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Chapter 8

Modeling chains

The models considered hitherto were composed of maximally two ODEs, for a resource and its
consumer, respectively. Here we begin by considering higher dimensional models by adding an
ODE for the population controlling the “consumers”. This is the classic situation in ecological
food webs that typically contain several “trophic” layers, where the consumers eating the first
resource layer (e.g., algae, R) are the resource of another consumer (e.g., zooplankton, N), that
may in turn be predated by a “top-predator” (e.g., fish, M). It is typically not clear how many
tropic levels one should implement in such a model, e.g., we could also start with nutrients as
the first layer, and/or add predatory fish eating the former top-predator. Similar chain models
appear when modeling viral infections in a host, because the intermediate population of infected
cells, N , is responsible for removing susceptible target cells, R, by novel infections, and may
also invoke an immune response, M , removing the infected cells. It is well known that the
steady states of such chains strongly depend on the length of the chain (Arditi & Ginzburg,
1989; Abrams, 1994; Kaunzinger & Morin, 1998; De Boer, 2012), which is an troublesome result
because we often make quite arbitrary choices on the number of levels to include in our models.
For instance, the immune response, M , could trigger a response of regulatory T cells. Or a
lake with predatory fish controlling fish, that are controlling zooplankton, that are controlling
algae, that are consuming nutrients, may (sometimes) be visited by birds catching the predatory
fish. Adding yet another layer of control will radically change the properties of the state state.
Actually, food chains with an even or odd number of layers have very di↵erent steady state
properties (Arditi & Ginzburg, 1989; Abrams, 1994), and although this may seem strange, there
is experimental data from 2-dimensional and 3-dimensional bacterial food chains confirming
these “strange” predictions from the models (Kaunzinger & Morin, 1998). In this chapter we
will first confirm this troublesome result, and then show it is a consequence of the mass action
interaction terms of the models we typically write. Vitaly Ganusov (2016) argues that the most
sensible approach in mathematical modeling is to always develop multiple alternative models,
and in this chapter we learn that one should not only vary the underlying biological assumptions,
but also the form of the mathematical terms.

8.1 A 3-dimensional chain

Extending the Lotka Volterra with an additional layer, M , is straightforward, e.g.,

dR

dt
= [r(1�R/K)� bN ]R ,

dN

dt
= [bR� d� cM ]N and

dM

dt
= [cN � e]M , (8.1a,b,c)
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where M could be fish eating zooplankton, N , or an immune response of cells killing infected
cells, N . This simple model has several steady states, and we will study what happens when
the carrying capacity, K, of the resource, R (i.e., algae or target cells), is increased. In the
ecological interpretation the carrying capacity reflects the amount of nutrients available for the
algae in the ecosystem, and in the virological interpretation K is the number of target cells
present in uninfected individuals, e.g., the size of the liver when we are considering a hepatitis
virus. Assume for the moment that one can increase the size of the liver (e.g., by drinking too
much alcohol). In the absence of the second population, the third one cannot be maintained,
and when N = M = 0, one obtains the obvious R̄ = K from Eq. (8.1a), i.e., a resource at
carrying capacity. Thus, increasing K also increases R̄. We have seen in the previous chapter
that, in the absence of M , the consumer can only invade and be maintained when its R0 > 1,
which here means that bK/d > 1. Thus, at low values of the carrying capacity there is not
enough resource, R̄ = K, in the system to maintain the consumer (i.e., as long as K < d/b). If,
after increasing K, the consumer has successfully invaded, the new steady state (still without
M) is
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Note that the previous state (R̄, N̄ , M̄) = (K, 0, 0) still exists, but has become unstable because
dN/dt > 0 in the neighborhood of that state (see Fig. 8.1a). The nature of the steady state of
the resource has changed radically because it is now completely determined, or “controlled”, by
the parameters of the second population, i.e., b and d.

Similarly, the third population, M , can only invade when its R
0
0 = cN̄/e > 1. Because N̄

increases as a function of K (see Eq. (8.2b)), and would approach a maximum N̄ = r/b when
K ! 1, the fitness of the third population can be defined as R

0
0 = cr

be
. We see that the third

population can only invade and be maintained when the carrying capacity, K, is su�ciently
large. Considering the case when M is present we solve the steady state of the resource and
consumer,

N̄ =
e

c
, R̄ = K
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1� be

cr

◆
and M̄ =

bR̄� d

c
, (8.3)

where we re-observe the parameter condition R
0
0 = cr

be
> 1. Since N̄ is solved from Eq. (8.1c),

R̄ had to be solved from Eq. (8.1a). and the steady state M̄ was computed from Eq. (8.1b).
The steady state of the resource is now again determined by its own parameters r, b and K, in
combination with the two parameters of the third population, c and e.

If we were to add a fourth population, F , controlling the M population, e.g., predatory fish or
regulatory T cells, one would write

dM

dt
= [cN � e� fF ]M and

dF

dt
= (fM � g)F , (8.4a,b)

and one would have solve M̄ = g/f from Eq. (8.4b), R̄ = d+cM̄

b
from Eq. (8.1b), N̄ from Eq.

(8.1a), and finally F̄ = cN̄�e

f
from Eq. (8.4a). Summarizing, we observe that the biological pa-

rameters determining the steady state of each population in this chain of populations controlling
each other, depends on the length of the chain, n. When n = 1 the steady state resource density,
R̄ = K, when n = 2 or n = 4 R̄ is independent of K, and if n = 3 R̄ is proportional to K.
Which biological parameters determine the steady state of R therefore depends on the parity
of n: for even length chains R̄ is determined by its controller N , and for odd length chains R̄

depends at least partly on its own parameters. Since it is typically unclear how many (trophic)
layers one should incorporate in a model, this is a rather disturbing result pinpointing a lack of
robustness of steady state expressions of these chain models (De Boer, 2012).

R̄ = Kn=1

n=2
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Figure 8.1: Bifurcation diagrams of the Lotka-Volterra food-chain of Eq. (8.1) in Panels (a-c), and
of a similar food-chain based upon the Beddington functions of Eq. (8.7) in Panels (d-f). The second
population, N , can invade at the transcritical bifurcation point where K = KN , and the third population,
M , can invade at the transcritical bifurcation point where K = KM . The n = 1, 2 and 3 texts denote the
length of the chain, i.e., the dimension of the system. Note that no Hopf bifurcations are found in the
bifurcation diagrams of Panels (d-f) because they were made for a “predation limited” parameter setting
of Eq. (8.7). This figure was made with the chain.R.

In the exercises you will derive very similar results for a chain in which the resource is a non-
replicating population, i.e., dR/dt = s � rR � dRN , and the other populations remain the
same.

8.2 Chains with saturating interacting terms

The results derived in the previous section have to do with the fact that most populations in
these models are replicators, which means that their ODEs can be written as dxi/dt = fi(x)xi,
where x is a vector representing the n-dimensional state of the system. Solving the non-trivial
steady state therefore typically involves cancelling the xi = 0 solution from its own equation,
and subsequently solving fi(x) = 0. Since the fi(x) terms in Eq. (8.1) correspond to the terms
within the square brackets, i.e.,

fR(R, N) = r(1 � R/K) � bN , fN (R, M) = bR � d � cM and fM (N) = cN � e , (8.5)

we observe that only fR depends on itself, i.e., on R. Because fN and fM are independent of
N and M , respectively, their steady states are necessarily solved from another equation, i.e., N̄

from fM = 0, then R̄ from fR = 0, and finally M̄ from fN = 0.
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The fact that the steady state expression of xi can become independent from xi is a consequence
of the simplicity of the interaction terms, which are all mass action terms here. For instance, if
we replace all mass action terms with conventional saturation terms, i.e.,

dR

dt
=


r

⇣
1� R

K

⌘
� bN

hR +R

�
R ,

dN

dt
=
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�
N ,

and
dM

dt
=
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cN

hN +N
� e

�
M , (8.6a,b,c)

we observe that fN becomes dependent on N when M is present, but that fM remains inde-
pendent of M . All steady state expressions remain dependent on their own variable when we
choose for a Beddington functional response, e.g.,

dR

dt
=
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r
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N ,

and
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=


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hN +N +M
� e

�
M (8.7a,b,c)

but unfortunately the steady state expressions of this model become so complex that they are
no longer insightful. Thus, the disturbing results derived in the previous section depend on the
simplicity of mass-action interaction terms. One would therefore have to establish the functional
form of these interactions before one knows whether or not these results are an artifact, or a
realistic feature of truly simple interaction terms.

Because solving the steady state of Eq. (8.7) is laborious, one can resort to studying the di↵erence
between these models numerically by bifurcation analysis. Fig. 8.1a-c depicts the steady states
derived above for Eq. (8.1) that is based upon mass action interaction terms. The steady state
of R is independent of the carrying capacity, K, when the chain is 2-dimensional, and increases
with K when it is 1 or 3-dimensional. N and M can invade at transcritical bifurcations located
at K = KN and K = KM , respectively. The steady state of N first increases as a function of K,
but is independent of it when M is present (see Fig. 8.1a-c). For large values of the saturation
constants, hR and hN , bifurcation diagrams of Eq. (8.7) will look very similar to Fig. 8.1a-c
because the Beddington interaction terms approach a mass action term whenever hR � R+N

and hN � N +M . (One can write the functions in Eq. (8.7) as b
0
N

1+R/hR+N/hR
with b

0 = b/hR to

see that one can make hR arbitrary large, and adjust b0 to arrive at the same mass action term).
The bifurcation diagrams in Fig. 8.1d-f reveal that all steady states always increase with K,
whatever the dimension, n, of the chain for reasonably small values of the saturation constants,
i.e., hR = hM < K.

We conclude that the classic observation that steady states of “control” chains depend on a
small subsets of the parameters only, and that this depends on the length of the chain (Arditi
& Ginzburg, 1989; Abrams, 1994; Kaunzinger & Morin, 1998; De Boer, 2012), is a consequence
of the simple interaction terms of these chains. For more complicated interaction terms, like
the Beddington functional response, it will depend on the parameters how strongly the nature
of the steady state values changes when new populations are added to the chain. For instance,
in Fig. 8.1d the dependence of R̄ of K hardly changes when N invades, but that of N̄ strongly
depends on the presence of the third population, M . Finally, note that we have here chosen
the carrying capacity, K, as a bifurcation parameter, basically to repeat the famous Paradox of
enrichment result of Rosenzweig (1971), and that very similar results would have been obtained
if other bifurcation parameters were chosen (you can test this by modifying the chain.R code).
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Because solving the steady state of Eq. (8.7) is laborious, one can resort to studying the di↵erence
between these models numerically by bifurcation analysis. Fig. 8.1a-c depicts the steady states
derived above for Eq. (8.1) that is based upon mass action interaction terms. The steady state
of R is independent of the carrying capacity, K, when the chain is 2-dimensional, and increases
with K when it is 1 or 3-dimensional. N and M can invade at transcritical bifurcations located
at K = KN and K = KM , respectively. The steady state of N first increases as a function of K,
but is independent of it when M is present (see Fig. 8.1a-c). For large values of the saturation
constants, hR and hN , bifurcation diagrams of Eq. (8.7) will look very similar to Fig. 8.1a-c
because the Beddington interaction terms approach a mass action term whenever hR � R+N

and hN � N +M . (One can write the functions in Eq. (8.7) as b
0
N

1+R/hR+N/hR
with b

0 = b/hR to

see that one can make hR arbitrary large, and adjust b0 to arrive at the same mass action term).
The bifurcation diagrams in Fig. 8.1d-f reveal that all steady states always increase with K,
whatever the dimension, n, of the chain for reasonably small values of the saturation constants,
i.e., hR = hM < K.

We conclude that the classic observation that steady states of “control” chains depend on a
small subsets of the parameters only, and that this depends on the length of the chain (Arditi
& Ginzburg, 1989; Abrams, 1994; Kaunzinger & Morin, 1998; De Boer, 2012), is a consequence
of the simple interaction terms of these chains. For more complicated interaction terms, like
the Beddington functional response, it will depend on the parameters how strongly the nature
of the steady state values changes when new populations are added to the chain. For instance,
in Fig. 8.1d the dependence of R̄ of K hardly changes when N invades, but that of N̄ strongly
depends on the presence of the third population, M . Finally, note that we have here chosen
the carrying capacity, K, as a bifurcation parameter, basically to repeat the famous Paradox of
enrichment result of Rosenzweig (1971), and that very similar results would have been obtained
if other bifurcation parameters were chosen (you can test this by modifying the chain.R code).
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form of these interactions before one knows whether or not these results are an artifact, or a
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The bifurcation diagrams in Fig. 8.1d-f reveal that all steady states always increase with K,
whatever the dimension, n, of the chain for reasonably small values of the saturation constants,
i.e., hR = hM < K.

We conclude that the classic observation that steady states of “control” chains depend on a
small subsets of the parameters only, and that this depends on the length of the chain (Arditi
& Ginzburg, 1989; Abrams, 1994; Kaunzinger & Morin, 1998; De Boer, 2012), is a consequence
of the simple interaction terms of these chains. For more complicated interaction terms, like
the Beddington functional response, it will depend on the parameters how strongly the nature
of the steady state values changes when new populations are added to the chain. For instance,
in Fig. 8.1d the dependence of R̄ of K hardly changes when N invades, but that of N̄ strongly
depends on the presence of the third population, M . Finally, note that we have here chosen
the carrying capacity, K, as a bifurcation parameter, basically to repeat the famous Paradox of
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Per capita function always depends on variable itself.

aXY ' aXY

1 +X/k + Y/k
when k is large
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Figure 8.1: Bifurcation diagrams of the Lotka-Volterra food-chain of Eq. (8.1) in Panels (a-c), and
of a similar food-chain based upon the Beddington functions of Eq. (8.7) in Panels (d-f). The second
population, N , can invade at the transcritical bifurcation point where K = KN , and the third population,
M , can invade at the transcritical bifurcation point where K = KM . The n = 1, 2 and 3 texts denote the
length of the chain, i.e., the dimension of the system. Note that no Hopf bifurcations are found in the
bifurcation diagrams of Panels (d-f) because they were made for a “predation limited” parameter setting
of Eq. (8.7). This figure was made with the chain.R.

In the exercises you will derive very similar results for a chain in which the resource is a non-
replicating population, i.e., dR/dt = s � rR � dRN , and the other populations remain the
same.

8.2 Chains with saturating interacting terms

The results derived in the previous section have to do with the fact that most populations in
these models are replicators, which means that their ODEs can be written as dxi/dt = fi(x)xi,
where x is a vector representing the n-dimensional state of the system. Solving the non-trivial
steady state therefore typically involves cancelling the xi = 0 solution from its own equation,
and subsequently solving fi(x) = 0. Since the fi(x) terms in Eq. (8.1) correspond to the terms
within the square brackets, i.e.,

fR(R, N) = r(1 � R/K) � bN , fN (R, M) = bR � d � cM and fM (N) = cN � e , (8.5)

we observe that only fR depends on itself, i.e., on R. Because fN and fM are independent of
N and M , respectively, their steady states are necessarily solved from another equation, i.e., N̄

from fM = 0, then R̄ from fR = 0, and finally M̄ from fN = 0.
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Figure 8.2: The behavior of the SEIR model in Panels (a,b) and the Kinetic proof reading model in
Panels (c). Panel (a) depicts the establishment of an epidemic in a population starting at steady state.
Panel (b) shows that the infection in Panel (B) can invade at the transcritical bifurcation point where
R0 = 1. Panel (c) shows the contour lines where C (red, n = 0 line) or Cn (blue, n = 10 or n = 100
curved lines) exceeds a certain threshold, ✓, for the Michaelis Menten model of Eq. (8.14) and the Kinetic
proof reading model of Eq. (8.15), respectively. The cells will get activate above the nullcline, i.e., when
the o↵-rate is su�ciently low and/or the ligand concentration is su�ciently large. For n = 10 the nullcline
approaches a vertical asymptote corresponding to the critical o↵-rate above which signaling never starts,
whatever the ligand concentration, L. This figure was made with the files seir.R and proof.R.

8.3 Other famous chain models

The chain models discussed above have a form where a subsequent population “controls” the
previous one, i.e., they have interaction terms between all populations of adjacent levels, like
in an ecosystem where the next trophic level feeds upon the previous one. Fortunately, not all
chains in biology are of this form, and hence need not su↵er from the strong dependence of the
chain length. For instance, the famous 4-dimensional chain of susceptible, exposed, infected and
recovered (SEIR) model in epidemiology (see Chapter 6), i.e.,

dS

dt
= s� dS � �SI ,

dE

dt
= �SI � (d+ �)E ,

dI

dt
= �E � (� + r)I and

dR

dt
= rI � dR ,

has only one interaction term between the levels, i.e., the �SI term. The “resource” is here
defined as susceptible hosts, S, that are infected at rate � by infected hoss, I, which first
become exposed un-infectious hosts, E, then infectious hosts, I, that su↵er from a death rate,
� � d, and may recover into immune hosts, R. In the absence of infections S̄ = s/d. For an
epidemic at steady state, we work from right to left to see that

R̄ =
r

d
Ī , Ī =

�

� + r
Ē , S̄ =

(d+ �)(� + r)

��
, (8.8)

and hence that Ē = s

d+�
� d(�+r)

��
has to be solved from the first equation. This reveals that R̄

and Ī are simply proportional to their previous level, and will always be present when Ē > 0.
The condition Ē > 0 defines the one and only transcritical bifurcation in this 4-dimensional
chain, corresponding to the parameter condition where the infection can get established (i.e.,
R0 =

s��

d(d+�)(�+r) > 1; see Fig. 8.2b and Chapter 6).

Another common chain to consider is the expansion of a population by a cascade of cell divisions,

dN0

dt
= s� (p+ d)N0 ,

dNi

dt
= 2pNi�1 � (p+ d)Ni and

dNn

dt
= 2pNn�1 � dNn , (8.9)

SEIR model:

R̄ =
r

d
Ī , Ī =

�

� + r
Ē , S̄ =

(d+ �)(� + r)

��
, Ē =

s

d+ �
� d(� + r)

��
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Panels (c). Panel (a) depicts the establishment of an epidemic in a population starting at steady state.
Panel (b) shows that the infection in Panel (B) can invade at the transcritical bifurcation point where
R0 = 1. Panel (c) shows the contour lines where C (red, n = 0 line) or Cn (blue, n = 10 or n = 100
curved lines) exceeds a certain threshold, ✓, for the Michaelis Menten model of Eq. (8.14) and the Kinetic
proof reading model of Eq. (8.15), respectively. The cells will get activate above the nullcline, i.e., when
the o↵-rate is su�ciently low and/or the ligand concentration is su�ciently large. For n = 10 the nullcline
approaches a vertical asymptote corresponding to the critical o↵-rate above which signaling never starts,
whatever the ligand concentration, L. This figure was made with the files seir.R and proof.R.
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The chain models discussed above have a form where a subsequent population “controls” the
previous one, i.e., they have interaction terms between all populations of adjacent levels, like
in an ecosystem where the next trophic level feeds upon the previous one. Fortunately, not all
chains in biology are of this form, and hence need not su↵er from the strong dependence of the
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The condition Ē > 0 defines the one and only transcritical bifurcation in this 4-dimensional
chain, corresponding to the parameter condition where the infection can get established (i.e.,
R0 =
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d(d+�)(�+r) > 1; see Fig. 8.2b and Chapter 6).

Another common chain to consider is the expansion of a population by a cascade of cell divisions,

dN0

dt
= s� (p+ d)N0 ,

dNi

dt
= 2pNi�1 � (p+ d)Ni and

dNn

dt
= 2pNn�1 � dNn , (8.9)

78 Modeling chains

where s cells per day are entering a division cascade of n divisions, and the index i denotes
the number of completed divisions. Here the cells stop after n cell-divisions, and this chain has
no interaction terms between its levels. The proliferation rate, p, and the death rate, d, are
independent of the number of divisions completed. These populations are not controlling each
other, and the steady can be derived by working from left to right, i.e.,

N̄0 =
s

p+ d
, N̄i =

2p

p+ d
N̄i�1 and N̄n =

2p

d
N̄n�1 , (8.10)

revealing that each level remains proportional to the previous one. Since the steady state of
each sub-population, N̄i, is always positive there should always be a steady state. Furthermore,
in the exercises you will see that the Jacobi matrix, J , of this system has a lower triangular
form, i.e., all elements above the diagonal are zero. Since the eigenvalues of such matrices are
solved from the characteristic equation

(J00 � �)(J11 � �)(J22 � �) . . . (Jnn � �) = 0 , (8.11)

you will discover that this steady is always stable, i.e., �max < 0. Intuitively, this is a natural
result because in this chain each sub-population remains proportional to the previous one (see
Eq. (8.10)), and the first sub-population approaches a steady state reflecting a balance between
a source, s, and its loss rate, (p+ d). Eq. (8.10) can indeed be simplified into

N̄0 =
s

p+ d
, N̄i =

2ipis

(p+ d)i+1
and N̄n =

s

d

✓
2p

p+ d

◆
n

, (8.12a,b,c)

for i = 1, 2, . . . , n � 1. Thus, the only e↵ect of adding a level to this chain is that N̄n becomes
2p
p+d

-fold larger. Note that if we were to remove the factor two from these equations, this
cascade would correspond to a chain of maturation steps, and that this would confirm that cells
or individuals in such a chain would approach a stable “age” distribution. Finally, to model
a population of quiescent cells, Q, that occasionally are triggered to enter a cascade of cell
divisions, one would replace the source parameter, s, by the number of quiescent cells entering
the cascade, e.g., s = aQ, where a is a (potentially stochastic) activation rate, and add an ODE
for the resting cells,

dQ

dt
= �aQ� dQQ+ d

X
fiNi , for i = 1, 2, . . . n , (8.13)

which allows a fraction, 0  fi  1, of the cells that are lost from the cascade to revert to
quiescence. Do you think this model with quiescent cells will also approach a steady state?

Finally, such an activation event of a cell may actually involve yet another chain of ODEs. A
famous chain of equations (that actually is beyond the scope of this book because it involves
phosphorylation of molecules rather than population dynamics) is the “Kinetic proofreading”
chain, that was first proposed to improve the accuracy of transcription and translation (Hopfield,
1974; Ninio, 1975), and later to allow for the discrimination between ligands of low and high
a�nity during the activation of T cells (McKeithan, 1995). We here shortly address the latter
by modeling the chain of phosphorylation events that receptors may undergo after binding their
cognate ligand. Consider a population of R receptors on a cell with an on-rate, k1, and an
o↵-rate, k�1, for a particular ligand with a certain concentration L, and assume that the cell
will become activated when su�cient receptors are ligated into a receptor-ligand complex C.
The classic scheme for this is the Michaelis Menten reaction,

F + L
k1⌦
k�1

C or
dC

dt
= k1FL� k�1C , with F = R� C , (8.14)

J =

0

BBBBB@

�(p+ d) 0 0 0 . . . . . . 0
2p �(p+ d) 0 0 . . . . . . 0
0 2p �(p+ d) 0 . . . . . . 0

...
0 . . . 0 . . . 0 2p �d

1

CCCCCA
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Figure 8.2: The behavior of the SEIR model in Panels (a,b) and the Kinetic proof reading model in
Panels (c). Panel (a) depicts the establishment of an epidemic in a population starting at steady state.
Panel (b) shows that the infection in Panel (B) can invade at the transcritical bifurcation point where
R0 = 1. Panel (c) shows the contour lines where C (red, n = 0 line) or Cn (blue, n = 10 or n = 100
curved lines) exceeds a certain threshold, ✓, for the Michaelis Menten model of Eq. (8.14) and the Kinetic
proof reading model of Eq. (8.15), respectively. The cells will get activate above the nullcline, i.e., when
the o↵-rate is su�ciently low and/or the ligand concentration is su�ciently large. For n = 10 the nullcline
approaches a vertical asymptote corresponding to the critical o↵-rate above which signaling never starts,
whatever the ligand concentration, L. This figure was made with the files seir.R and proof.R.
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previous one, i.e., they have interaction terms between all populations of adjacent levels, like
in an ecosystem where the next trophic level feeds upon the previous one. Fortunately, not all
chains in biology are of this form, and hence need not su↵er from the strong dependence of the
chain length. For instance, the famous 4-dimensional chain of susceptible, exposed, infected and
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Ī , Ī =

�

� + r
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has to be solved from the first equation. This reveals that R̄

and Ī are simply proportional to their previous level, and will always be present when Ē > 0.
The condition Ē > 0 defines the one and only transcritical bifurcation in this 4-dimensional
chain, corresponding to the parameter condition where the infection can get established (i.e.,
R0 =

s��

d(d+�)(�+r) > 1; see Fig. 8.2b and Chapter 6).

Another common chain to consider is the expansion of a population by a cascade of cell divisions,

dN0

dt
= s� (p+ d)N0 ,

dNi

dt
= 2pNi�1 � (p+ d)Ni and

dNn

dt
= 2pNn�1 � dNn , (8.9)
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where s cells per day are entering a division cascade of n divisions, and the index i denotes
the number of completed divisions. Here the cells stop after n cell-divisions, and this chain has
no interaction terms between its levels. The proliferation rate, p, and the death rate, d, are
independent of the number of divisions completed. These populations are not controlling each
other, and the steady can be derived by working from left to right, i.e.,

N̄0 =
s

p+ d
, N̄i =

2p

p+ d
N̄i�1 and N̄n =

2p

d
N̄n�1 , (8.10)

revealing that each level remains proportional to the previous one. Since the steady state of
each sub-population, N̄i, is always positive there should always be a steady state. Furthermore,
in the exercises you will see that the Jacobi matrix, J , of this system has a lower triangular
form, i.e., all elements above the diagonal are zero. Since the eigenvalues of such matrices are
solved from the characteristic equation

(J00 � �)(J11 � �)(J22 � �) . . . (Jnn � �) = 0 , (8.11)

you will discover that this steady is always stable, i.e., �max < 0. Intuitively, this is a natural
result because in this chain each sub-population remains proportional to the previous one (see
Eq. (8.10)), and the first sub-population approaches a steady state reflecting a balance between
a source, s, and its loss rate, (p+ d). Eq. (8.10) can indeed be simplified into

N̄0 =
s

p+ d
, N̄i =

2ipis

(p+ d)i+1
and N̄n =

s

d

✓
2p

p+ d

◆
n

, (8.12a,b,c)

for i = 1, 2, . . . , n � 1. Thus, the only e↵ect of adding a level to this chain is that N̄n becomes
2p
p+d

-fold larger. Note that if we were to remove the factor two from these equations, this
cascade would correspond to a chain of maturation steps, and that this would confirm that cells
or individuals in such a chain would approach a stable “age” distribution. Finally, to model
a population of quiescent cells, Q, that occasionally are triggered to enter a cascade of cell
divisions, one would replace the source parameter, s, by the number of quiescent cells entering
the cascade, e.g., s = aQ, where a is a (potentially stochastic) activation rate, and add an ODE
for the resting cells,

dQ

dt
= �aQ� dQQ+ d

X
fiNi , for i = 1, 2, . . . n , (8.13)

which allows a fraction, 0  fi  1, of the cells that are lost from the cascade to revert to
quiescence. Do you think this model with quiescent cells will also approach a steady state?

Finally, such an activation event of a cell may actually involve yet another chain of ODEs. A
famous chain of equations (that actually is beyond the scope of this book because it involves
phosphorylation of molecules rather than population dynamics) is the “Kinetic proofreading”
chain, that was first proposed to improve the accuracy of transcription and translation (Hopfield,
1974; Ninio, 1975), and later to allow for the discrimination between ligands of low and high
a�nity during the activation of T cells (McKeithan, 1995). We here shortly address the latter
by modeling the chain of phosphorylation events that receptors may undergo after binding their
cognate ligand. Consider a population of R receptors on a cell with an on-rate, k1, and an
o↵-rate, k�1, for a particular ligand with a certain concentration L, and assume that the cell
will become activated when su�cient receptors are ligated into a receptor-ligand complex C.
The classic scheme for this is the Michaelis Menten reaction,

F + L
k1⌦
k�1

C or
dC

dt
= k1FL� k�1C , with F = R� C , (8.14)

N̄0 =
s

p+ d
, N̄i =

2ipis

(p+ d)i+1
and N̄n =

s

d

✓
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p+ d

◆n
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where the density if free receptors, F , is given by the conservation equation R = F + C. After
making the QSSA dC/dt = 0 one obtains the classic C = RL

Km+L
, where the Michaelis Menten

constant, Km = k�1/k1, is the inverse of the a�nity. Since the number of complexes increases
with the ligand concentration, L, until all receptors are ligated (C̄ = R), high concentrations of
low a�nity ligands will ultimately activate the cell. Ligands can therefore not be discriminated
on the basis of a�nity, as a high concentration of a low a�nity ligand can provide the same
signal as a low concentration of a high a�nity ligand (see the red straight line in Fig. 8.2c).

Kinetic proofreading does allow cells to discriminate between ligands, and the only requirement
for that was the (realistic) extension of this scheme with a chain of modification steps of the
complex, like phosphorylation events, that only occur when the receptor is binding the ligand.
Upon dissociation of the ligand the receptor is assumed to de-phosphorylates rapidly (McKei-
than, 1995). If the complex can become phosphorylated at a rate k2, the scheme becomes

F + L
k1⌦
k�1

C0 , Ci�1
k2! Ci and Ci

k�1! F ,

where F is again the concentration of free receptors. For receptors having n di↵erent phospho-
rylation sites, this translates into the following chain

dC0

dt
= k1FL�(k�1+k2)C0 ,

dCi

dt
= k2Ci�1�ki�1Ci and

dCn

dt
= k2Cn�1�k�1Cn , (8.15)

for i = 1, 2, . . . , n� 1, and with the conservation equation F = R�
P

n

i
Ci. At steady state the

concentration of the fully phosphorylated complex can be written as

C̄n =
RL

Km + L

✓
k2

k�1 + k2

◆
n

, (8.16)

where the first term is the same Michaelis Menten function describing saturation at large ligand
concentrations, and the second term resembling Eq. (8.12c) introduces a novel dependence on
the o↵-rate, k�1, which becomes steep for su�ciently large k�1 and n (McKeithan, 1995). High
concentrations of low-a�nity ligands (with a fast o↵-rate) will therefore no longer lead to high
concentrations of Cn on the cell surface (see Fig. 8.2c), allowing cells to discriminate between
high and low a�nity ligands when their signaling is initiated after several phosphorylation steps
only.

8.4 Summary

Biological models can often be written as chains where each level controls the previous layer. In
chains of populations controlling one another the nature of the steady state can strongly depend
on the length of the chain, but this depends on the type of interaction function used to model
the control that the populations exert on one another. Other classic chains that do not involve
multiple levels of control, have steady states that depend much less on the length of the chain,
but increasing the chain length may increase the sensitivity of the steady state to particular
parameters, which becomes a “feature rather than a bug” in the Kinetic proofreading model.
We have only discussed linear chains in this chapter because networks of populations controlling
one another involve competition between populations, which is the subject of the next chapter.
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Figure 8.2: The behavior of the SEIR model in Panels (a,b) and the Kinetic proof reading model in
Panels (c). Panel (a) depicts the establishment of an epidemic in a population starting at steady state.
Panel (b) shows that the infection in Panel (B) can invade at the transcritical bifurcation point where
R0 = 1. Panel (c) shows the contour lines where C (red, n = 0 line) or Cn (blue, n = 10 or n = 100
curved lines) exceeds a certain threshold, ✓, for the Michaelis Menten model of Eq. (8.14) and the Kinetic
proof reading model of Eq. (8.15), respectively. The cells will get activate above the nullcline, i.e., when
the o↵-rate is su�ciently low and/or the ligand concentration is su�ciently large. For n = 10 the nullcline
approaches a vertical asymptote corresponding to the critical o↵-rate above which signaling never starts,
whatever the ligand concentration, L. This figure was made with the files seir.R and proof.R.

8.3 Other famous chain models

The chain models discussed above have a form where a subsequent population “controls” the
previous one, i.e., they have interaction terms between all populations of adjacent levels, like
in an ecosystem where the next trophic level feeds upon the previous one. Fortunately, not all
chains in biology are of this form, and hence need not su↵er from the strong dependence of the
chain length. For instance, the famous 4-dimensional chain of susceptible, exposed, infected and
recovered (SEIR) model in epidemiology (see Chapter 6), i.e.,

dS

dt
= s� dS � �SI ,

dE

dt
= �SI � (d+ �)E ,

dI

dt
= �E � (� + r)I and

dR

dt
= rI � dR ,

has only one interaction term between the levels, i.e., the �SI term. The “resource” is here
defined as susceptible hosts, S, that are infected at rate � by infected hoss, I, which first
become exposed un-infectious hosts, E, then infectious hosts, I, that su↵er from a death rate,
� � d, and may recover into immune hosts, R. In the absence of infections S̄ = s/d. For an
epidemic at steady state, we work from right to left to see that

R̄ =
r

d
Ī , Ī =

�

� + r
Ē , S̄ =

(d+ �)(� + r)

��
, (8.8)

and hence that Ē = s

d+�
� d(�+r)

��
has to be solved from the first equation. This reveals that R̄

and Ī are simply proportional to their previous level, and will always be present when Ē > 0.
The condition Ē > 0 defines the one and only transcritical bifurcation in this 4-dimensional
chain, corresponding to the parameter condition where the infection can get established (i.e.,
R0 =

s��

d(d+�)(�+r) > 1; see Fig. 8.2b and Chapter 6).

Another common chain to consider is the expansion of a population by a cascade of cell divisions,

dN0

dt
= s� (p+ d)N0 ,

dNi

dt
= 2pNi�1 � (p+ d)Ni and

dNn

dt
= 2pNn�1 � dNn , (8.9)
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where the density if free receptors, F , is given by the conservation equation R = F + C. After
making the QSSA dC/dt = 0 one obtains the classic C = RL

Km+L
, where the Michaelis Menten

constant, Km = k�1/k1, is the inverse of the a�nity. Since the number of complexes increases
with the ligand concentration, L, until all receptors are ligated (C̄ = R), high concentrations of
low a�nity ligands will ultimately activate the cell. Ligands can therefore not be discriminated
on the basis of a�nity, as a high concentration of a low a�nity ligand can provide the same
signal as a low concentration of a high a�nity ligand (see the red straight line in Fig. 8.2c).

Kinetic proofreading does allow cells to discriminate between ligands, and the only requirement
for that was the (realistic) extension of this scheme with a chain of modification steps of the
complex, like phosphorylation events, that only occur when the receptor is binding the ligand.
Upon dissociation of the ligand the receptor is assumed to de-phosphorylates rapidly (McKei-
than, 1995). If the complex can become phosphorylated at a rate k2, the scheme becomes

F + L
k1⌦
k�1

C0 , Ci�1
k2! Ci and Ci

k�1! F ,

where F is again the concentration of free receptors. For receptors having n di↵erent phospho-
rylation sites, this translates into the following chain

dC0

dt
= k1FL�(k�1+k2)C0 ,

dCi

dt
= k2Ci�1�ki�1Ci and

dCn

dt
= k2Cn�1�k�1Cn , (8.15)

for i = 1, 2, . . . , n� 1, and with the conservation equation F = R�
P

n

i
Ci. At steady state the

concentration of the fully phosphorylated complex can be written as

C̄n =
RL

Km + L

✓
k2

k�1 + k2

◆
n

, (8.16)

where the first term is the same Michaelis Menten function describing saturation at large ligand
concentrations, and the second term resembling Eq. (8.12c) introduces a novel dependence on
the o↵-rate, k�1, which becomes steep for su�ciently large k�1 and n (McKeithan, 1995). High
concentrations of low-a�nity ligands (with a fast o↵-rate) will therefore no longer lead to high
concentrations of Cn on the cell surface (see Fig. 8.2c), allowing cells to discriminate between
high and low a�nity ligands when their signaling is initiated after several phosphorylation steps
only.

8.4 Summary

Biological models can often be written as chains where each level controls the previous layer. In
chains of populations controlling one another the nature of the steady state can strongly depend
on the length of the chain, but this depends on the type of interaction function used to model
the control that the populations exert on one another. Other classic chains that do not involve
multiple levels of control, have steady states that depend much less on the length of the chain,
but increasing the chain length may increase the sensitivity of the steady state to particular
parameters, which becomes a “feature rather than a bug” in the Kinetic proofreading model.
We have only discussed linear chains in this chapter because networks of populations controlling
one another involve competition between populations, which is the subject of the next chapter.
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where s cells per day are entering a division cascade of n divisions, and the index i denotes
the number of completed divisions. Here the cells stop after n cell-divisions, and this chain has
no interaction terms between its levels. The proliferation rate, p, and the death rate, d, are
independent of the number of divisions completed. These populations are not controlling each
other, and the steady can be derived by working from left to right, i.e.,

N̄0 =
s

p+ d
, N̄i =

2p

p+ d
N̄i�1 and N̄n =

2p

d
N̄n�1 , (8.10)

revealing that each level remains proportional to the previous one. Since the steady state of
each sub-population, N̄i, is always positive there should always be a steady state. Furthermore,
in the exercises you will see that the Jacobi matrix, J , of this system has a lower triangular
form, i.e., all elements above the diagonal are zero. Since the eigenvalues of such matrices are
solved from the characteristic equation

(J00 � �)(J11 � �)(J22 � �) . . . (Jnn � �) = 0 , (8.11)

you will discover that this steady is always stable, i.e., �max < 0. Intuitively, this is a natural
result because in this chain each sub-population remains proportional to the previous one (see
Eq. (8.10)), and the first sub-population approaches a steady state reflecting a balance between
a source, s, and its loss rate, (p+ d). Eq. (8.10) can indeed be simplified into

N̄0 =
s

p+ d
, N̄i =

2ipis

(p+ d)i+1
and N̄n =

s

d

✓
2p

p+ d

◆
n

, (8.12a,b,c)

for i = 1, 2, . . . , n � 1. Thus, the only e↵ect of adding a level to this chain is that N̄n becomes
2p
p+d

-fold larger. Note that if we were to remove the factor two from these equations, this
cascade would correspond to a chain of maturation steps, and that this would confirm that cells
or individuals in such a chain would approach a stable “age” distribution. Finally, to model
a population of quiescent cells, Q, that occasionally are triggered to enter a cascade of cell
divisions, one would replace the source parameter, s, by the number of quiescent cells entering
the cascade, e.g., s = aQ, where a is a (potentially stochastic) activation rate, and add an ODE
for the resting cells,

dQ

dt
= �aQ� dQQ+ d

X
fiNi , for i = 1, 2, . . . n , (8.13)

which allows a fraction, 0  fi  1, of the cells that are lost from the cascade to revert to
quiescence. Do you think this model with quiescent cells will also approach a steady state?

Finally, such an activation event of a cell may actually involve yet another chain of ODEs. A
famous chain of equations (that actually is beyond the scope of this book because it involves
phosphorylation of molecules rather than population dynamics) is the “Kinetic proofreading”
chain, that was first proposed to improve the accuracy of transcription and translation (Hopfield,
1974; Ninio, 1975), and later to allow for the discrimination between ligands of low and high
a�nity during the activation of T cells (McKeithan, 1995). We here shortly address the latter
by modeling the chain of phosphorylation events that receptors may undergo after binding their
cognate ligand. Consider a population of R receptors on a cell with an on-rate, k1, and an
o↵-rate, k�1, for a particular ligand with a certain concentration L, and assume that the cell
will become activated when su�cient receptors are ligated into a receptor-ligand complex C.
The classic scheme for this is the Michaelis Menten reaction,

F + L
k1⌦
k�1

C or
dC

dt
= k1FL� k�1C , with F = R� C , (8.14)where
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where the first term is the same Michaelis Menten function describing saturation at large ligand
concentrations, and the second term resembling Eq. (8.12c) introduces a novel dependence on
the o↵-rate, k�1, which becomes steep for su�ciently large k�1 and n (McKeithan, 1995). High
concentrations of low-a�nity ligands (with a fast o↵-rate) will therefore no longer lead to high
concentrations of Cn on the cell surface (see Fig. 8.2c), allowing cells to discriminate between
high and low a�nity ligands when their signaling is initiated after several phosphorylation steps
only.

8.4 Summary

Biological models can often be written as chains where each level controls the previous layer. In
chains of populations controlling one another the nature of the steady state can strongly depend
on the length of the chain, but this depends on the type of interaction function used to model
the control that the populations exert on one another. Other classic chains that do not involve
multiple levels of control, have steady states that depend much less on the length of the chain,
but increasing the chain length may increase the sensitivity of the steady state to particular
parameters, which becomes a “feature rather than a bug” in the Kinetic proofreading model.
We have only discussed linear chains in this chapter because networks of populations controlling
one another involve competition between populations, which is the subject of the next chapter.

8.5 Exercises

Kinetic proofreading: last exercise


