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Competitive exclusion: several consumers using 1 resource

Chapter 9

Competition

Competition for resources like space, light, nutrients, food, growth factors, and/or susceptible
hosts is ubiquitous in biology, and will occur whenever several populations are maintained by
shared resources. Mathematical models for populations competing for resources can be derived
mechanistically from the resource consumer models developed in the previous chapters by mak-
ing a QSSA for the resource densities. Removing the resource changes the indirect interaction
between the consumers into a direct one, which will deliver a functional form for the resource
competition process. An important concept in resource competition is the principle of “com-
petitive exclusion”, stating that populations that are maintained by consuming the same shared
resource have to exclude each other at steady state. A famous data set confirming this is the
competition between two species of Paramecium by Gause (1934). Competitive exclusion is
actually the basis of Darwin’s “Survival of the fittest” concept. We will show that the consumer
depleting the shared resource most will typically be the one and only survivor (Tilman, 1980,
1982), and that this need not be the species with the highest carrying capacity (or even R0).
Because the resource is depleted to a minimal density this is sometimes called the pessimization
principle (Mylius & Diekmann, 1995). We will first confirm the competitive exclusion principle
with a few simple models, and then turn to the much more complicated situation of a “network”
in which several consumers are sharing several resources.

9.1 Competitive exclusion

To illustrate the concept in its most general form, first consider a closed compartment with a
fixed amount of resource, R, that is taken up by n consumer populations Ni (for i = 1, 2, . . . , n),
and released when the organisms die. For n = 2 this could reflect the two Paramecium species
in the medium of Gause (1934) competing for nutrients. Since the total amount of nutrients
cannot change in this closed compartment, we write a conservation equation K = F +

P
n

i
eiNi,

where K is the total amount of nutrient in the compartment, F represents the amount of free
nutrients, and the ei parameters specify the amount of nutrient contained in a single individual
of consumer Ni. A first model, based upon simple mass action terms would be

F = K �
nX

i

eiNi ,
dNi

dt
= Ni(biF � di) , for i = 1, 2, . . . , n , (9.1)

where we would define R0i = biK/di for the fitness of each consumer. Since the steady state of
each dNi/dt = 0 requires that F̄ = di/bi = K/R0i , each consumer generically require a unique

Closed system with fixed amount of resource K:

Since for each species F̄ = di/bi = K/R0i they have to exclude each other

R0i =
biK

di
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nutrient availability, and hence they cannot co-exist. Solving dNi/dt = 0 in the absence of the
other species gives the carrying capacities

Ki = N̄i =
K � di/bi

ei
=

K(1� 1/R0i)

ei
with F̄ = K � eiN̄i =

di

bi
=

K

R0i
. (9.2)

Let us order the consumers by their R0i , with N1 being the fittest consumer, and Nn having
the lowest R0. If the first species is present at its carrying capacity, corresponding to a nutrient
density F̄ = d1/b1, all other species cannot invade, because to invade their per capita growth
rate should be larger than zero, i.e.,

biF̄ � di > 0 or bi
d1

b1
� di > 0 or

bi

di

d1

b1
> 1 or

bi

di
>

b1

d1
, (9.3)

which is not true because by R01 > R0i we know that b1
d1

>
bi
di
. We conclude that the species

with the highest fitness, R0i = biK/di, outcompetes all others, and that the resource is depleted
to a level F = K/R01 (the latter result was also obtained in the earlier chapters).

Considering the two species of Paramecium in the medium of Gause (1934) one can obtain the
same result by examining the nullclines of Eq. (9.1) for n = 2. These form two parallel lines

N2 =
K � 1/R01

e1
� e1

e2
N1 and N2 =

K � 1/R02

e2
� e1

e2
N1 , (9.4)

for the first and second population, respectively, which have the same slope � e1
e2
N1 when N2

is plotted on the vertical axis (see Fig. 9.1b). Since the species with the largest fitness, R0i ,
corresponds to the upper nullcline, we reconfirm that this species will outcompete the other
from any initial condition (see Fig. 9.1b). Because the carrying capacity, N̄i, is inversely related
to the nutrient content parameters, ei, (which is a natural result), and the fitness, R0i = biK/di,
is independent of the nutrient content parameter, the species winning the competition need
not be the one with the high carrying capacity, i.e., one can parametrize the system such that
R01 > R02 while K1 < K2, by choosing e1 > e2.

The competitive exclusion result does not change when we make the birth rate a saturation
function of the free resource density, i.e.,

F = K �
nX

i

eiNi ,
dNi

dt
= Ni

✓
biF

hi + F
� di

◆
, for i = 1, 2, . . . , n , (9.5)

where we could define R0i = bi/di for the fitness of each consumer. Because these fitness values
are only defined at infinite resource densities, one can now have a situation where the species
with the largest fitness is outcompeted by the other species. The result that the species depleting
the resource most will outcompete the other one remains valid, however. The carrying capacity
of each population, i.e., the steady state of Eq. (9.5) with just one species, is now defined as

N̄i =
K(R0i � 1)� h1

e1(R0i � 1)
with F̄ =

hi

R0i � 1
. (9.6)

Thus, the species with the lowest ratio of the saturation constant, hi, over the “critical fitness”,
R0i � 1, will deplete the resource to the lowest level. Since the minimum amount of resource
required for the other species to survive is solved from

bjF̄

hj + F̄
> dj or F̄ >

hj

R0j � 1
, (9.7)
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Figure 9.1: Competitive exclusion in the simple model of Eq. (9.1) in Panels (a-b), and in 3-dimensional
models of Eqs. (9.8) and (9.10) with a saturated functional response, for a non-replicating (c) and repli-
cating (d) resource, respectively. This figure was made with the files comp.R and comp3d.R.

Quasi steady state

To study how resource competition would shape the interaction between the two competitors, one
can make a QSSA for the resource in Eqs. (9.8–9.11), and substitute that into the corresponding
consumer equations. This is feasible only for Eqs. (9.8) and (9.10) with mass action consumption
terms. For the non-replication resource of Eq. (9.8) one obtains

R̂ =
s

d+
P

ciNi

, (9.14)
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where we could define R0i = bi/di for the fitness of each consumer. Because these fitness values
are only defined at infinite resource densities, one can now have a situation where the species
with the largest fitness is outcompeted by the other species. The result that the species depleting
the resource most will outcompete the other one remains valid, however. The carrying capacity
of each population, i.e., the steady state of Eq. (9.5) with just one species, is now defined as

N̄i =
K(R0i � 1)� h1

e1(R0i � 1)
with F̄ =

hi

R0i � 1
. (9.6)

Thus, the species with the lowest ratio of the saturation constant, hi, over the “critical fitness”,
R0i � 1, will deplete the resource to the lowest level. Since the minimum amount of resource
required for the other species to survive is solved from

bjF̄
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hj
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, (9.7)

Carrying capacity of one species, and the corresponding steady state for F:

Thus the consumer with the lowest hi over R0-1 ratio depletes the resource most.
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nutrient availability, and hence they cannot co-exist. Solving dNi/dt = 0 in the absence of the
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to the nutrient content parameters, ei, (which is a natural result), and the fitness, R0i = biK/di,
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with the largest fitness is outcompeted by the other species. The result that the species depleting
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Thus, the species with the lowest ratio of the saturation constant, hi, over the “critical fitness”,
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we confirm that the species depleting the resource most outcompetes the other. Species with
a lower saturation constant are therefore at an advantage. If one were to derive the nullclines
for a 2-dimensional version of this system, one would again find that these are two parallel lines
with slope � e1

e2
N1 when N2 is plotted on the vertical axis (not shown).

Since we learned in the previous chapter that the steady state of the resource is typically solved
from the consumer equations, the results demonstrating competitive exclusion from the critical
resource densities, are not expected to change when we “open” the system by replacing the free
resource in Eq. (9.5) by a dynamic resource with its own kinetics. We have written resource
equations with a source and loss term, or with a birth and death rate, and we have used mass
action and saturated functional responses to describe the consumption. Restricting ourselves to
saturated consumer birth rates we could therefore write
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for i = 1, 2, . . . , n consumers, and where the first two and the latter two ODEs represent a non-
replicating and replicating resource, respectively. Here ci is the consumption rate of consumer
i, and in the two equations with mass action consumption (Eqs. 9.8 and 9.10), we let the birth
rate be a saturation function of the amount of resources consumed. The saturation constant,
hi, in Eqs. (9.8) and (9.10) also plays a role in the conversion from resource to consumers (one
could even simplify these terms by dividing the numerator and denominator by ci, and defining a
new saturation constant h0

i
= hi/ci). For the other two equations with a saturated consumption

term, one argue that the amount of resource consumed is proportional to the growth rate of
the consumers, e.g., ci = cbi, where c is the amount of resource (e.g., nutrient) contained in a
single consumer, as is typically done for bacterial growth (Monod, 1949). Alternatively, one could
argue for Eqs. (9.9) and (9.11) that the birth rate of the consumers is proportional to a saturated
per capita consumption, i.e., bi = cci, where c is a conversion constant required for translating
resource into consumers. (Remember that a saturated birth rate of a saturated consumption
process would require di↵erent saturation constants in the resource and consumer equations;
see Chapter 7). Finally, note that Eqs. (9.9) and (9.11) are not derived by the QSSA on the
handling time we made in Chapter 7, because we here do not want assume that the consumers
have equal saturation constants. A biological interpretation of the saturation functions in the
resource ODEs of Eqs. (9.9) and (9.11) could be satiation of the consumers at high resource
densities.

Because the critical resource density for each consumer in Eqs. (9.8–9.11) is defined as either

R
⇤
i =

hi/ci

R0i � 1
or R

⇤
i =

hi

R0i � 1
, where R0i =

bi

di
, (9.12)

all consumers require di↵erent resource densities at steady state, and cannot co-exist in equilib-
rium on a single resource unless they have identical parameters hi, ci, bi and di (i.e., unless they
occupy exactly the same niche). If we rank the species by their critical R⇤

i
values, we see that at
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process would require di↵erent saturation constants in the resource and consumer equations;
see Chapter 7). Finally, note that Eqs. (9.9) and (9.11) are not derived by the QSSA on the
handling time we made in Chapter 7, because we here do not want assume that the consumers
have equal saturation constants. A biological interpretation of the saturation functions in the
resource ODEs of Eqs. (9.9) and (9.11) could be satiation of the consumers at high resource
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Figure 9.1: Competitive exclusion in the simple model of Eq. (9.1) in Panels (a-b), and in 3-dimensional
models of Eqs. (9.8) and (9.10) with a saturated functional response, for a non-replicating (c) and repli-
cating (d) resource, respectively. This figure was made with the files comp.R and comp3d.R.

To test the stability of the steady states of a 3-dimensional phase space one has to resort to
an invasion criterion and apply that to each of the steady states (that are marked by circles or
bullets):
1. In Fig. 9.1d the origin is unstable because dR/dt > 0 in its neighborhood (note that the

origin is not a steady state in Fig. 9.1c).
2. The carrying capacity of the resource in Fig. 9.1c and d is unstable because it is located above

the consumer planes, i.e., both dN1/dt > 0 and dN2/dt > 0 when R = s/d or R = K.
3. The circled intersection point of the N2 and the R-nullcline in the front plane is unstable

because it is located on the right side of the N1-nullcline, i.e., if N1 were introduced in this
state it would grow and invade.

4. The intersection point marked by a bullet in the N2 = 0 plane at the bottom is stable because
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we confirm that the species depleting the resource most outcompetes the other. Species with
a lower saturation constant are therefore at an advantage. If one were to derive the nullclines
for a 2-dimensional version of this system, one would again find that these are two parallel lines
with slope � e1

e2
N1 when N2 is plotted on the vertical axis (not shown).

Since we learned in the previous chapter that the steady state of the resource is typically solved
from the consumer equations, the results demonstrating competitive exclusion from the critical
resource densities, are not expected to change when we “open” the system by replacing the free
resource in Eq. (9.5) by a dynamic resource with its own kinetics. We have written resource
equations with a source and loss term, or with a birth and death rate, and we have used mass
action and saturated functional responses to describe the consumption. Restricting ourselves to
saturated consumer birth rates we could therefore write
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for i = 1, 2, . . . , n consumers, and where the first two and the latter two ODEs represent a non-
replicating and replicating resource, respectively. Here ci is the consumption rate of consumer
i, and in the two equations with mass action consumption (Eqs. 9.8 and 9.10), we let the birth
rate be a saturation function of the amount of resources consumed. The saturation constant,
hi, in Eqs. (9.8) and (9.10) also plays a role in the conversion from resource to consumers (one
could even simplify these terms by dividing the numerator and denominator by ci, and defining a
new saturation constant h0
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= hi/ci). For the other two equations with a saturated consumption

term, one argue that the amount of resource consumed is proportional to the growth rate of
the consumers, e.g., ci = cbi, where c is the amount of resource (e.g., nutrient) contained in a
single consumer, as is typically done for bacterial growth (Monod, 1949). Alternatively, one could
argue for Eqs. (9.9) and (9.11) that the birth rate of the consumers is proportional to a saturated
per capita consumption, i.e., bi = cci, where c is a conversion constant required for translating
resource into consumers. (Remember that a saturated birth rate of a saturated consumption
process would require di↵erent saturation constants in the resource and consumer equations;
see Chapter 7). Finally, note that Eqs. (9.9) and (9.11) are not derived by the QSSA on the
handling time we made in Chapter 7, because we here do not want assume that the consumers
have equal saturation constants. A biological interpretation of the saturation functions in the
resource ODEs of Eqs. (9.9) and (9.11) could be satiation of the consumers at high resource
densities.

Because the critical resource density for each consumer in Eqs. (9.8–9.11) is defined as either
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all consumers require di↵erent resource densities at steady state, and cannot co-exist in equilib-
rium on a single resource unless they have identical parameters hi, ci, bi and di (i.e., unless they
occupy exactly the same niche). If we rank the species by their critical R⇤
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Figure 9.1: Competitive exclusion in the simple model of Eq. (9.1) in Panels (a-b), and in 3-dimensional
models of Eqs. (9.8) and (9.10) with a saturated functional response, for a non-replicating (c) and repli-
cating (d) resource, respectively. This figure was made with the files comp.R and comp3d.R.

Quasi steady state

To study how resource competition would shape the interaction between the two competitors, one
can make a QSSA for the resource in Eqs. (9.8–9.11), and substitute that into the corresponding
consumer equations. This is feasible only for Eqs. (9.8) and (9.10) with mass action consumption
terms. For the non-replication resource of Eq. (9.8) one obtains

R̂ =
s

d+
P

ciNi

, (9.14)
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and substitution of R̂ into the corresponding consumer equation gives
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⌘
, (9.15)

where �i and kj are complicated combinations of several parameters (i.e., �i = bicis/(cis+ hid)
and ki = cihi/(cis+ hid)). The simplified form in Eq. (9.15) reveals that this is an extension of
one of the density dependent birth models in Chapter 3, with an inverse Hill function f(N) =
1/(1 + N/k) describing the e↵ect of the population density on the per capita birth rate. The
“carrying capacity”, Ki, of a consumer can be found by setting all other Nj = 0 (i.e., all j 6= i),
and solving dNi/dt = 0 from Eq. (9.15)

Ki =
s

hi

⇣
R0i � 1

⌘
� d

ci
=

s

ciR
⇤
i

� d

ci
, (9.16)

i.e., the most competitive species having the lowestR⇤
i
tends to have the highest carrying capacity

(although this depends on hi and ci). The 2-dimensional nullclines of this QSS model would
again be two parallel lines (see Fig. 9.1c).

For the replicating resource of Eq. (9.10) one obtains

R̂ = K

✓
1� 1

r

X
ciNi

◆
, (9.17)

revealing that a rapidly growing resource remains closer to its carrying capacity at steady state
consumption. Substituting this into the consumer equation gives
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= Ni
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ciNi

� di
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, (9.18)

which is again not based upon the simple mass action interaction terms of classic Lotka-Volterra
competition model (see Section 9.2). One may recognize the mass action terms of the Lotka-
Volterra in the numerator, implying that this will resemble the Lotka-Volterra competition model
when (hi/ci)(r/K) + r �

P
ciNi. The “carrying capacity”, Ki, of a consumer can again be

found by setting all other Nj = 0 (for all j 6= i), and solving dNi/dt = 0 from Eq. (9.18), i.e.,

N̄i =
r

ci

⇣
1� R

⇤
i

K

⌘
.

The 2-dimensional nullclines of this QSS model would again be two parallel lines (visually project
the consumer planes onto the resource plane in Fig. 9.1d).

Summarizing, we find competition equations with interaction terms that are more complicated
than mass action terms. You may want to sketch the 2-dimensional nullclines of the QSS models
of Eq. (9.15) and Eq. (9.18) to find that these are linear, and resemble those of the Lotka-Volterra
competition model.

9.2 The Lotka-Volterra competiton model

The n-dimensional Lotka-Volterra competition model is typically written as
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⌘
, (9.19)
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Figure 9.1: Competitive exclusion in the simple model of Eq. (9.1) in Panels (a-b), and in 3-dimensional
models of Eqs. (9.8) and (9.10) with a saturated functional response, for a non-replicating (c) and repli-
cating (d) resource, respectively. This figure was made with the files comp.R and comp3d.R.

To test the stability of the steady states of a 3-dimensional phase space one has to resort to
an invasion criterion and apply that to each of the steady states (that are marked by circles or
bullets):
1. In Fig. 9.1d the origin is unstable because dR/dt > 0 in its neighborhood (note that the

origin is not a steady state in Fig. 9.1c).
2. The carrying capacity of the resource in Fig. 9.1c and d is unstable because it is located above

the consumer planes, i.e., both dN1/dt > 0 and dN2/dt > 0 when R = s/d or R = K.
3. The circled intersection point of the N2 and the R-nullcline in the front plane is unstable

because it is located on the right side of the N1-nullcline, i.e., if N1 were introduced in this
state it would grow and invade.

4. The intersection point marked by a bullet in the N2 = 0 plane at the bottom is stable because

N1

N2
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we confirm that the species depleting the resource most outcompetes the other. Species with
a lower saturation constant are therefore at an advantage. If one were to derive the nullclines
for a 2-dimensional version of this system, one would again find that these are two parallel lines
with slope � e1

e2
N1 when N2 is plotted on the vertical axis (not shown).

Since we learned in the previous chapter that the steady state of the resource is typically solved
from the consumer equations, the results demonstrating competitive exclusion from the critical
resource densities, are not expected to change when we “open” the system by replacing the free
resource in Eq. (9.5) by a dynamic resource with its own kinetics. We have written resource
equations with a source and loss term, or with a birth and death rate, and we have used mass
action and saturated functional responses to describe the consumption. Restricting ourselves to
saturated consumer birth rates we could therefore write
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for i = 1, 2, . . . , n consumers, and where the first two and the latter two ODEs represent a non-
replicating and replicating resource, respectively. Here ci is the consumption rate of consumer
i, and in the two equations with mass action consumption (Eqs. 9.8 and 9.10), we let the birth
rate be a saturation function of the amount of resources consumed. The saturation constant,
hi, in Eqs. (9.8) and (9.10) also plays a role in the conversion from resource to consumers (one
could even simplify these terms by dividing the numerator and denominator by ci, and defining a
new saturation constant h0

i
= hi/ci). For the other two equations with a saturated consumption

term, one argue that the amount of resource consumed is proportional to the growth rate of
the consumers, e.g., ci = cbi, where c is the amount of resource (e.g., nutrient) contained in a
single consumer, as is typically done for bacterial growth (Monod, 1949). Alternatively, one could
argue for Eqs. (9.9) and (9.11) that the birth rate of the consumers is proportional to a saturated
per capita consumption, i.e., bi = cci, where c is a conversion constant required for translating
resource into consumers. (Remember that a saturated birth rate of a saturated consumption
process would require di↵erent saturation constants in the resource and consumer equations;
see Chapter 7). Finally, note that Eqs. (9.9) and (9.11) are not derived by the QSSA on the
handling time we made in Chapter 7, because we here do not want assume that the consumers
have equal saturation constants. A biological interpretation of the saturation functions in the
resource ODEs of Eqs. (9.9) and (9.11) could be satiation of the consumers at high resource
densities.

Because the critical resource density for each consumer in Eqs. (9.8–9.11) is defined as either
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all consumers require di↵erent resource densities at steady state, and cannot co-exist in equilib-
rium on a single resource unless they have identical parameters hi, ci, bi and di (i.e., unless they
occupy exactly the same niche). If we rank the species by their critical R⇤

i
values, we see that at
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and substitution of R̂ into the corresponding consumer equation gives
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where �i and kj are complicated combinations of several parameters (i.e., �i = bicis/(cis+ hid)
and ki = cihi/(cis+ hid)). The simplified form in Eq. (9.15) reveals that this is an extension of
one of the density dependent birth models in Chapter 3, with an inverse Hill function f(N) =
1/(1 + N/k) describing the e↵ect of the population density on the per capita birth rate. The
“carrying capacity”, Ki, of a consumer can be found by setting all other Nj = 0 (i.e., all j 6= i),
and solving dNi/dt = 0 from Eq. (9.15)
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i.e., the most competitive species having the lowestR⇤
i
tends to have the highest carrying capacity

(although this depends on hi and ci). The 2-dimensional nullclines of this QSS model would
again be two parallel lines (see Fig. 9.1c).

For the replicating resource of Eq. (9.10) one obtains
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revealing that a rapidly growing resource remains closer to its carrying capacity at steady state
consumption. Substituting this into the consumer equation gives
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which is again not based upon the simple mass action interaction terms of classic Lotka-Volterra
competition model (see Section 9.2). One may recognize the mass action terms of the Lotka-
Volterra in the numerator, implying that this will resemble the Lotka-Volterra competition model
when (hi/ci)(r/K) + r �

P
ciNi. The “carrying capacity”, Ki, of a consumer can again be

found by setting all other Nj = 0 (for all j 6= i), and solving dNi/dt = 0 from Eq. (9.18), i.e.,

N̄i =
r
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⇣
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⇤
i

K

⌘
.

The 2-dimensional nullclines of this QSS model would again be two parallel lines (visually project
the consumer planes onto the resource plane in Fig. 9.1d).

Summarizing, we find competition equations with interaction terms that are more complicated
than mass action terms. You may want to sketch the 2-dimensional nullclines of the QSS models
of Eq. (9.15) and Eq. (9.18) to find that these are linear, and resemble those of the Lotka-Volterra
competition model.

9.2 The Lotka-Volterra competiton model

The n-dimensional Lotka-Volterra competition model is typically written as
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locally dN2/dt < 0.
Since the 2-dimensional equilibrium of R with N1 is stable, we reconfirm that N1 excludes N2

because its nullcline is located at the lowest prey density. Generally, we see that the steady state
of the consumer depleting the resource most (see the black bullet) is located below the other
consumer nullclines, implying that the other consumers cannot invade.

Quasi steady state

To study how resource competition would shape the interaction between the two competitors, one
can make a QSSA for the resource in Eqs. (9.8–9.11), and substitute that into the corresponding
consumer equations. This is feasible only for Eqs. (9.8) and (9.10) with mass action consumption
terms. For the non-replication resource of Eq. (9.8) one obtains
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d +
P

ciNi

, (9.14)

revealing that a resource that turns over more rapidly (i.e., has a high d) remains closer to its
carrying capacity, s/d, than a recourse with a slow turnover (i.e., with a low d). Substitution of
R̂ into the corresponding consumer equation gives
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where �i and kj are complicated combinations of several parameters (i.e., �i = bicis/(cis + hid)
and ki = cihi/(cis + hid)). The simplified form in Eq. (9.15) reveals that this is an extension of
one of the density dependent birth models in Chapter 3, with an inverse Hill function f(N) =
1/(1 + N/k) describing the e↵ect of the population density on the per capita birth rate. The
“carrying capacity”, Ki, of a consumer can be found by setting all other Nj = 0 (i.e., all j 6= i),
and solving dNi/dt = 0 from Eq. (9.15)
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where R
⇤
i

is still defined by Eq. (9.12). Thus, the most competitive species having the lowest
R

⇤
i

tends to have the highest carrying capacity (although this depends on hi and ci). The 2-
dimensional nullclines of this QSS model would again be two parallel lines (visually project the
consumer planes onto the resource plane in Fig. 9.1c).

For the replicating resource of Eq. (9.10) one obtains

R̂ = K

✓
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X
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, (9.17)

revealing that a rapidly growing resource remains closer to its carrying capacity at steady state
consumption. Substituting this into the consumer equation gives

dNi
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bi(r �

P
cjNj)
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, (9.18)

which is again not based upon the simple mass action interaction terms of classic Lotka-Volterra
competition model (see Section 9.2). One may recognize the mass action terms of the Lotka-
Volterra in the numerator, implying that this will only resemble the Lotka-Volterra competition
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Figure 9.1: Competitive exclusion in the simple model of Eq. (9.1) in Panels (a-b), and in 3-dimensional
models of Eqs. (9.8) and (9.10) with a saturated functional response, for a non-replicating (c) and repli-
cating (d) resource, respectively. This figure was made with the files comp.R and comp3d.R.

To test the stability of the steady states of a 3-dimensional phase space one has to resort to
an invasion criterion and apply that to each of the steady states (that are marked by circles or
bullets):
1. In Fig. 9.1d the origin is unstable because dR/dt > 0 in its neighborhood (note that the

origin is not a steady state in Fig. 9.1c).
2. The carrying capacity of the resource in Fig. 9.1c and d is unstable because it is located above

the consumer planes, i.e., both dN1/dt > 0 and dN2/dt > 0 when R = s/d or R = K.
3. The circled intersection point of the N2 and the R-nullcline in the front plane is unstable

because it is located on the right side of the N1-nullcline, i.e., if N1 were introduced in this
state it would grow and invade.

4. The intersection point marked by a bullet in the N2 = 0 plane at the bottom is stable because

N1

N2
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and substitution of R̂ into the corresponding consumer equation gives
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where �i and kj are complicated combinations of several parameters (i.e., �i = bicis/(cis+ hid)
and ki = cihi/(cis+ hid)). The simplified form in Eq. (9.15) reveals that this is an extension of
one of the density dependent birth models in Chapter 3, with an inverse Hill function f(N) =
1/(1 + N/k) describing the e↵ect of the population density on the per capita birth rate. The
“carrying capacity”, Ki, of a consumer can be found by setting all other Nj = 0 (i.e., all j 6= i),
and solving dNi/dt = 0 from Eq. (9.15)
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i.e., the most competitive species having the lowestR⇤
i
tends to have the highest carrying capacity

(although this depends on hi and ci). The 2-dimensional nullclines of this QSS model would
again be two parallel lines (see Fig. 9.1c).

For the replicating resource of Eq. (9.10) one obtains

R̂ = K
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revealing that a rapidly growing resource remains closer to its carrying capacity at steady state
consumption. Substituting this into the consumer equation gives
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which is again not based upon the simple mass action interaction terms of classic Lotka-Volterra
competition model (see Section 9.2). One may recognize the mass action terms of the Lotka-
Volterra in the numerator, implying that this will resemble the Lotka-Volterra competition model
when (hi/ci)(r/K) + r �

P
ciNi. The “carrying capacity”, Ki, of a consumer can again be

found by setting all other Nj = 0 (for all j 6= i), and solving dNi/dt = 0 from Eq. (9.18), i.e.,
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The 2-dimensional nullclines of this QSS model would again be two parallel lines (visually project
the consumer planes onto the resource plane in Fig. 9.1d).

Summarizing, we find competition equations with interaction terms that are more complicated
than mass action terms. You may want to sketch the 2-dimensional nullclines of the QSS models
of Eq. (9.15) and Eq. (9.18) to find that these are linear, and resemble those of the Lotka-Volterra
competition model.

9.2 The Lotka-Volterra competiton model

The n-dimensional Lotka-Volterra competition model is typically written as
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Figure 9.2: The four qualitatively di↵erent nullcline configurations of the Lotka Volterra competition
model given in Eq. (9.20), The red line and the blue lines depict the dN1/dt = 0 and dN2/dt = 0 nullclines,
respectively, and the black lines are trajectories. N1 has a faster growth rate than N2, i.e., r1 = 2r2,
which a↵ects the trajectories but not the nullclines. This figure was made with the file lotkaComp.R.

where the interaction matrix, Aij , collects the competition coe�cients between the species.
The diagonal elements of this matrix define the carrying capacities, i.e., Ki = 1/Aii, because
in the absence of interspecific competition Eq. (9.19) simplifies to logistic growth equations,
dNi/dt = riNi(1 � AiiNi). Thus, the Lotka-Volterra competition model basically extends the
logistic growth model phenomenologically with additional mass-action competition terms (a
Grind model with an arbitrary number of species, n, all having the same carrying capacity, Ki =
1, having random o↵-diagonal Aij elements is provided as the file matrix.R). The competition
models we derived “mechanistically” by a QSSA for the resource dynamics were quite di↵erent
because of their non-mass-action interaction terms (see also (O’Dwyer, 2018)). Finally, the fact
that the growth rates, ri, can be cancelled when one considers the steady state of Eq. (9.19) is
also due to its phenomenological nature. In the models we derived ourselves the birth and death
rates play a decisive role in the competitive strength of a species.

Note that we have would obtained the mass action terms of the Lotka-Volterra model if we had
written the consumer model of Eq. (9.10) with mass action terms, e.g., as dNi/dt = (biR�di)Ni,
and had substituted Eq. (9.17) for the resource. Thus, the Lotka-Volterra competition equations
should be viewed as a simple phenomenological model, as they are only obtained when the
consumer’s birth rate depends linearly on the amount of resources consumed. Moreover, a mass

Lotka-Volterra competition model
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action consumer model is not easily extendable into competition for several resources, as one
would obtain several independent “birth rates”, e.g., dNi/dt = (

P
n

j=1 bijRj � di)Ni when there
are n di↵erent resources. We therefore continue with saturated birth rates in the next section.

The Lotka-Volterra competition model remains useful however, because it is a simple phe-
nomenological model (like logistic growth or the Lotka-Volterra predator-prey model). Further,
one can simplify the model by scaling the carrying capacity of each species to one (by defining
a non-dimensional population size ni = Ni/Ki), which means that one can set all Aii = 1,
and recompute the other Aij values by dividing them by Kj (see Section 13.5). The scaled
version of the Lotka-Volterra competition model is useful for summarizing the four qualitatively
di↵erent phase planes of two competing species. To sketch the nullclines of a 2-dimensional
Lotka-Volterra competition model, we define the horizontal axis by N1 and the vertical axis by
N2, solve N2 from dNi/dt = 0 in Eq. (9.19) i = 1, 2, and set A11 = A22 = 1, to obtain

N2 =
1

A12
� A11

A12
N1 =

1

A12
(1�N1) and N2 =

1

A22
� A21

A22
N1 = (1�A21N1) , (9.20)

for dN1/dt = 0 and dN2/dt = 0, respectively. The two simplified forms define the classic
Lotka-Volterra nullclines running from Ni = 1 on their own axis to 1/Aij on the opposite axis.

Choosing Aij values that are either smaller or larger than one, one obtains classic four diagrams
shown in Fig. 9.2. When one of the Aij parameters is smaller than one and the other larger is
than one, the nullclines fail to intersect (see Fig. 9.2a and b), and the species with the smallest
Aij parameter outcompetes the other. When both Aij parameters are larger than one, the
interspecific competition exceeds the intraspecific competition for both species and the nullclines
intersect in an unstable equilibrium (Fig. 9.2c). This is called the “founder controlled” situation
because the species that initially has the highest abundance has the highest chance to exclude
the other, and ultimately approach its carrying capacity. The steady state is stable (see Fig.
9.2d) when both Aij parameters are smaller than one, i.e., when the intraspecific competition
exceeds the interspecific competition for both species, which is the typical situation for resource
competition because the niche overlap between two species should be smaller than the niche
overlap among members of the same species.

9.3 Several consumers on two resources

The previous sections demonstrated that two consumers on one resource are expected to exclude
each other. Two consumers living from two di↵erent resources should be able to co-exist when-
ever they specialize to have su�ciently di↵erent requirements for both resources, as this would
again make the intraspecific competition larger than the interspecific competition. The most
extreme example would be that they specialize on using just one of the two resources, implying
that they do not compete and each approach a carrying capacity defined by the availability
of their unique resource, their consumption and R0. In the general 2-dimensional phase space
of Fig. 9.2, such a situation would correspond to perpendicular nullclines intersecting in stable
node (with a Jacobian with zero o↵-diagonal elements).

Next, we will go beyond Lotka-Volterra and write more mechanistic models for the situation
where several consumers use several resources while allowing for an overlap in their diet. Study-
ing consumers using several resources mechanistically, one first has to decide whether or not
these resources are “essential”, meaning that they cannot replace each other, or “substitutable”,
meaning that they can be added up into a total intake (Tilman, 1980, 1982). First consider the
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9.3 Several consumers on two resources
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where several consumers use several resources while allowing for an overlap in their diet. Study-
ing consumers using several resources mechanistically, one first has to decide whether or not
these resources are “essential”, meaning that they cannot replace each other, or “substitutable”,
meaning that they can be added up into a total intake (Tilman, 1980, 1982). First consider the



Several consumers on two substitutable resources

9.3 Several consumers on two resources 91

situation of several consumers sharing several substitutable resources, by defining birth rates
depending on the summed resource intake, and generalize Eq. (9.8) into
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where the consumption rates, cij , define the mass-action rates at which consumer i ingests
resource j. The saturation constants, hi, define the density of consumed resources at which the
birth rate is half-maximal. Since at low consumption rates the saturation functions approachP

j
cijRj/hi, the saturation constants, hi, also play the role of a throphic conversion factor from

the resource to the consumer level. For simplicity we let each resource contribute equally to the
birth rate of each consumer (this can be repaired by multiplying the cij terms in Eq. (9.21a)
with a weight wij).

Since the per capita birth and death rates of the consumers in Eq. (9.21) only depend on
the resource densities one can draw several dNi/dt = 0 nullclines in a space defined by the
resources. For two resources such a picture is called a Tilman diagram (Tilman, 1980, 1982);
see Fig. 9.3a and Fig. 9.4a. Above, when we considered a single resource we defined R

⇤
i
as the

critical resource density of consumer i. Now, for two resources the critical resource densities
are defined by the consumer nullclines in the space spanned up by the resources, i.e., in Figs.
9.3a and 9.4a dNi/dt > 0 above its nullcline. If, and only if, two nullclines intersect, there is
a combination of resource densities, (R1, R2), at which dNi/dt = dNj/dt = 0, suggesting that
there could be a steady state at which both species co-exist. To sketch the consumer nullclines
in a 2-dimensional Tilman diagram we solve dNi/dt = 0 in Eq. (9.21) for R2, to see that the
nullclines all decline linearly as a function of R1:
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ci2(R0i � 1)
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R1 , (9.22)

where R0i = �i/�i. Since the resources contribute additively, we can define a critical resource
density, R⇤

ij
= hi

cij(R0i�1) , for each resource j, and use this to simplify the nullcline of consumer
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⇤
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⇤
j1, also allow the nullclines to cross (see Fig. 9.4a).

Note that when two species perfectly specialize on one resource, i.e., c21 = c12 = 0, their Tilman
diagram will have two intersecting perpendicular lines located at R1 = R

⇤
11 and R2 = R

⇤
22.

When two consumers i and j have the same diet, ci1 = cj1 and ci2 = ci2, the slopes of their
nullclines will be parallel lines, and the species will exclude each other (see Fig. 9.3a) where we
plot the nullclines of three consumers di↵ering in their saturation constants only, i.e., h3 > h2 >

h1). The fact that these lines are not intersecting means that there is no combination of resource
densities, (R1, R2), at which even two of the consumers can co-exist at steady state. Thus, the
species with the lowest resource requirements, R⇤

ij
, i.e., the one with the lowest nullcline in the

Tilman diagram of Fig. 9.3a will outcompete the others. Requiring low amounts of consumed
resources, i.e., having a low hi parameter, consuming a lot, i.e., having high cij parameters, and
having a high R0, all contribute to having low R

⇤
ij
s, and becoming the superior competitor (see

Fig. 9.3). Because there are only three consumers in the Tilman diagram of Fig. 9.3a, we can
confirm this conclusion by making a QSSA for the two resources, and plotting “conventional”
consumer nullclines in a 3-dimensional state space spanned up by the consumers (see Fig. 9.3b).
Since the dN1/dt = 0 plane is located above the other two nullcline planes, this confirms that N1

will outcompete the other two consumers. Since a 2-dimensional Tilman diagram can contain
any number of consumer nullclines, it is not limited to a maximum of three consumers, and can
used to establish the superior competitor(s) in a large set consumers.
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having a high R0, all contribute to having low R
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s, and becoming the superior competitor (see

Fig. 9.3). Because there are only three consumers in the Tilman diagram of Fig. 9.3a, we can
confirm this conclusion by making a QSSA for the two resources, and plotting “conventional”
consumer nullclines in a 3-dimensional state space spanned up by the consumers (see Fig. 9.3b).
Since the dN1/dt = 0 plane is located above the other two nullcline planes, this confirms that N1

will outcompete the other two consumers. Since a 2-dimensional Tilman diagram can contain
any number of consumer nullclines, it is not limited to a maximum of three consumers, and can
used to establish the superior competitor(s) in a large set consumers.
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Figure 9.3: Three consumers with the same diet on two substitutable resources. The nullclines
of the consumers are defined by Eq. (9.21a). When depicted in a Tilman diagram in Panel
(a), i.e., as a function of the resource densities they obey Eq. (9.22), and the nullcline of each
consumer i is a straight line with slope ci1/ci2. Thus, when the consumers have the same (or
a too similar) diet the nullclines fail to intersect (see Panel (a)), and giving N1 an advantage
over the other two consumers by setting h1 < h2 < h3, the dN1/dt = 0 nullcline is located the
lowest resource densities, and N1 will outcompete the other two consumers. The fact that the
nullclines fail to intersect in Panel (a) implies that there is no combination of resource densities,
(R1, R2), at which at least two of the consumers can co-exist at steady state. This is confirmed
by making a QSSA for the resources and depicting the 3-dimensional consumer nullclines in
Panel (b). The three QSSA consumer nullcline planes fail to intersect, demonstrating that
there is no steady state where several consumer co-exists, and that N1 with the highest plane
outcompetes all others. Trajectories are therefore expected to approach the carrying capacity of
N1. This figure was made with the model additive.R, where we have choosen a steady state of
the resources in the absence of the consumers, (R̄1, R̄2) = (s1/d1, s2/d2), that is located above
the three nullclines and fallling outside of the Tilman diagram in Panel (a).

Thus, an intersection between two consumer nullclines need not be steady state of the full
system, i.e., of Eq. (9.21) see the online tutorial). Using newton() in Grind we have marked
all steady states with two consumers with bullets (stable) and circles (unstable) in Fig. 9.4a.
This illustrates that only two of the pairwise intersections correspond to a steady state. The
intersection point in the middle, where dN1/dt = dN2/dt = 0, is a stable steady state because
it is located below the dN3/dt = 0 nullcline, implying that N3 will decline at these resource
densities. The left-most intersection point, where dN1/dt = dN3/dt = 0, is an unstable steady
state because it is located above the dN2/dt = 0 nullcline, implying that N2 would successfully
invade if introduced into this equilibrium of N1 and N3 with the two resources. For reasons that
are not readily obvious from the Tilman diagram in Fig. 9.4a, the right-most intersection point,
where dN2/dt = dN3/dt = 0, is not a steady state (see the online tutorial). These results can
again be confirmed by making a QSSA for the resources: and depicting all pairwise consumer
phase spaces (Fig. 9.4b–d). Importantly, such a Tilman diagram can be made for any set of
consumers, and this analysis tells us (1) that the consumers depleting the resources the most are
expected to be the superior competitors, and (2) at steady state no more than two consumers
are expected to be maintained by two resources. Because the consumer depleting resources to a
minimal density tend to win the competition, this has been coined as the pessimization principle
(Mylius & Diekmann, 1995).

Because one cannot easily tell from a Tilman diagram whether or not an intersection point

Several consumers with same diet ci1 and ci2.

Tilman diagram QSSA

-ci1/ci2

h1 < h2 < h3



Several consumers having 

different diets ci1 and ci2.

Generically only one intersection 
point between all nullclines:


maximally two co-existing 
species on two resources.


Lowest intersection not invadable 
by other consumers


(but no guarantee that this is a 
steady state).

100 Competition

N1
N2
N3

●

●

R1

R
2

0
0

R
⇤
11 R

⇤
31 R

⇤
21

R
⇤
22

R
⇤
32

Figure 9.4: Three consumers having di↵erent diets on two substitutable resources. In this
Tilman diagram each consumer nullcline obeys Eq. (9.22), and letting N1 specialize on R1 by
setting c11 > c12, N2 specialize on R2 by setting c22 > c21, and making N3 a generalist by setting
c31 ' c32, N1 has the steepest nullcline, N2 the flattest, and N3 has a slope close to �1. Because
we have given the consumers similar total consumption rates, ci1 + ci2, and identical saturation
constants, hi, the nullclines tend to intersect in pairs. Only the middle intersection point where
dN1/dt = dN2/dt = 0 can be a stable steady state because this is below the dN3/dt = 0 nullcline,
meaning that N3 cannot invade at these low resource densities. The upper intersection point
where dN1/dt = dN3/dt = 0 is a steady state, but because it is above the dN2/dt = 0 nullcline
it has to be unstable. The lower intersection point where dN2/dt = dN3/dt = 0 is not a
steady state, and solving the system in the absence of N1 would lead to trajectories approaching
N2 = K2. The bullet and the circle were obtained numerically by solving the system for all
pairwise combinations of consumers. The steady state of the resources in the absence of the
consumers, (R̄1, R̄2) = (s1/d1, s2/d2), is located above the three nullclines and falls outside of
the Tilman diagram in Panel (a). This figure was made with the model additive.R.

to establish which pairwise intersection point is located at the lowest resource densities, which
predicts which pair of consumers forms the superior set of competitors. Above we have used
an invasion criterion to establish whether or not a steady state is stable, and concluded that
the steady state located at the lowest combination of resource densities tends to be stable, be-
cause the other consumers necessarily decline at the lowest resource densities. However, in a
Tilman diagram this could be invalid because the lowest intersection point (1) needs to be a
4-dimensional steady state, and (2) if it is this could be an unstable steady state (see the online
tutorial on tbb.bio.uu.nl/rdb/bm/clips/tilman).

9.4 Essential Resources

To mechanistically model “essential” resources one could change Eq. (9.21) into
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diagram can be made for any set of consumers, and this analysis tells us (1) that the consumers
depleting the resources the most are expected to be the superior competitors, and (2) at steady
state no more than two consumers are expected to be expected to be maintained by two resources.

Because one cannot easily tell from a Tilman diagram whether or not an intersection point
corresponds to a steady state, these diagrams are most informative for establishing which in-
tersections are absent, which truly indicate the absence of a steady state (see Fig. 9.3), and
to establish which pairwise intersection point is located at the lowest resource densities, which
predicts which pair of consumers forms the superior competitors. Above we have used an inva-
sion criterion to establish whether or not a steady state is stable, and concluded that the steady
state located at the lowest combination of resource densities tends to be stable, because the other
consumers decline at the lowest resource densities. However, this conclusion would be incorrect
as the lowest steady state could also be a saddle-point (see Fig. 9.2c), meaning that only one
consumer would survive, and that it depends on the initial densities who survives. The QSSA
nullclines in Fig. 9.4b–d do not intersect in a founder-controlled situation, however, and this is
somewhat intuitive because we here consider resource competition for substitutable resources.
The niche overlap of a consumer with itself is therefore always larger than that with any other
consumer, and hence the QSSA nullclines of any pair of consumers should correspond to that of
Fig. 9.2d. One see this by considering the non-intersecting nullclines in Fig. 9.4d, and decrease
the niche overlap between the species until the nullclines intersect. This will turn the dN2/dt = 0
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bifurcation point when the green dN3/dt = 0 nullcline intersects the carrying capacity, K2, of
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to zero would correspond to the necessarily stable situation of a perfectly horizontal and vertical
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Figure 9.5: Consumer nullclines for a situation with two essential resources for a stable steady
state (Panels (a) and (c)) and for an unstable steady state (Panels (b) and (d)). The panels at
the top depict the nullclines of Eqs. (9.24) and (9.25) as function of the resource densities (these
are Tilman diagrams). The dashed lines are the asymptotes of the nullclines. The circle in the
upper corners depicts the (unstable) steady state of the resources in the absence of consumers.
The other bullets and circles reflects a stability of steady state with consumers. The panels at
the bottom provide the nullclines of Eqs. (9.24) and (9.25) after making a QSSA for the two
resources defined by Eq. (9.23). This figure was made with the model essential.R.

the minimal resource densities these consumers require. These asymptotes can be found by
setting dNi/dt = 0 for R1 ! 1 or R2 ! 1, i.e., R1 = R

⇤
i1 and R2 = R

⇤
i2 for i = 1, 2, . . . , n,

respectively (see Fig. 9.5a and b). Whether or not the nullclines will intersect therefore depends
on the R

⇤s, and the species with the lowest requirements, hij , the highest consumption rates,
cij , and highest R0 will have the lowest nullcline, and be the winner whenever the nullclines fail
to intersect.

In all panels of Fig. 9.5 we have set c11 > c12, c22 > c21 and c31 ' c32, i.e., consumer one
specializes on resource one, consumer two on resource two, and consumer three is a generalist,
and in Fig. 9.5(c) and (d) we have used non-replicating resources defined by Eq. (9.23b). In
the stable situation of Fig. 9.5a and c we accordingly set h11 > h12, h22 > h21 and h31 = h32,
to let each species eat most of the resource it requires most (which would be “optimal” in an
evolutionary sense (see the chapter by Tilman in (McLean & May, 2007))). We have made the
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Figure 9.5: Consumer nullclines for a situation with two essential resources for a stable steady
state (Panels (a) and (c)) and for an unstable steady state (Panels (b) and (d)). The panels at
the top depict the nullclines of Eqs. (9.24) and (9.25) as function of the resource densities (these
are Tilman diagrams). The dashed lines are the asymptotes of the nullclines. The circle in the
upper corners depicts the (unstable) steady state of the resources in the absence of consumers.
The other bullets and circles reflects a stability of steady state with consumers. The panels at
the bottom provide the nullclines of Eqs. (9.24) and (9.25) after making a QSSA for the two
resources defined by Eq. (9.23). This figure was made with the model essential.R.
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respectively (see Fig. 9.5a and b). Whether or not the nullclines will intersect therefore depends
on the R

⇤s, and the species with the lowest requirements, hij , the highest consumption rates,
cij , and highest R0 will have the lowest nullcline, and be the winner whenever the nullclines fail
to intersect.

In all panels of Fig. 9.5 we have set c11 > c12, c22 > c21 and c31 ' c32, i.e., consumer one
specializes on resource one, consumer two on resource two, and consumer three is a generalist,
and in Fig. 9.5(c) and (d) we have used non-replicating resources defined by Eq. (9.23b). In
the stable situation of Fig. 9.5a and c we accordingly set h11 > h12, h22 > h21 and h31 = h32,
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Figure 9.5: Consumer nullclines for a situation with two essential resources for a stable steady
state (Panels (a) and (c)) and for an unstable steady state (Panels (b) and (d)). The panels at
the top depict the nullclines of Eqs. (9.24) and (9.25) as function of the resource densities (these
are Tilman diagrams). The dashed lines are the asymptotes of the nullclines. The circle in the
upper corners depicts the (unstable) steady state of the resources in the absence of consumers.
The other bullets and circles reflects a stability of steady state with consumers. The panels at
the bottom provide the nullclines of Eqs. (9.24) and (9.25) after making a QSSA for the two
resources defined by Eq. (9.23). This figure was made with the model essential.R.
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⇤
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respectively (see Fig. 9.5a and b). Whether or not the nullclines will intersect therefore depends
on the R

⇤s, and the species with the lowest requirements, hij , the highest consumption rates,
cij , and highest R0 will have the lowest nullcline, and be the winner whenever the nullclines fail
to intersect.

In all panels of Fig. 9.5 we have set c11 > c12, c22 > c21 and c31 ' c32, i.e., consumer one
specializes on resource one, consumer two on resource two, and consumer three is a generalist,
and in Fig. 9.5(c) and (d) we have used non-replicating resources defined by Eq. (9.23b). In
the stable situation of Fig. 9.5a and c we accordingly set h11 > h12, h22 > h21 and h31 = h32,
to let each species eat most of the resource it requires most (which would be “optimal” in an
evolutionary sense (see the chapter by Tilman in (McLean & May, 2007))). We have made the
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