairs and kept an interacting pair if both the depth cutoff and 
the correlation cutoff were reached. Suitable cutoffs for the GO depth and the Pearson 
correlation in (iii) and (iv) were determined by maximizing the positive predicted value 
and the accuracy while minimizing the false discovery rate for 1,000 randomly picked 
true positive pairs as defined by KEGG (see above) and 1,000 random gene pairs or 500 
pairs for (iii) and (iv), respectively.

Functional Interactions by Additional Comparative Genomics Data

To define the functional interaction network in P. infestans, we added complemen-
tary data next to the predicted protein-protein interactions. We used (i) co-expression, 
(ii) conserved co-expression and (iii) co-occurrence to define these additional functional 
associations between two genes.

(i) Publicly available gene expression data for P. infestans was extracted from NCBI 
Gene expression omnibus (Barrett & Edgar 2006) with the accessions GSE9623 (Affym-
etrix), GSE13580 (Affymetrix), and GSE14480 (NimbleGen). The Affymetrix data were 
normalized using MAS5 and the log2 of the expression intensities was computed using 
Bioconductor (Affy package) (Irizarry et al. 2003). Replicates were averaged and the 
resulting gene expression vector was normalized calculating the Z-score per unigene. 
Because the Affymetrix chip was designed prior to the availability of the genome se-
quence of P. infestans, we mapped the unigenes that have been used in the chip design 
to the transcripts derived from the P. infestans genome. We only considered the best 
hits of each unigene to the transcript set (blastn (Altschul et al. 1990), evalue cutoff 
1 X 10-20, ≥ 80 percent identity). If several independent unigenes have the same tran-
script as their best hit we assigned the most C-terminal unigene to this transcript, since 
these unigenes tend to have the highest expression values. Normalized target inten-
sities (log2) were extracted from the NimbleGene data, replicates were averaged and 
Z-scores were calculated. The three independent experiments (the union of the genes 
in the three experiments is 8,947 genes) were combined to compute pairwise Pearson 
correlation coefficients between all genes.

(ii) To predict pairs of proteins that are encoded by conserved co-expressed gene 
pairs in P. infestans, we used defined orthologs between P. infestans and P. sojae as 
outlined above using a confined species selection. Furthermore, we used three pub-
licly available gene expression data sets for P. sojae GSE15100 (Affymetrix), GSE22978 
(Affymetrix) and GSE735084 (RNA-Seq). The analysis of the two Affymetrix expression 
sets was conducted as described above, however, before normalization all non-P.  sojae 
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probes (the vast majority for this array) were removed. The RNA-seq derived gene ex-
pression intensities were log2 transformed and otherwise treated similarly to the mi-
croarray experiments (see above). Pearson correlation coefficients of the normalized 
(Z-score) and subsequently combined gene expression values were calculated for all 
genes (union of the thee experiments, i.e. 7,736 genes). A single unified score for each 
conserved co-expressed gene pair was derived by rescaling (between 0 and 1) the aver-
aged Pearson correlation coefficients of the gene pair in P. infestans and the ortholo-
gous gene pair in P. sojae. The average Pearson correlation was calculated after applying 
a Fisher’s Z-transformation to the individual correlation coefficients.

(iii) We predicted putative pairs of functionally associated protein by comparing the 
phylogenetic profiles of all genes with at least one gene loss during their evolutionary 
history. The similarity between profiles was measured by reconstructing the gene gain 
and loss events within an orthologous group over all 51 eukaryotic species. We ignored 
duplications, since the presence/absence of a gene within a genome was taken into ac-
count. We used ‘partial correlations’, as described by Cordero et al. (2008) in detail, to 
compare the gains and losses assigned to the branches of the species tree. The ‘partial 
correlation’ is based on the Pearson correlation coefficient of the events, but corrected 
against genome-wide trends such as whole-genome duplications or genome streamlin-
ing. Instead of applying a fixed threshold to indicate which correlation value still cor-
responds to a potential interaction, we sorted all pairs by their partial correlation and 
used the top 0.1% pairs.

Bayesian Integration of Distinct Data Sources

We integrated the different data sources by applying a scoring system that is derived 
from Bayesian statistics followed by a Bayesian integration approach as outlined by Lee 
et al. (2004). Briefly, we calculated for each data source the log likelihood score (LLS) 
that two proteins are functionally linked, defined as LSS = log(OPosterior / OPrior). The LLS 
was calculated based on the prior odds (OPrior), describing the ratio of probability of 
functional linkage and its negation without evidence, and the posterior odds (OPosterior), 
describing the ratio of probability of functional linkage and its negation under the given 
evidence. The prior odds can be estimated by the number of protein pairs that share 
a defined functional annotation, e.g. being on the same KEGG map, and the number 
of protein pairs that do not share the functional annotation, e.g. residing on two dif-
ferent KEGG maps. Similarly, we derived the posterior odds by estimating the number 
of protein pairs that share or do not share functional annotation and are supported by 
the given evidence. We used KEGG or GO – 6th level (biological process) to estimate 
the prior odds and the posterior odds for each dataset. If the dataset is discrete (e.g. 
protein-protein interactions) a single LLS is determined (Supplementary Table S5-1B). 
If the dataset has a continuous scoring schema, e.g. Pearson correlation coefficient for 
the co-expression data, we first determined a mapping function to re-score the initial 
score to the corresponding LLS. Therefore, we calculated the LLS for a given bin size and 
performed non-linear regression to determine the coefficients of the fitted function 
that is subsequently used to re-score the dataset to the LLS schema (Supplementary Fig-
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ure S5-3). The combined LLS of all available evidences for an association between a pair 
of genes/proteins was calculated using a naïve Bayesian approach: LLSsum = SUM(LSS)PPI 
(excl. Biogrid) + max(LSS)BioGrid Human + max(LSS)BioGrid Yeast + LLSCE + LLSCC + LLSCO. If the summed LLS 
was smaller than the cutoff, the association was not reported. 

Enrichment/Depletion of Subcellular Localization of Protein Pairs

We assessed the enrichment/depletion of the shared subcellular localization be-
tween pairs of associated proteins as outlined by Gandhi et al. (2006). Briefly, we cal-
culated the fold enrichment/depletion of the number of observed edges between pro-
teins of a certain subcellular localization (GO cellular compartment), e.g. number of 
edges between proteins where one partner is annotated as residing in the nucleus and 
the other in the endoplasmic reticulum, compared to the expected number of edges 
based on random networks that maintained the protein annotation, the degree for 
each protein (number of associations) and the total number of edges. The statistical 
significance was assessed using a Poisson distribution and the resulting p-value was 
corrected for multiple testing.

We independently predicted subcellular localization using the WoLF PSORT algo-
rithm that uses sequence features and not homology to assign localization (Horton et 
al. 2007). We used both animal and fungi presets, assigning subcellular localization to 
protein upon agreement, otherwise to ‘unknown’. Enrichment and depletion was oth-
erwise calculated as described above.

Functional Modules

Functional modules, i.e. maximally co-regulated sub-networks under a defined con-
dition, were predicted based on differentially expressed genes between two conditions 
assessed by limma (Smyth 2004). The functional module was identified in a subset of 
the functional network, excluding associations that were merely supported by gene ex-
pression. Moreover, only the proteins whose genes have corresponding expression val-
ues and were part of the largest component within the sub-network were considered. 
The heuristic functional module within each sub-network was identified using BioNet 
(Beisser et al. 2010), where the p-values obtained from limma were scored using a fitted 
beta-uniform mixture model and a false discovery rate of 0.01. We were only interested 
in up-regulated modules during the defined condition, consequently we set all scores 
of proteins to –abs(S) when the gene expression difference expressed as fold (log2) was 
smaller than 0, thereby only allowing inclusion of these nodes in the functional module 
if they connect high scoring nodes.
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Figure S5-2 Correlation of subcellular localization with predicted protein associations. 
The figure displays the log2-fold enrichment/depletion of protein pairs where both partners are predicted 
to reside in the same/different subcellular localization compared to the expected numbers. We discrimi-
nated between associations that have predicted protein-protein interactions as a source of evidence (A) 
and associations that were merely predicted by co-expression, conserved co-expression and co-occurrence 
(B). Panel (C) shows the same information, however the subcellular localization was predicted using WoLF 
PSORT (Material and Methods). Enrichment/depletion is displayed by the heatmap (lower half of the sym-
metrical matrix) (values saturate at ± 1.5 or ±1 for WoLF PSORT); the corresponding raw numbers are shown 
in upper half. Significant enrichment/depletion (after multiple testing correction) is indicated by an asterisk. 
The total number of proteins predicted to reside in a particular subcellular localization is displayed in brack-
ets above the plot.
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Figure S5-3 Mapping of continuous scores to the unified log-likelihood schema.
The figure displays the mapping of intrinsic continuous scores from (A) co-expression, (B) conserved co-
expression and (C) phylogenetic co-occurrence to the unified log-likelihood schema. The derived mapping 
function (based on non-linear regression; Material and Methods) for each mapping is shown.
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150 Chapter 6

INTRODUCTION
The work described in this thesis combines four complementary comparative genom-

ic approaches focusing on pathogenic oomycetes. Comparative genomics and integra-
tive bioinformatics are powerful tools to accompany classical experimental work (Bork 
et al. 1998). This is of special importance for non-model organisms such as oomycetes, 
but also for many fungi and vertebrates where broad biological insights are lagging be-
hind the possibilities provided by the nowadays more easily accessible large-scale om-
ics data. We have applied highly integrative bioinformatic approaches to the growing 
amount of omics data revealing different aspects of cellular function and evolution in 
oomycetes. These different aspects range from the evolution of gene content (chapter 
2 and chapter 3) and regulation of gene expression by cis-regulatory elements (chapter 
4) to functional associations between proteins (chapter 5). Especially in chapter 2 and 
chapter 5, we were able to derive hypotheses on the function of many uncharacterized 
gene products, therefore providing significant insight into the biology of oomycetes. 
Here I reflect on these bioinformatics analyses, especially in the light of related work 
(see also my list of publications), and discuss recurring themes. This chapter includes 
an outlook on the paths that this highly dynamic field will most likely take in the near 
future and emphasizes why comparative genomics is an essential tool to close the gap 
between available data and testable hypotheses in this interesting group of organisms.

OOMYCETE GENOME SEQUENCES 
Over the last decade we experienced the emergence of large-scale genomics in 

oomycetes. It started with extensive work on expressed sequence tags (ESTs) (Kamoun 
et al. 1999; Qutob et al. 2000; Randall et al. 2005; Torto-Alalibo et al. 2005) and the 
release of the genome sequences of two Phytophthora species (Tyler et al. 2006). In 
recent years a broad range of oomycete genomes has been sequenced (Figure 1-2). 
The initial decision to sequence two genomes — a result of a compromise between 
social and scientific interest — also enabled the use of comparative genomics (Govers 
& Gijzen 2006). The availability of more genomes paved the way to study the evolution 
and function to an increased depth. Below I will discuss the possible complementary 
roadmap of sequencing efforts in oomycetes and several open questions that can be 
answered with the help of additional genome sequences.

Lamour and colleagues depicted already in 2007 three complementary roads to pro-
ceed with the sequencing efforts in oomycetes (Lamour et al. 2007): (i) sequencing of 
a wide spectra of species covering distinct clades of oomycetes, (ii) sequencing of spe-
cies that represent divergent lifestyles, and (iii) sequencing of strains or sibling species 
related to those that have already been sequenced. By now all of their predictions have 
been realized. There are, however, still many gaps where more genome sequences are 
crucial to answer the many remaining open questions. 

Several members of distinct clades of oomycetes and species with divergent life-
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styles, e.g. the obligate biotroph  Hyaloperonospora  arabidopsidis (Baxter et al. 2010), 
have been sequenced (Figure 1-2). However, all oomycetes sequenced so far are patho-
gens. With the exception of a recently sequenced pathogen of animals,  Saprolegnia 
 parasitica (Jiang et al. 2013), all sequenced oomycetes parasitize plants; not a single 
saprophytic species is included. An open question in the evolution of oomycetes is how 
pathogenicity evolved from likely saprophytic ancestors to (obligate) pathogenic species 
(chapter 1). There is not a clear black/white difference between the genome content of 
saprophytes and pathogens: An illustrative example of this continuum is ECP2, a gene 
that encodes a secreted protein causing reduced virulence upon silencing in  the plant 
pathogenic fungus Cladosporium fulvum (Laugé et al. 1997). Interestingly, the genomes 
of the fungal saprophyte  Neurospora crassa, but also many other non-plant pathogenic 
as well as pathogenic fungi, encode ECP2 homologs that represent an ancient super-
family of putative effectors (Galagan et al. 2003; Stergiopoulos et al. 2012). Given this 
diverse phylogenetic distribution, a distinct function in non-pathogenic species seems 
likely, e.g. an antagonistic interaction towards other microorganisms (Stergiopoulos et 
al. 2012). The example of the fungal ECP2 highlights the necessity to sequence sapro-
phytic species. From an evolutionary perspective, their sequences might hold the key to 
more precisely understand the emergence, evolution and function of different infection 
strategies and the genes required to overcome host defenses.

Other questions are connected to the exact constitution of the core genome of 
oomycetes and the evolution of the families leading to the repertoire observed in ex-
tant species. We have shown that genes encoding transcription factors and genes in-
volved in signal transduction have expanded early in the evolution of oomycetes (Seidl 
et al. 2012; chapter 3). Especially protein kinases are abundant in Phytophthora spp. 
(Judelson & Ah-Fong 2010; Seidl et al. 2012), but also in S. parasitica (Jiang et al. 2013), 
pointing to an early expansion. Full genome sequences of early-branching oomycetes 
such as Eurychasma dicksonii are not yet available. These are crucial to study the oomy-
cete core genome and the evolutionary history of these expanded gene families, pro-
viding more resolution at the last common ancestor of the so far sequenced oomycetes 
(chapter 3). 

Especially in the last couple of years, the focus has shifted from the sequencing of 
more diverse organisms to the sequencing of strains (isolates) and siblings (e.g. Raffaele 
et al. 2010; Cabral et al. 2011; Cooke et al. 2012). This approach is very powerful due 
to the availability of next generation sequencing techniques and template genomes 
that can assist the rapid assembly and subsequent analysis. Whereas studies on more 
divergent species focus on larger patterns of evolution (see above), studying linages and 
sibling species answers pending questions on small scale genomic variations, identifica-
tion of active effector genes and their contribution to the adaptation to different hosts 
and evasion of host responses. The studies in emerging Phytophthora infestans lineages  
such as blue 13_A2 and closely related sibling species such as Phytophthora  mirabilis, 
revealed common presence/absence, copy number variations, gene expression and 
single nucleotide  polymorphisms as well as signatures of positive selection. These fea-
tures occur within the flexible part of the bipartite genome (chapter 1) and are mainly 
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localized in effector genes thereby likely reflecting genome adaptation following a host 
jump and elevated virulence (Raffaele et al. 2010; Cooke et al. 2012). Cabral and col-
leagues (2011) used comparative genomics to analyze the expressed sequence tags of 
the H.  arabidopsidis isolate Waco9. They focused on the secretome, especially on RXLR 
effectors that are thought to function as suppressors of immune responses, and identi-
fied H.  arabidopsidis specific effectors as well as a few Waco9-specific effectors such 
as RXLR29. The authors hypothesize, similar to Cooke and colleagues (2012), that iso-
late-specific effector repertoires might explain the differences in virulence towards the 
same hosts, thereby highlighting the merit of sequencing and comparative genomics of 
closely related species/isolates.

Interestingly, a community-based approach seeks to sequence the whole genus 
 Phytophthora thereby providing an unseen wealth of genomic and transcriptomic data 
(B.M. Tyler, personal communication). These data will allow new comparative studies. 
The pending questions on the biology and evolution, for example on the regulation of 
gene expression and the evolution of the genome organization, can be answered. Phylo-
genetic footprinting to define conserved regulatory elements in the non-coding regions 
of their genome will most likely considerably enhance previous approaches (chapter 4). 
Moreover, the exact time and mode of the emergence of the bipartite genome that has 
so far been observed most prominently in P. infestans and closely related sister taxa and 
to a lesser extent in Phytophthora sojae and Phytophthora ramorum (chapter 1) is still 
not fully understood (Haas et al. 2009; Raffaele et al. 2010).

Within oomycetes, complementary paths regarding the sequencing efforts have 
been rationalized and taken. Even though several questions regarding the fundamental 
evolution of oomycetes have been successfully answered (Seidl et al. 2012; chapter 3), 
there are pending questions, such as the origin and evolution of pathogenicity, that 
would require the genome sequences of additional divergent oomycetes. However giv-
en the negative impact of plant pathogens on crop yield, I anticipate that sequencing 
isolates and close species will have higher priority. Comparative genomics enables us 
to answer fundamental questions concerning host adaptation as a result of small scale 
evolution as successfully demonstrated in oomycetes (Raffaele et al. 2010), but also in 
fungal pathogens (e.g. de Jonge et al. 2012). The perspective to link these variations to 
host range and lifestyle is tempting and necessary considering the economic and eco-
logical importance of these organisms. Moreover, the application of next generation 
sequencing together with comparative genomics allows direct and timely surveillance 
of pathogen populations thereby directly assisting anticipatory breeding efforts by ef-
fective deployment of resistance in agriculture (Vleeshouwers et al. 2011; Cooke et al. 
2012).
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GENOME ANNOTATION QUALITY AFFECTS COMPARATIVE 
ANALYSIS

The genome contains all necessary information for the biology of an organism, in 
particularly the genes and other functional regions such as regulatory DNA (see e.g. the 
human ENCODE project (Maher 2012)). Therefore, the genome sequence represents 
a unique resource; its value however depends on the quality of its assembly and sub-
sequent annotation, in first instance of its protein coding genes (Stein 2001). Whereas 
gene annotation seems trivial in prokaryotic genomes, this endeavor is more challeng-
ing in eukaryotes because of the complex gene models containing exons and introns 
and the presence of pseudogenes. In human, for example, ~12,000 pseudogenes have 
recently been described, some of which still resemble their ‘parents’ and are therefore 
hard to distinguish in an automated annotation pipeline (Pei et al. 2012).

Due to the advances in sequencing technologies, new genome sequences become 
rapidly available and gene identification and annotation is mostly performed automati-
cally. However, the automated analysis can result in missed gene identifications and 
introduce misannotations. This is a common problem particularly in organisms that 
receive little attention or lack the necessary community to provide manual gene an-
notation. Even in model organisms such as  Arabidopsis  thaliana and human, wrong 
and changing annotation is apparent (Haas et al. 2005; Harrow et al. 2012). Parra and 
colleagues (2007;2009) derived a set of low copy eukaryotic genes that are supposed to 
be present in all eukaryotes and therefore considered highly conserved (core eukaryotic 
genes (CEG); 248 genes). The number of genes from this set in analyzed genomes cor-
relates reasonably well with the overall genome completeness (Parra et al. 2007; 2009). 
The percentage of mapped CEGs differs within eukaryotes, in particular between well 
studied and well annotated model organisms and more recently sequenced organisms 
and ranges from 70-100 percent (Figure 6-1A; Parra et al. 2009). Overall, oomycetes 
have a relatively high percentage of matches (Figure 6-1A); even the recently sequenced 
transcriptome of  Bremia  lactucae covers nearly 80 percent of the CEGs (Stassen et al. 
2012). Therefore, the overall completeness of oomycete genome sequences is relatively 
high and indicates a reasonable annotation quality. However, CEGs provide only rough 
estimates of the completness of the genome assembly and, especially due to their con-
served nature, annotated gene space.

The apparent absence of genes in a genome can have a technical reason, due to er-
rors in annotation, but can also have biological significance, such as the loss of genes in-
volved in the nitrate assimilation pathway in H. arabidopsidis (Baxter et al. 2010; chap-
ter 1). Although erroneous losses had only a minor impact on large-scale evolutionary 
studies in Chromalveolates (Martens et al. 2008), this issue is of especially important 
in detailed studies of specific biological pathways or protein complexes. For example a 
small, but conserved subunit of the anaphase-promoting complex is apparently absent 
from the annotated gene set in P.  infestans. Detailed analyses, however, revealed its 
presence in the genome (B. Snel, personal communication), therefore likely significantly 
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altering the interpretation of the results. 

Next to the possibility of the artificial absence, misannotation affects large-scale 
comparative genomics research in oomycetes. The identification of novel domain com-
binations (Seidl et al. 2011; chapter 2) is highly dependent on the quality of the gene 
models; wrong annotations, especially artificial fusions and fissions, will affect the re-
sults even though most of the combinations are conserved in Phytophthora (see dis-
cussion chapter 2). Moreover, for the majority (70 percent) of protein-coding genes 
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Figure 6-1 Completeness of annotated gene sets and frequency of annotated 5’ and 3’ UTR.
(A) Estimation of the completeness of the annotated gene sets in different sequenced eukaryotic genomes 
with emphasis on oomycetes. The conserved core genes were derived from Parra and colleagues (2009) and 
matches were searched in the predicted proteomes. For (B) P. infestans and (C) S. parasitica the number 
of genes are displayed: (i) The total number of annotated genes as well as the subset of annotated genes 
with a corresponding coding region (black), and (ii) the frequency of annotated 5’ and/or 3’ untranslated 
regions (UTR) (white) in the annotated coding genes. Both genomes were retrieved from the Broad Institute 
(09.11.2012).
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in P. infestans the 5’ and/or 3’ untranslated regions are not annotated (Figure 6-1B). 
Without this information, the exact transcription start and stop sites of genes are not 
known. The lack of knowledge about the precise transcription start site hampers the 
analysis and evaluation of automatically inferred DNA motifs with respect to their pref-
erential occurrences upstream of coding regions (Seidl et al. 2012; chapter 4) and also 
identification of possible regulatory elements in the untranslated regions (reviewed in 
Mignone et al. 2002). By applying bioinformatics, we corroborated in a large-scale study 
that the oomycete Inr-like element (Inr/FPR; coinciding with the transcription start site 
Pieterse et al. 1994; McLeod et al. 2004) is indeed the most common eukaryotic pro-
moter element in P.  infestans occurring in 37% of all genes (Seidl et al. 2012; chapter 
4). Identification of this specific DNA motif (see discussion chapter 4) will allow a more 
precise bioinformatic prediction of the transcription start sites of genes in  Phytophthora 
and other oomycetes in the future. 

Extensive work on yeast has shown that sequencing of closely related genomes can 
greatly facilitate genome annotation and gene model validation (Kellis et al. 2003). Kel-
lis and colleagues (2003) applied comparative genomics to four  Saccharomyces species 
and identified or refined existing gene models. This led to 15% change in the before-
hand published genome annotation. Even though homology has already been used for 
gene annotation in oomycetes, e.g. in the P. infestans genome (Haas et al. 2009), rapid 
sequencing of oomycetes, especially many more sequences within closely defined taxa 
such as  Phytophthora (see above), will allow a more powerful application of synteny and 
conservation to further refine the initial gene models. It is anticipated that the number 
of sequenced oomycetes will increase considerably in the next few years. However, 
due to the relatively large genomes of many members (Figure 1-2) and the high repeat 
content, assembly and annotation remains challenging, labor intensive and expensive. 
Therefore, the application of complementary strategies is needed to aid genome an-
notation and gene model refinement in oomycetes.

The availability of next generation sequencing data such as RNA-Seq will most likely 
help to solve the outlined limitations and problems, not only in model organisms but, 
due to its speed and cost efficiency, also in less standard organisms such as oomycetes. 
Even though RNA-Seq reveals only the transcripts at a defined point of time, pooling 
different samples will support gene calling and annotation (5’/3’ UTR, exons/introns, 
isoforms) resulting in a significant increase in the quality of the gene sets as well as in 
the subsequent bioinformatic analyses. Application of RNA-Seq in de novo annotations 
of transcripts in fission yeast, mouse and cucumber significantly enhanced gene anno-
tation (Grabherr et al. 2011; Li et al. 2011). Similar improvements in annotation quality 
are visible in S.  parasitica where gene annotation has been supported by  RNA-Seq data 
(Jiang et al. 2013). The number of gene models with 5’ and/or 3’ UTR is considerably 
higher compared to P.  infestans (Figure 6-1B & Figure 6-1C). Moreover, full transcrip-
tome RNA-Seq data will allow a precise evaluation of the observed novel gene combi-
nations in  Phytophthora spp. and S.  parasitica (Seidl et al. 2011, chapter 2; Jiang et al. 
2013, Morris et al. 2009). Initial studies found rather few introns in  Phytophthora and 
other oomycetes, with the exception of S.  parasitica (Tyler et al. 2006; Jiang et al. 2013). 
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Analyses in P.  sojae revealed few genes (122) that likely show alternative splicing (Shen 
et al. 2011). Therefore, RNA-Seq data, together with the essential analysis tools (Rogers 
et al. 2012), will shed additional light on possible alternative splicing in oomycetes. So 
far, RNA-Seq data for oomycetes is sparse as only few experiments in diverse species are 
available (Lévesque et al. 2010, Jiang et al. 2013, Ye et al. 2011, Links et al. 2011; Kunjeti 
et al. 2012; Savory et al. 2012), but more data will likely be available in the near future. 
These data will not only directly enhance genome annotation, but also aid in answering 
questions regarding novel gene features (Seidl et al. 2011, chapter 2), alternative splice 
variants and differential gene expression (chapter 5), thereby significantly adding to the 
biological knowledge in oomycetes.

COMPLEX OMICS DATA ACCESSIBILITY FOR OOMYCETE 
BIOLOGISTS

In recent years, huge advances in genomic sequencing and in the availability of large 
and diverse datasets covering other, often complementary, omics data have been ob-
tained (chapter 1). To make these complex data and the initial analyses easily accessible 
for all biologists (not only bioinformaticians), integrative platforms that store, link and 
visualize these data are essential. Whereas a considerable number of platforms exist 
for model organisms such as yeast (Cherry et al. 1998; 2012), worm (Stein et al. 2001) 
and fly (Drysdale and FlyBase Consortium 2008), similar platforms for oomycetes are 
not yet available. 

It was realized more than ten years ago that rapid, easy access and availability of the 
human genome is crucial for scientific progress. The Ensembl database that was devel-
oped provides access to human chromosomes, gene models and proteins allowing the 
study of human genes and their homologs on a genome-wide scale (Flicek et al. 2010). 
Since then, many genome sequences of a large variety of mainly vertebrates have been 
integrated in Ensembl, resulting in a unique repository and comparative genomics 
platform for vertebrate genome sequences (Flicek et al. 2010). Early on, comparative 
aspects such as genome alignments, genomic variations, automatic (phylogenetically 
driven) orthology/paralogy determination for gene families (Ensembl compara; Vilella 
et al. 2009) and comprehensive access with standardized output (IDs, sequence format, 
query system) have been developed (Kinsella et al. 2011). Other approaches focusing 
on single model organisms such as the  Saccharomyces genomics database (SGD), the 
worm resource and the  Drosophila database provide centralized databases for (com-
parative) genomics. Moreover, they also assess and integrate other large-scale comple-
mentary datasets such as gene expression, functional annotation and functional associ-
ations (chapter 5) that are derived from high-throughput experiments and/or literature. 

The outlined databases are the result of a continuous development from simple 
storage warehouses to comprehensive omics platforms (Flicek et al. 2010). They facili-
tate experimental design (Cherry et al. 2012) and help experimental biologists to evalu-
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ate and compare their results given (all) available genomic data, not only in the specific 
species but also in their relatives. These complex resources, however, are not yet avail-
able for oomycetes. Genomic sequences of oomycetes are mainly distributed over the 
genome centers that were involved in the initial sequencing such as the Broad Institute 
(http://www.broadinstitute.org) and the Joint Genome Insitute (http://www.jgi.doe.
gov), complicating access and standardization, and hampering subsequent analyses 
for (non-) bioinformaticians. Moreover, comparative genomics such as phylogenomics 
analyses and other high throughput data have to be gathered from supplementary ma-
terial and analyzed independently. Integrative analyses in their wealth are not available 
to the community. The oomycete research community would benefit largely from a 
community-driven approach to centralize data storage and integration to access the 
complex and wealth of large-scale omics data. Recently, some already published oomy-
cete genomes have been deposited in Ensembl protists and in FungiDB (Stajich et al. 
2012), thereby providing centralized access. However they lack newly sequenced ge-
nomes, accompanying transcriptomics data and integrative analyses provided by the 
community. Since these data are expected to grow considerably in the close future, it 
is timely to start a community-driven approach, providing integration of the data dis-
cussed in this thesis and even more comparative/integrative data in the future.

COMPARATIVE GENOMICS IN OOMYCETES AS A BLUEPRINT 
FOR OTHER TAXA

I highlight in this thesis how the application of integrative computational ap-
proaches is feasible given the available — albeit limited — genomic and transcriptomic 
data. We used these data to predict regulatory motifs in the DNA sequences of three 
  Phytophthora genomes, thereby providing the first genome-wide survey of such motifs 
in oomycetes (Seidl et al. 2012; chapter 4). Moreover, we exploited all available om-
ics data for P. infestans to predict the first intra-species functional associations in any 
oomycete (chapter 5). We used the derived network as a platform to further analyze 
large-scale transcriptomics data thereby assigning functions and likely associations to 
many as yet unknown gene products. 

The computational approaches described in this thesis provide examples of the cru-
cial importance of comparative genomics to maximize biological insights in oomycetes. 
However, many more diverse species with economic, ecological and medical impor-
tance are already sequenced or will become available in the close future. Our research 
is applicable to these diverse taxa, too. Therefore, this thesis serves as a ‘blueprint’ 
to guide and aid further comparative genomics work in other important species with 
rather limited biological knowledge. For example in  Plasmodium species, the causal 
agent of malaria, different authors have conducted similar lines of research primarily 
applying comparative genomics, which significantly inreased insights in the evolution of 
these pathogens and in gene function (e.g. van Noort & Huynen 2006; Pick et al. 2011). 
Centralized data sources that integrate functional, genomics, transcriptomics and func-
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tional associations data, but especially also comparative genomics (Ensembl compara), 
are necessary as well. Such data sources are crucial to allow rapid access to newly gen-
erated large-scale data and are pivotal for accelerating science in these important taxa.

CONCLUDING REMARKS
Oomycete research has been a continuous endeavour since the initial description 

of one of its members over 150 years ago and considerably gained velocity with the 
availability of their first sequenced genomes. This trend will likely persist because more 
genomes, also the first sequences from saprophytic oomycetes and especially from sib-
lings and isolates of known pathogens, will become available and focus the research to 
specific evolutionary and functional questions (chapter 6). This thesis describes a set of 
comparative genomics papers that integrate the available diverse omics data to answer 
questions on the function of as yet unknown gene products and the evolution, func-
tion and regulation of central cellular processes in oomycetes. Moreover, it highlights 
the merit of integrative, comparative approaches to close the knowledge gap between 
the available omics data and the biology of non-model organisms, thereby serving as a 
‘blueprint’ for similar studies in other organisms.
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Diseases that destroy livestock and crops have had catastrophic effects on human 
civilization, causing starvation and economic losses and continue to be a constant 
threat to global food production. Pathogenic species occur throughout the tree of life 
including many bacteria, eukaryotic microorganisms and metazoans. The fascinating 
taxonomic class of oomycetes unites several important pathogenic eukaryotes of plants 
and animals. We have witnessed considerable advances characterizing the (molecular) 
biology of these species, in particular their interactions with the hosts, in the last dec-
ades. Nevertheless, our current knowledge still lags behind the possibilities provided by 
large-scale (gen)omics data which are nowadays easily accessible. Comparative genom-
ics and integrative bioinformatics provide an important framework to accompany and 
complement classical experimental work to advance our knowledge of these species. 
This thesis describes four complementary comparative genomic studies focusing on dif-
ferent aspects of cellular function and evolution of pathogenic oomycetes.

The first two studies (chapter 2 and chapter 3) focused on the evolution of the gene 
content in pathogenic oomycetes. In chapter 2, we analyzed plant-pathogenic oomycet-
es using protein domains as a tool to assess the gene content of oomycetes and other 
eukaryotic pathogens, especially in the light of gene family expansions and novel gene 
fusions. We find nearly 250 expanded domains in oomycete and fungal plant pathogens 
of which a substantial part could be linked to a role in pathogenicity. Highly abundant 
domains with a role in signaling and regulation form a large repertoire of novel com-
binations. We hypothesize that the analyzed oomycetes might encode proteins that 
rewire existing signaling networks in a novel way that is distinct from other eukaryotes. 
In chapter 3, we used a comprehensive phylogenetic approach to study the evolution 
of the gene content by gene gains, duplications and losses thereby revealing distinct 
evolutionary paths that shaped the gene content of six extant oomycete pathogens. 
The branch leading to the plant pathogenic Phytophthora is characterized by frequent 
duplications that represent a major transition point in their evolution. The phylogenetic 
approach allows the characterization of explicit evolutionary trajectories, e.g. the pat-
tern and timing of duplications and losses, thereby providing additional insights into the 
complex evolutionary history of oomycete genome evolution.

The following chapter (chapter 4) centered on the regulation of gene expression 
by identifying cis-regulatory DNA motifs in Phytophthora infestans, the causal agent of 
late blight on potato and tomato and one of the most prominent plant pathogens in 
the group of oomycetes. We conducted the first genome-wide survey for cis-regulatory 
elements in P. infestans or any other oomycete. To this end, we applied an in silico ap-
proach that combines gene co-expression and conservation to infer DNA motifs. We 
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identified several highly abundant DNA motifs with similarity to common eukaryotic 
promoter elements. By describing additional elements that occur upstream of a partic-
ular group of genes such as transcription factors, we significantly added to the current 
understanding of transcriptional regulation in oomycetes.

Very limited knowledge on associations or interactions between proteins is available 
in oomycetes. In chapter 5, we used complementary omics data to predict the first func-
tional association network that links ~33% of the predicted proteome in P. infestans. 
These data allowed us to derive functional modules, i.e. sub-networks of co-expressed 
genes, involved in sporulation, a fundamental developmental stage in oomycetes. We 
identify known players such as CDC14, a phosphatase with a critical role in spore for-
mation, and pinpoint novel candidates with as yet unknown roles in this important de-
velopmental process. We demonstrate that networks are pivotal frameworks to study 
other large-scale omics data such as microarrays by creating a concise list of associated 
candidates for subsequent experimental validation.

The analyses presented in this thesis highlight the merit of integrative and com-
parative genomics as a pivotal tool to explore the biology and evolution of oomycetes. 
They provide (testable) hypotheses on the evolution, biology and the function of as 
yet uncharacterized gene products in oomycetes, thereby significantly advancing our 
knowledge on this intriguing group of organisms.
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Ziektes van vee en landbouwgewassen hebben in het verleden een vernietigende 
uitwerking gehad op menselijke beschavingen door het veroorzaken van hongersnoden 
en grote economische schade, en zijn nog steeds een bedreiging voor de wereldwi-
jde voedselproductie. Pathogenen komen verspreid voor in de gehele ‘tree of life’ en 
zijn te vinden onder de bacteriën, de eukaryote micro-organismen en de metazoa. De 
oömyceten (waterschimmels) vormen een fascinerende taxonomische groep die bel-
angrijke eukaryote pathogenen van dieren en planten verenigt. De afgelopen decen-
nia is er aanzienlijke vooruitgang geboekt in het onderzoek aan oömyceten en in het 
bijzonder in het ontrafelen van de interactie van deze pathogenen met hun gastheer op 
moleculair and cellulair niveau. Desalniettemin is onze kennis nog beperkt. Het is daar-
om noodzaak om meer en beter gebruik te maken van de mogelijkheden die geboden 
worden door de grootschalige genomische datasets die tegenwoordig toegankelijk zijn. 
Vergelijkende genoomanalyse en integratieve bioinformatica bieden een raamwerk dat 
klassieke experimentele methoden versterkt en aanvult, waardoor wij onze kennis van 
oömyceten kunnen vergroten. Dit proefschrift beschrijft vier complementaire vergeli-
jkende genoomanalyse studies, gericht op verschillende aspecten van moleculaire func-
ties in pathogene oömyceten en op de evolutie van oömyceten.

De eerste twee studies (hoofdstukken 2 en 3) richten zich op de evolutie van het 
genenarsenaal in pathogene oömyceten, welke genfamilies een soort bevat en hoe de 
genensamestelling van soorten evolueert. In hoofdstuk 2 gebruiken we eiwitdomeinen 
als instrument om de geninhoud van plantpathogene oömyceten en andere eukaryote 
plantpathogenen te bestuderen, met nadruk op de rol van de expansie van genfami-
lies en nieuwe genfusies. We vinden in plantpathogene oömyceten en schimmels 250 
domeinen die geëxpandeerd zijn, waarvan een aanzienlijk deel gekoppeld kan worden 
aan een rol in pathogeniciteit. Veelvoorkomende domeinen met een rol in signaaltrans-
ductie netwerken en regulatie vormen een groot repertoire aan nieuwe combinaties 
waardoor eiwitten ontstaan die niet eerder beschreven zijn. Onze hypothese is dat 
door deze nieuwe eiwitten de signaaltransductie in oömyceten deels via andere routes 
verloopt. In hoofdstuk 3 gebruiken we een alomvattende fylogenetische benadering 
voor het bestuderen van de evolutie van geninhoud door het verschijnen, dupliceren 
en verdwijnen van genen. Hiermee onthullen wij verschillende evolutionaire paden die 
vorm gegeven hebben aan de geninhoud van zes hedendaagse pathogene oömyceten. 
De tak die leidt tot het genus Phytophthora met enkel plantpathogene soorten, wordt 
gekarakteriseerd door veelvuldige duplicaties, symbool voor een belangrijke transitie in 
de evolutie van Phytophthora. Deze fylogenetische benadering maakt het mogelijk om 
expliciete evolutionaire paden in kaart te brengen, bijvoorbeeld het patroon van gendu-
plicaties en verlies van genen, waardoor meer inzicht verkregen wordt in de complexe 

Samenvatting

Thesis.indb   163 3/17/13   7:23 PM



evolutionaire geschiedenis van de genoomevolutie van oömyceten.

Het volgende hoofdstuk (hoofdstuk 4) behandelt de regulatie van genexpessie 
door het identificeren van cis-regulatoire DNA motieven in Phytophthora infestans, de 
veroorzaker van aardappelziekte en één van de meest prominente plantpathogenen 
binnen de oömyceten. Dit is de eerste genoom-omvattende studie naar cis-regulatoire 
elementen in P. infestans en oömyceten in het algemeen. Hiervoor hebben we een in-
silico benadering toegepast waarbij co-expressie en conservering van genen gebruikt 
worden voor het afleiden van DNA motieven. We hebben verschillende veelvuldig-
aanwezige DNA motieven met gelijkenis met bekende eukaryote promoter elementen 
geïdentificeerd. Door het beschrijven van sequentie elementen die zich ‘upstream’ 
bevinden van genen die voor een bepaalde groep eiwitten coderen, zoals bijvoorbeeld 
transcriptiefactoren of elicitoren van afweer in planten, hebben we een substantiële 
bijdrage geleverd aan ons begrip van transcriptie-regulatie in oömyceten.

Er is erg weinig bekend over de associaties en interacties tussen eiwitten in oömy-
ceten. In hoofdstuk 5 gebruiken we complementaire ‘omics’ data voor de eerste vo-
orspelling van functionele associaties voor ~33% van het voorspelde proteoom van 
P. infestans. Deze data stellen ons in staat om functionele modules af te leiden (sub-
netwerken van genen die gezamenlijk tot expressie komen) betrokken bij sporulatie, 
een fundamentele ontwikkelingsfase in oömyceten. Hierbij vinden we bekende spelers 
zoals CDC14, een fosfatase met een cruciale rol in sporevorming, en identificeren we 
nieuwe kandidaten met tot nu toe onbekende functies in dit belangrijke ontwikkeling-
sproces. We laten zien dat netwerken een centraal raamwerk zijn voor het bestuderen 
van andere soorten grootschalige ‘omics’ data zoals microarrays, door het genereren 
van een beknopte lijst geassocieerde kandidaten voor experimentele validatie.

De analyses beschreven in dit proefschrift onderstrepen de bijdrage van integra-
tieve bioinformatica en vergelijkende genoomanalyse als cruciale hulpmiddelen voor 
het verkennen van de biologie en evolutie van oömyceten. Zij leveren (testbare) hy-
potheses over de evolutie, biologie en functie van tot op heden ongekarakteriseerde 
genproducten in oömyceten, waardoor onze kennis van deze intrigerende groep micro-
organismen aanmerkelijk vergroot wordt.
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Von Schädlingen verursachte Krankheiten an Pflanzen und Tieren hatten in der Ver-
gangenheit katastrophalen Einfluss auf die menschliche Zivilisation. Sie verursachten 
Hungersnöte und sind auch heute und bleiben auch in der Zukunft eine konstante Be-
drohung für die globale Lebensmittelproduktion. Diese Krankheitserreger (pathogene 
Organismen) umfassen äußerst unterschiedliche Spezies, von einzelligen Bakterien und 
Eukaryoten bis zu mehrzelligen Eukaryoten wie z.B. Fadenwürmern. Die faszinierende 
phylogenetische Klasse der Eipilze (oder Oömyceten) beinhaltet einige der wichtigsten 
Krankheitserreger an Pflanzen und Tieren. Unser Wissen über ihre molekulare Biologie 
und insbesondere die Interaktion mit ihren Wirt hat sich in den letzten Jahrzehnten 
konstant weiterentwickelt. Dennoch ist unser jetziges Wissen begrenzt, doch neuarti-
gen Technologien ermöglichen die einfache und schnelle Generierung von einer Viel-
zahl an biologischen Daten und Informationen. Daher können klassische molekulare 
Experimente mittels vergleichender Genomanalyse und der Integration dieser verschie-
denartigen Daten, zwei wichtige Konzepte in der modernen Biologie, ergänzt und unter-
stützt werden. Die vorliegende Arbeit beschreibt vier komplementäre Studien, die sich 
diese Konzepte zu Eigen machen, um diverse Aspekte der molekularen Biologie und der 
Evolution von Oömyceten im Detail zu untersuchen. 

In Kapitel 2 und Kapitel 3 wurden verschiedene Aspekte der Genomevolution von 
Oömyceten untersucht. In Kapitel 2 benutzten wir Proteindomänen als Hilfsmittel, um 
die Expansion von Genfamilien und spezifische Domänenkombinationen in pflanzenpa-
thogenen Oömyceten zu erforschen. Wir fanden fast 250 Proteindomänen, die in Oömy-
ceten, aber auch anderen pathogenen Pilzen, expandiert sind. Vielen dieser Domänen 
konnte eine mögliche Rolle in der Pathogenität dieser Organismen zugewiesen werden. 
Häufig vorkommende Domänen mit Funktionen in Signaltransduktionswegen oder bei 
der Regulation von zellulären Prozessen bilden eine Vielzahl an neuartigen und spezifi-
schen Kombinationen in Oömyceten. Daher scheinen die Genome der Oömyceten eine 
Reihe von Proteinen zu kodieren, die bekannte Signalwege in einer neuartigen Art und 
Weise miteinander verbinden. Kapitel 3 befasst sich mit der Evolution aller Genfamilien 
in sechs verschiedenen Oömyceten. Wir benutzten einen phylogenetischen Ansatz, um 
die einzelnen evolutionären Pfade, das heißt die Abfolge von Geninovationen, Dupli-
kationen und Verlusten in diesen Familien, nachzuvollziehen. Der Zweig, der zu den 
pflanzenpathogenen Phytophthora führt, ist gekennzeichnet durch eine hohe Anzahl 
an Duplikationen und ist daher ein wichtiger Schritt in der Evolution dieser Spezies. Da 
unsere phylogenetische Analyse die genaue zeitliche Abfolge der evolutionären Abläufe 
dokumentiert, bietet sie daher eine dynamische Übersicht der evolutionären Geschich-
te der Oömyceten, die mit alternativen Methoden so nicht möglich gewesen wäre.

Zusammenfassung
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Das nachfolgende Kapitel (Kapitel 4) beschäftigt sich mit der Regulation von Gene-
expression in Phytophthora infestans, einem der bedeutendsten Krankheitserreger in 
der Gruppe der Oömyceten und verantwortlich für die Kraut und Knollenfäule bei Kar-
toffeln. Wir beschreiben die erste genomweite Identifizierung und Untersuchung von 
cis-regulierenden DNA Elementen in P. infestans. Wir benutzten in silico Methoden, die 
auf Geneexpressionsdaten und Sequenzkonservierung zwischen verwandten Spezies 
basieren. Wir ermittelten mehrere DNA Elemente die eine hohe Ähnlichkeit zu bekann-
ten eukaryotischen Elementen aufweisen. Durch die Identifikation von weiteren DNA 
Elementen, insbesondere von solchen, die sich in der Nähe von spezifischen Gruppen 
von Genen, wie zum Beispiel Transkriptionsfaktoren, befinden, haben wir entscheidend 
zum aktuellen Verständnis der Generegulation in Oömyceten beigetragen. 

Das Wissen über die Interaktionen zwischen Proteinen in Oömyceten ist sehr einge-
schränkt. In Kapitel 5 verwendeten wir verschiedene sich komplementierende omics-
Daten, um das erste Protein-Protein Interaktion Netzwerk in P. infestans vorherzusagen. 
Dieses Netzwerk beschreibt die Interaktionen und funktionelle Verbindungen zwischen 
33% aller vorhergesagten Proteine. Mit Hilfe dieser Daten können wir funktionelle Mo-
dule, eine Gruppe interagierender Proteine deren kodierenden Gene co-exprimiert 
sind, vorhersagen. Wir untersuchten im Speziellen die Sporulation, einen wichtigen 
Entwicklungsprozess im Lebenszyklus von P.  infestans. Dieses funktionelle Modul bein-
haltet neben bekannten Proteinen wie CDC14 auch uncharakterisierte Proteine die nun 
diesem wichtigen Entwicklungsprozess zugeordnet werden konnten. Protein-Protein 
Netzwerke beschreiben daher essentielle Informationen, die die Interpretation von an-
deren, oft komplementären, Daten zugänglich machen können, da sie Proteine in ihren 
zellulären Kontext stellen.

Diese Arbeit hebt die Vorteile von vergleichender Genomanalyse als bedeutendes 
Werkzeug zum Verständnis der Biologie und Evolution hervor: Wir stellten experimen-
tell verifizierbare Hypothesen zur Evolution, Biologie und Funktion von bisher unbe-
schrieben Genen und ihren Produkten in Oömyceten auf. Damit haben wir signifikant 
zum Verständnis dieser interessanten Gruppe von Spezies beigetragen.
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