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Chapter 6

The basic reproductive ratio R0

In this book we frequently use the fitness, R0, of a population to simplify steady state values,
and the expressions for nullclines, which has facilitated their biological interpretation. Analyzing
competition we will see in Chapter 9 that the population with the largest R0, and not necessarily
the one with the largest carrying capacity, is typically expected to win the competitive exclusion.
In our consumer-resource models we observed that the depletion of resource species is (at least
partly) determined by the R0 of the consumer. We have defined R0 as a fitness, namely as
the maximum number of o↵spring that is produced over the expected lifespan of an individual,
in a situation without competition or predation, i.e., as the mean lifetime reproductive success
of a typical individual (He↵ernan et al., 2005). The R0 plays a central role in epidemiology,
where it is defined as the expected number of individuals that is successfully infected by a single
infected individual during its entire infectious period, in a population that is entirely composed
of susceptible individuals (Anderson & May, 1991; Diekmann et al., 1990). Epidemics will grow
whenever R0 > 1. In order to provide a more general understanding of the basic reproductive
ratio, R0, this Chapter reviews some of the classical epidemiological approaches to define and
calculate R0.

6.1 The SIR model

The most classical model in epidemiology is the “SIR” model, for Susceptible, Infected, and
Recovered individuals, e.g.,

dS

dt
= s� dS � �SI ,

dI

dt
= �SI � (� + r)I , and

dR

dt
= rI � dR , (6.1)

where s defines the source of susceptibles, d is their death rate, � is an infection rate, � the death
rate of infected individuals (with � � d), r is a recovery rate, and where recovered individuals
have the same death rate as susceptibles. Let us consider a time scale of days, i.e., all death rates
are per day. If the time scale at which susceptible individuals are produced and die is much slower
than that of the epidemic one can simplify the first ODE into dS/dt = ��SI. Additionally,
note that in this version of the SIR model the subpopulation of recovered individuals does not
feed back onto the dynamics of the other two subpopulations, which means that they need not
be considered when analyzing the establishment of an epidemic. Also note that setting r = 0
defines the “SI” model of an endemic infection that no one recovers from. Finally, one sometimes

SIR model:
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writes Eq. (6.1) as

dS

dt
= s� dS � �SI

N
,

dI

dt
=

�SI

N
� (� + r)I , and

dR

dt
= rI � dR , (6.2)

where N = S + I +R to define that the infection rate is proportional to the fraction of infected
individuals.

The disease-free steady state of Eq. (6.1) is defined as S̄ = s/d and Ī = R̄ = 0, and the endemic
equilibrium is defined as

S̄ =
� + r

�
, Ī =

s

� + r
� d

�
, and R̄ =

r

d
Ī =

rs

d(� + r)
� r

�
, (6.3)

which can only be present when Ī > 0, i.e.,

s

� + r
>

d

�
or

s

d

�

� + r
> 1 . (6.4)

The R0 of Eq. (6.1) is defined by the rate, �S, at which new cases are produced per infected
individual over its entire infectious period of 1/(� + r) days, in a fully susceptible population
S̄ = s/d, R0 is therefore defined as

R0 = �S̄
1

� + r
=

s

d

�

� + r
. (6.5)

Since the epidemic will only spread if an infected individual is replaced by more than one
secondary case, we require R0 > 1, which indeed corresponds to the threshold derived in Eq.
(6.4). This also means that we could have derived the same condition from the Jacobian of the
disease-free steady state, i.e., for the 2-dimension “SI” model with Ī = 0,

J =

✓
�d ��S̄

0 �S̄ � � � r

◆
, (6.6)

with eigenvalues �1 = �S̄ � � � r and �2 = �d. The parameter condition R0 > 1 indeed
corresponds to the transcritical bifurcation point, �1 = 0, at which the endemic steady state
becomes positive.

Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by

dI

dt
= �S̄I � (� + r)I =

✓
�s

d
� � � r

◆
I = r0I , (6.7)

where the rate r0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, r0, corresponds to the dominant eigenvalue of the Jacobi matrix in Eq.
(6.6), and that applying the “invasion criterion” r0 > 0, i.e., �s

d
> � + r or s

d

�

�+r
> 1, is

again the same as requiring R0 > 1. The net growth rate, r0, over the entire infectious period,
L = 1/(� + r), should obviously be related to the R0, i.e.,

R0 = 1 + r0L = 1 +
r0

� + r
=

s

d

�

� + r
or r0 =

R0 � 1

L
= (R0 � 1)(� + r) (6.8)

where the 1 is required to compensate for the fact that R0 is defined by the new cases only,
whereas the rate r0 includes the death rate.
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equilibrium is defined as

S̄ =
� + r

�
, Ī =
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J =

✓
�d ��S̄

0 �S̄ � � � r

◆
, (6.6)

with eigenvalues �1 = �S̄ � � � r and �2 = �d. The parameter condition R0 > 1 indeed
corresponds to the transcritical bifurcation point, �1 = 0, at which the endemic steady state
becomes positive.

Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by

dI

dt
= �S̄I � (� + r)I =

✓
�s

d
� � � r

◆
I = r0I , (6.7)

where the rate r0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, r0, corresponds to the dominant eigenvalue of the Jacobi matrix in Eq.
(6.6), and that applying the “invasion criterion” r0 > 0, i.e., �s

d
> � + r or s

d

�

�+r
> 1, is

again the same as requiring R0 > 1. The net growth rate, r0, over the entire infectious period,
L = 1/(� + r), should obviously be related to the R0, i.e.,

R0 = 1 + r0L = 1 +
r0

� + r
=

s

d

�

� + r
or r0 =

R0 � 1

L
= (R0 � 1)(� + r) (6.8)

where the 1 is required to compensate for the fact that R0 is defined by the new cases only,
whereas the rate r0 includes the death rate.

48 The basic reproductive ratio R0

writes Eq. (6.1) as

dS

dt
= s� dS � �SI

N
,

dI

dt
=

�SI

N
� (� + r)I , and

dR

dt
= rI � dR , (6.2)

where N = S + I +R to define that the infection rate is proportional to the fraction of infected
individuals.

The disease-free steady state of Eq. (6.1) is defined as S̄ = s/d and Ī = R̄ = 0, and the endemic
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Ī =

rs

d(� + r)
� r

�
, (6.3)

which can only be present when Ī > 0, i.e.,

s

� + r
>

d

�
or

s

d

�

� + r
> 1 . (6.4)

The R0 of Eq. (6.1) is defined by the rate, �S, at which new cases are produced per infected
individual over its entire infectious period of 1/(� + r) days, in a fully susceptible population
S̄ = s/d, R0 is therefore defined as

R0 = �S̄
1

� + r
=

s

d

�

� + r
. (6.5)

Since the epidemic will only spread if an infected individual is replaced by more than one
secondary case, we require R0 > 1, which indeed corresponds to the threshold derived in Eq.
(6.4). This also means that we could have derived the same condition from the Jacobian of the
disease-free steady state, i.e., for the 2-dimension “SI” model with Ī = 0,
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Since the epidemic will only spread if an infected individual is replaced by more than one
secondary case, we require R0 > 1, which indeed corresponds to the threshold derived in Eq.
(6.4). This also means that we could have derived the same condition from the Jacobian of the
disease-free steady state, i.e., for the 2-dimension “SI” model with Ī = 0,
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with eigenvalues �1 = �S̄ � � � r and �2 = �d. The parameter condition R0 > 1 indeed
corresponds to the transcritical bifurcation point, �1 = 0, at which the endemic steady state
becomes positive.

Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by

dI

dt
= �S̄I � (� + r)I =

✓
�s

d
� � � r

◆
I = r0I , (6.7)

where the rate r0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, r0, corresponds to the dominant eigenvalue of the Jacobi matrix in Eq.
(6.6), and that applying the “invasion criterion” r0 > 0, i.e., �s
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> 1, is

again the same as requiring R0 > 1. The net growth rate, r0, over the entire infectious period,
L = 1/(� + r), should obviously be related to the R0, i.e.,

R0 = 1 + r0L = 1 +
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or r0 =
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= (R0 � 1)(� + r) (6.8)

where the 1 is required to compensate for the fact that R0 is defined by the new cases only,
whereas the rate r0 includes the death rate.
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equilibrium is defined as

S̄ =
� + r

�
, Ī =
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equilibrium is defined as

S̄ =
� + r

�
, Ī =
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Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by

dI

dt
= �S̄I � (� + r)I =

✓
�s

d
� � � r

◆
I = ⇢0I , (6.7)

where the rate ⇢0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, ⇢0, corresponds to the largest eigenvalue of the Jacobi matrix in Eq. (6.6),
and that applying the “invasion criterion” ⇢0 > 0, i.e., �s
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same as requiring R0 > 1. To study the relationship between ⇢0 and R0 explicitly, we define
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From the latter, one readily solves that
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Depletion of susceptibles

Finally, defining the disease free steady state as a carrying capacity, K = s/d, one can see
that the ultimate degree of depletion of the susceptibles is fully determined by the R0, i.e., in
Eq. (6.3) we see that S̄ = K/R0. Summarizing, R0 is a valuable and meaningful concept in
epidemiology, there are several methods to compute an R0, where the one that calculates the
number of secondary cases produced during the infectious period of an infected individual seems
the most intuitive.

6.2 The SEIR model

The definition of the R0 becomes more complicated in systems where the infection involves
several stages. For instance, by adding a stage of exposed individuals, E, that are not yet
infectious, one obtains the SEIR model

dS
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= �SI � (� + d)E ,

dI

dt
= �E � (� + r)I ,

dR

dt
= rI � dR , (6.10)

where the exposed individuals become infectious at a rate � (and have the same death rate as
the susceptibles). A general method for deriving the R0 for multi-stage models is the “next
generation method” devised by Diekmann et al. 1990, and involves the definition of a matrix
collecting the rates at which new infections appear in each compartment, and a matrix defining
the loss and gains in each compartment. This method is general but its explanation would be too
involved for the short summary in this chapter (if you are interested read any of the following:
He↵ernan et al. (2005) or Diekmann et al. (2012; 1990)). Eq. (6.10) is simple enough to define
the R0 by the more intuitive “survival” method. The initial rate at which an infected individual
produces novel infections in the exposed population remains �S̄, and this will occur over an
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Frequency dependent infections

Chapter 6

The basic reproductive ratio R0

In this book we frequently use the fitness, R0, of a population to simplify steady state values,
and the expressions for nullclines, which has facilitated their biological interpretation. Analyzing
competition we will see in Chapter 9 that the population with the largest R0, and not necessarily
the one with the largest carrying capacity, is typically expected to win the competitive exclusion.
In our consumer-resource models we observed that the depletion of resource species is (at least
partly) determined by the R0 of the consumer. We have defined R0 as a fitness, namely as
the maximum number of o↵spring that is produced over the expected lifespan of an individual,
in a situation without competition or predation, i.e., as the mean lifetime reproductive success
of a typical individual (He↵ernan et al., 2005). The R0 plays a central role in epidemiology,
where it is defined as the expected number of individuals that is successfully infected by a single
infected individual during its entire infectious period, in a population that is entirely composed
of susceptible individuals (Anderson & May, 1991; Diekmann et al., 1990). Epidemics will grow
whenever R0 > 1. In order to provide a more general understanding of the basic reproductive
ratio, R0, this Chapter reviews some of the classical epidemiological approaches to define and
calculate R0.

6.1 The SIR model

The most classical model in epidemiology is the “SIR” model, for Susceptible, Infected, and
Recovered individuals, e.g.,

dS

dt
= s� dS � �SI ,

dI

dt
= �SI � (� + r)I , and

dR

dt
= rI � dR , (6.1)

where s defines the source of susceptibles, d is their death rate, � is an infection rate, � the death
rate of infected individuals (with � � d), r is a recovery rate, and where recovered individuals
have the same death rate as susceptibles. Let us consider a time scale of days, i.e., all death rates
are per day. If the time scale at which susceptible individuals are produced and die is much slower
than that of the epidemic one can simplify the first ODE into dS/dt = ��SI. Additionally,
note that in this version of the SIR model the subpopulation of recovered individuals does not
feed back onto the dynamics of the other two subpopulations, which means that they need not
be considered when analyzing the establishment of an epidemic. Also note that setting r = 0
defines the “SI” model of an endemic infection that no one recovers from. Finally, one sometimes

SIR model:

Frequency dependent infection in SIR model: N = S + I + R 

48 The basic reproductive ratio R0

writes Eq. (6.1) as

dS

dt
= s� dS � �SI

N
,

dI

dt
=

�SI

N
� (� + r)I , and

dR

dt
= rI � dR , (6.2)

where N = S + I +R to define that the infection rate is proportional to the fraction of infected
individuals.

The disease-free steady state of Eq. (6.1) is defined as S̄ = s/d and Ī = R̄ = 0, and the endemic
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which can only be present when Ī > 0, i.e.,
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The R0 of Eq. (6.1) is defined by the rate, �S, at which new cases are produced per infected
individual over its entire infectious period of 1/(� + r) days, in a fully susceptible population
S̄ = s/d, R0 is therefore defined as
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Since the epidemic will only spread if an infected individual is replaced by more than one
secondary case, we require R0 > 1, which indeed corresponds to the threshold derived in Eq.
(6.4). This also means that we could have derived the same condition from the Jacobian of the
disease-free steady state, i.e., for the 2-dimension “SI” model with Ī = 0,
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with eigenvalues �1 = �S̄ � � � r and �2 = �d. The parameter condition R0 > 1 indeed
corresponds to the transcritical bifurcation point, �1 = 0, at which the endemic steady state
becomes positive.

Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by
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where the rate r0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, r0, corresponds to the dominant eigenvalue of the Jacobi matrix in Eq.
(6.6), and that applying the “invasion criterion” r0 > 0, i.e., �s
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again the same as requiring R0 > 1. The net growth rate, r0, over the entire infectious period,
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where the 1 is required to compensate for the fact that R0 is defined by the new cases only,
whereas the rate r0 includes the death rate.
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Finally, defining the disease free steady state as a carrying capacity, K = s/d, one can see
that the ultimate degree of depletion of the susceptibles is fully determined by the R0, i.e., in
Eq. (6.3) we see that S̄ = K/R0. Summarizing, R0 is a valuable and meaningful concept in
epidemiology, there are several methods to compute an R0, where the one that calculates the
number of secondary cases produced during the infectious period of an infected individual seems
the most intuitive.

6.2 The SEIR model

The definition of the R0 becomes more complicated in systems where the infection involves
several stages. Adding a stage of exposed individuals, E, that are not yet infectious, one obtains
the SEIR model
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= �E � (� + r)I ,
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dt
= rI � dR , (6.9)

where the exposed individuals become infectious at a rate � (and have the same death rate as
the susceptibles). A general method for deriving the R0 for multi-stage models is the “next
generation method” devised by Diekmann et al. 1990, and involves the definition of a matrix
collecting the rates at which new infections appear in each compartment, and a matrix defining
the loss and gains in each compartment. This method is general but its explanation would
be too involved for the short summary in this chapter (if you are interested read any of the
following: He↵ernan et al. 2005 or Diekmann et al. 2012; 1990). Eq. (6.9) is simple enough to
define the R0 by the more intuitive “survival” method. The initial rate at which an infected
individual produces novel infections remains �S̄, and this will occur over an infectious period of
1/(�+r) time steps, but since not all exposed individuals become infectious (i.e., only a fraction
�/(�+d) are expected to survive and become infectious), we need to multiply with this fraction
and obtain
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. (6.10)

Solving Ē = �+r

�
I from dE/dt = 0, and substituting that into dI/dt = 0 delivers S̄ = �+d
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which when substituted in dS/dt = 0 gives
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which can only be positive when
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or
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> 1 or R0 > 1 , (6.12)

confirming that the R0 derived by the survival method again corresponds to the parameter
threshold at which the epidemic steady state becomes positive. The initial growth rate, r0, of
an epidemic in the SEIR model now depends on two ODEs, dE/dt and dI/dt, and can still be
computed because these ODEs are linear around the disease-free steady state S̄ = s/d. Solving
these ODEs and applying the invasion criterion dI/dt > 0, or deriving the dominant eigenvalue
of the Jacobian of the disease-free equilibrium, would therefore be alternative means to calculate
the R0 of this SEIR model. Summarizing, there are various ways to one can compute an R0 for
infections involving multiple stages, where the next generation method (Diekmann et al., 1990,
2012) is the most general (but is not explained here).
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Ī =
s

�S̄
� d

�
=

�

� + d

s

� + r
� d

�
, (6.11)

which can only be positive when

�

� + d

s

� + r
>

d

�
or

s

d

�

� + r

�

� + d
> 1 or R0 > 1 , (6.12)

confirming that the R0 derived by the survival method again corresponds to the parameter
threshold at which the epidemic steady state becomes positive. The initial growth rate, r0, of
an epidemic in the SEIR model now depends on two ODEs, dE/dt and dI/dt, and can still be
computed because these ODEs are linear around the disease-free steady state S̄ = s/d. Solving
these ODEs and applying the invasion criterion dI/dt > 0, or deriving the dominant eigenvalue
of the Jacobian of the disease-free equilibrium, would therefore be alternative means to calculate
the R0 of this SEIR model. Summarizing, there are various ways to one can compute an R0 for
infections involving multiple stages, where the next generation method (Diekmann et al., 1990,
2012) is the most general (but is not explained here).

6.2 The SEIR model 49

Finally, defining the disease free steady state as a carrying capacity, K = s/d, one can see
that the ultimate degree of depletion of the susceptibles is fully determined by the R0, i.e., in
Eq. (6.3) we see that S̄ = K/R0. Summarizing, R0 is a valuable and meaningful concept in
epidemiology, there are several methods to compute an R0, where the one that calculates the
number of secondary cases produced during the infectious period of an infected individual seems
the most intuitive.

6.2 The SEIR model

The definition of the R0 becomes more complicated in systems where the infection involves
several stages. Adding a stage of exposed individuals, E, that are not yet infectious, one obtains
the SEIR model

dS

dt
= s� dS � �SI ,

dE

dt
= �SI � (� + d)E ,

dI

dt
= �E � (� + r)I ,

dR

dt
= rI � dR , (6.9)

where the exposed individuals become infectious at a rate � (and have the same death rate as
the susceptibles). A general method for deriving the R0 for multi-stage models is the “next
generation method” devised by Diekmann et al. 1990, and involves the definition of a matrix
collecting the rates at which new infections appear in each compartment, and a matrix defining
the loss and gains in each compartment. This method is general but its explanation would
be too involved for the short summary in this chapter (if you are interested read any of the
following: He↵ernan et al. 2005 or Diekmann et al. 2012; 1990). Eq. (6.9) is simple enough to
define the R0 by the more intuitive “survival” method. The initial rate at which an infected
individual produces novel infections remains �S̄, and this will occur over an infectious period of
1/(�+r) time steps, but since not all exposed individuals become infectious (i.e., only a fraction
�/(�+d) are expected to survive and become infectious), we need to multiply with this fraction
and obtain

R0 =
s

d

�

� + r

�

� + d
. (6.10)

Solving Ē = �+r
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Ī =
s

�S̄
� d

�
=

�

� + d

s

� + r
� d

�
, (6.11)

which can only be positive when

�

� + d

s

� + r
>

d

�
or

s

d

�

� + r

�

� + d
> 1 or R0 > 1 , (6.12)

confirming that the R0 derived by the survival method again corresponds to the parameter
threshold at which the epidemic steady state becomes positive. The initial growth rate, r0, of
an epidemic in the SEIR model now depends on two ODEs, dE/dt and dI/dt, and can still be
computed because these ODEs are linear around the disease-free steady state S̄ = s/d. Solving
these ODEs and applying the invasion criterion dI/dt > 0, or deriving the dominant eigenvalue
of the Jacobian of the disease-free equilibrium, would therefore be alternative means to calculate
the R0 of this SEIR model. Summarizing, there are various ways to one can compute an R0 for
infections involving multiple stages, where the next generation method (Diekmann et al., 1990,
2012) is the most general (but is not explained here).

J =

✓
@EE0 @IE0

@EI 0 @II 0

◆
=

✓
�(� + d) �S̄

� �(� + r)

◆

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

54 The basic reproductive ratio R0

infectious period of 1/(� + r) time steps, i.e., we keep the �S̄

�+r
term, but since not all exposed

individuals become infectious (i.e., only a fraction �/(� +d) are expected to survive and become
infectious), we need to multiply this initial term with the fraction of individuals surviving the
exposed period and obtain
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We study the steady state by solving Ē = �+r
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confirming that the R0 derived by the survival method again corresponds to the parameter
threshold at which the epidemic steady state becomes positive. The initial growth rate, r0, of
an epidemic in the SEIR model now depends on two ODEs, dE/dt and dI/dt, and can still be
computed because these ODEs are linear around the disease-free steady state S̄ = s/d. Solving
these ODEs and applying the invasion criterion dI/dt > 0, or deriving the dominant eigenvalue
of the Jacobian of the disease-free equilibrium, would therefore be alternative means to calculate
the R0 of this SEIR model. For instance, considering S = S̄ and R = 0 we could write the Jacobi
matrix of the 2-dimensional system composed of just the exposed and infectious individuals,
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with a trace that is always negative and a determinant (� + d)(� + r)� ��S̄. The epidemic will
grow when this steady state is unstable, i.e., when

det J < 0 or
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< 1 $ R0 > 1 ,

where R0 is defined by Eq. (6.11). Summarizing, there are various ways to compute an R0 for
infections involving multiple stages, where the next generation method (Diekmann et al., 1990,
2012) is the most general (but is too involved to be explained here).

6.3 Fitness in consumer-resource models

In this book we have similarly defined the R0 of resource and consumer populations to facilitate
the biological interpretations of otherwise more complicated expressions. For instance re-consider
the Lotka-Volterra model with explicit birth and death rates for the resource,

dR

dt
= bR(1 � R/k) � dR � aRN and

dN

dt
= caRN � �N , (6.15)

with a carrying capacity R̄ = K = k(1�d/b). Using the survival method, the R0 of the resource
is defined by the maximum number of o↵spring, b per day (note that the (1 � R/k) term can
only decrease the birth rate), over its expected life span of 1/d days, i.e., R0R = b/d. One can
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with a carrying capacity R̄ = K = k(1�d/b). Using the survival method, the R0 of the resource
is defined by the maximum number of o↵spring, b per day (note that the (1 � R/k) term can
only decrease the birth rate), over its expected life span of 1/d days, i.e., R0R = b/d. One can
also easily see that the resource population can only invade when the maximum birth rate, b,
exceeds the death rate, d, i.e., when b/d > 1, and define the R0 this way (like above for the SIR
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