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observed a significant increase in CD4! CM cells and CD8! EM
cells in the old RM cohort (Fig. 1) with no significant gender-
related differences.

The response of T lymphocytes to natural or experimentally
induced lymphopenia features a compensatory increase in cy-
cling of the remaining cells (16, 24). It is unclear whether N T cell
loss during normal aging leads to compensatory cell prolifera-
tion, whether it affects both major T cell subsets (CD4 and CD8),
and whether and how this may impact the dynamics of the aged
T cell compartment. Therefore, we examined the expression in
the naı̈ve subsets of CD4 and CD8 T cells of Ki-67, a marker
expressed in the G1–M phases of the cell cycle that rapidly
disappears in the G0 phase (25). Only "1% of N cells in each
subset expressed Ki-67 in the adult cohort, in contrast to the 2-
and 2.5-fold-larger Ki-67! fraction among the old N CD4 (P #
0.0078) and CD8 (P # 0.0011), demonstrating a significantly
higher cycling in old T cells (Fig. 2A).

Our results were similar to the data by Naylor et al. (15) on
human CD4 T cells. The critical question, not answered by their
work, is whether the age-related naı̈ve T cell loss is causally
connected to increased proliferation of old naı̈ve T cells. If so,
one would expect that animals with the smallest N T cell
compartment should exhibit the most pronounced naı̈ve T cell
proliferation. Consistent with that prediction, we found strong
positive correlation between naı̈ve T cell proliferation and
shrinking of the N CD8! (Fig. 2B) and N CD4! (data not shown)
pools in individual animals. To independently confirm these
data, we redefined naı̈ve CD8 T cells using alternative markers
CCR-7, CD11a, and CD31 (20, 26) and measured Ki-67 expres-
sion in these populations. The results confirmed the correlation
of N CD8 proliferation to the age and the size of the N pool
regardless of the markers used to define N cells (SI Fig. 8).

We also examined the TCR diversity in aging monkeys by
analyzing the TCRV! CDR3 length polymorphism (27). V!
families exhibiting a single PCR peak were classified as contain-
ing T cell clonal expansions (TCE) and were quantified in each
monkey as a correlate of T cell repertoire diversity loss. The
percentage of V! families with a TCE was plotted for each

animal against naı̈ve T cell size and proliferation. Not surpris-
ingly, the size of the naı̈ve CD8 pools inversely correlated to the
fraction of V! families exhibiting a TCE (Fig. 3A), confirming
that the loss of naı̈ve T cells results in an overall loss of TCR
repertoire diversity. We next correlated Ki-67 expression in N

Fig. 1. Replacement of naı̈ve with memory T cells in old RM. Lymphocytes
were gated on CD4 or CD8 subsets and analyzed for CD28 and CD95 expression
(SI Fig. 7). Cells from each subset were gated into N (CD28intCD95lo), CM
(CD28hiCD95hi), and EM (CD28loCD95hi) cells. Average percentages of each cell
subset in young (n # 18, filled bars) and old (n # 36, open bars) RM are shown.
Error bars indicate SEM. *, P $ 0.05.

Fig. 2. Age-related and population size-related increase in homeostatic
proliferation of naı̈ve T cells. (A) Naı̈ve CD4! and CD8! cells were analyzed for
Ki-67 expression. Shown are the average percentages of Ki-67! cells in naı̈ve
CD4 and naı̈ve CD8 cells from young (n # 15, filled bars) or old (n # 25, open
bars) RM. Error bars indicate SEM. (B) Percentage of naı̈ve cells in the total CD8
pool of individual old (open triangles) or young (filled circles) animals are
shown on the x axis, and the percentage of Ki-67! cells in the naı̈ve CD8 subset
are shown on the y axis.

Fig. 3. Occurrence of TCE correlates to the size of the N CD8 subset and its
proliferation rate. RNA isolated from RM PBMCs was analyzed by PCR for TCR
length polymorphism in each of the 24 V regions of the ! TCR chain. V!
families exhibiting a single peak were defined as TCE!, and their fraction
among all PCR-identified V! families was expressed as V! TCE (%). Data were
obtained for individual animals and correlated to the percentage of naı̈ve CD8
cells (A) or the percentage of Ki-67! cells in the N CD8 subset (B) of each
animal.
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Figure 3.2: Density dependence in “natural” populations. Panel (a): Heck cattle have been introduced to
the ‘Oostvaardersplassen’ in the Netherlands as a semi-natural population of grazers. The population was
started with a small group of animals in 1983, and after approximately 20 years the density approached
a carrying capacity of 300–400 cattle. Ecologists have measured birth and death rates over the years
(Figure taken from an article in NRC Handelsblad on 11 December 2010). Panel (b): naive CD8+ T cells
start dividing when their densities are low. The horizontal axis depicts the percentage of naive CD8+

T cells present in young and old Rhesus macaques, and the vertical axis depicts the percentage of naive
CD8+ T cells that recently divided (Cicin-Sain et al., 2007).

The dimension of the parameter k is again biomass, or individuals, and its exact interpretation
now is that k defines the population size where the birth rate becomes zero (which is again
intuitive and measurable). Because f(N) will become negative whenever N > k, which would
deliver a negative birth rate, it is technically better to define f(N) = max(0, 1 � N/k), where
the function max() returns the maximum of its arguments. Because the steady state will always
correspond to a density with a non-zero birth rate, we proceed with Eq. (3.5) for reasons of
simplicity.

Since at low densities f(N) ! 1, the interpretation of the parameter b remains the maximum
birth rate, implying that the fitness of individuals obeying Eq. (3.6) remains R0 = b/d (which
is a natural result because at a su�ciently low population size the density-dependence should
have no e↵ect). The steady states of Eq. (3.6) are N = 0 and solving

b� d = b
N

k
yields N̄ = k

⇣
1� d

b

⌘
= k

⇣
1� 1

R0

⌘
. (3.7)

A negative feedback in the form of a linear density-dependent per capita birth rate therefore
also allows for a carrying capacity. When R0 � 1, this carrying capacity approaches the value
of k, and becomes fairly independent of the fitness (which di↵ers from the result obtained with
density-dependent death).

Similarly, the source term in a dN/dt = s � dN model could su↵er from the negative density-
dependence. An example would be the production of red blood cells in the bone marrow, which is
increased when interstitial cells in the kidney increase their production of erythropoietin (EPO)
when they su↵er from too low oxygen levels. Although the e↵ect of EPO is probably non linear
we could start with multiplying s with Eq. (3.5) to obtain

dN

dt
= s

⇣
1� N

k

⌘
� dN (3.8)

where the production rate (e.g., cells day�1) decreases linearly with the red blood cell density
N . The interpretation of k remains the population size at which the production is zero. For red

Populations change by immigration, birth, and death processes,

which could all depend on the density of the population itself

dN

dt
= sf(N) + [bg(N)� dh(N)]N
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Figure 3.3: Logistic growth. The heavy red lines in Panel (a) depicts the behavior of Eq. (3.10) starting
at a low and a high density, respectively. The light blue line starts at the same low density and shows the
corresponding exponential growth curve, because we have set K ! 1. Panel (b) depicts the per capita
growth rate of Eq. (3.10). Panel (c) shows that one can easily extend Logistic growth with a non-linear
density-dependence, i.e., the heavy lines depict Eq. (3.11) for m = 0.5 (green) and m = 2 (blue). This
figure was made with the model logist.R.

blood cells this may sound unrealistic as their production by the bone marrow is probably not
completely stopping at high red blood cell or low EPO densities. The model may nevertheless
behave realistically around normal steady state densities. The equilibrium state is obtained by
solving dN/dt = 0 is N̄ = sk/(dk + s) (which is a saturation function of the source s), and by
substituting N̄ into f(N) we observe that at steady state the total production equals

sf(N̄) = s

⇣
1� N̄

k

⌘
= s

⇣
1� s

dk + s

⌘
=

sdk

dk + s
cells day�1, (3.9)

which will only approach zero when s/dk � 1.

3.2 Logistic growth and our assumptions

Having a derived a number of models for population growth we should start comparing them
with existing models. The density-dependent models for replicating populations, Eq. (3.2) and
Eq. (3.6), are both of the form dN/dt = ↵N ��N

2, where ↵ and � are parameter combinations
of the original birth and death rates, b and d, and the density-dependence parameter k (see
the exercises). Both models are therefore mathematically identical to the classical “logistic
equation”:

dN

dt
= rN(1�N/K) , with solution N(t) =

KN(0)

N(0) + e�rt(K �N(0))
, (3.10)

with a natural rate of increase of r = b � d, and a carrying capacity that is directly defined
by the parameter K (these equations are identical because ↵ = r and � = r/K in the logistic
growth model). The behavior of the three models is therefore the identical: starting from
a small initial population the growth is first exponential, and will approaches zero when the
population size approaches the carrying capacity (see Fig. 3.3). Starting from a large initial
population, i.e., from N(0) > K, the population size will decline until the carrying capacity is
approached. Logistic growth is often employed to describe population growth in many biological
disciplines (ranging from ecology, epidemiology, virology to cell biology), and by deriving Eq.
(3.10) ourselves we have learned that is is indeed an excellent choice for populations having
a linear density-dependence on their per capita birth and/or death rate. Eq. (3.10) is more
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Figure 3.3: Logistic growth. The heavy red lines in Panel (a) depicts the behavior of Eq. (3.10) starting
at a low and a high density, respectively. The light blue line starts at the same low density and shows the
corresponding exponential growth curve, because we have set K ! 1. Panel (b) depicts the per capita
growth rate of Eq. (3.10). Panel (c) shows that one can easily extend Logistic growth with a non-linear
density-dependence, i.e., the heavy lines depict Eq. (3.11) for m = 0.5 (green) and m = 2 (blue). This
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corresponding exponential growth curve, because we have set K ! 1. Panel (b) depicts the per capita
growth rate of Eq. (3.10). Panel (c) shows that one can easily extend Logistic growth with a non-linear
density-dependence, i.e., the heavy lines depict Eq. (3.11) for m = 0.5 (green) and m = 2 (blue). This
figure was made with the model logist.R.
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14 Density dependence
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Figure 3.4: Populations with density-dependence either on the production (i.e., obeying Eq. (3.8); red
lines), or on the death rate (i.e., obeying Eq. (3.4); blue lines). The horizontal black line in Panel (b)
denotes the steady state level (i.e., the two panels are scaled di↵erently). In Panels (b) we add noise
sampled from a normal distribution with mean zero and 2.5% standard deviation to the population size
N(t) of both models at random selected time points. This figure was made with the model source.R.

population size approaches the carrying capacity (see Fig. 3.3a). Starting from a large initial
population, i.e., from N(0) > K, the population size will decline until the carrying capacity is
approached. Logistic growth is often employed to describe population growth in many biological
disciplines (ranging from ecology, epidemiology, virology to cell biology), and by deriving Eq.
(3.10) ourselves we have learned that is is indeed an excellent choice for populations having
a linear density-dependence on their per capita birth and/or death rate. Eq. (3.10) is more
convenient than the models we derived ourselves because the carrying capacity is defined by just
one of its parameters, but because Eq. (3.10) has no explicit death rate, we cannot define a life
span, and hence the R0 is not defined. One can easily extend Eq. (3.10) to allow for a non-linear
density-dependence, e.g.,

dN

dt
= rN(1 � (N/K)m) , (3.11)

where the meaning of r and K remain the same and m can be used to define a concave or convex
dependence of the per capita growth rate on the population density (Fig. 3.3c).

The two density-dependent models for populations that are maintained by a source, i.e.,
Eqs. (3.4) and (3.8), are mathematically not identical, and their steady states are defined by
quite di↵erent parameter expressions. Thus, the e↵ect of changing a parameter like the source,
s, on the steady state of the population depends on our choice of which biological process de-
pends (most strongly) on the population density. In Fig. 3.4 we depict the behavior of both
models in the presence and absence of noise. The two models are given the same source and
death rates, and the k value of the model with density-dependent death is set to such a value that
both models have the same steady state (see the R-script source.R). Thus, at low densities the
two populations have the same initial growth rate, and at high densities they approach the same
steady state (see Fig. 3.4a where the red line depicts the population with density-dependent pro-
duction, and the blue curve is the population with density-dependent death). We observe that
the population with density-dependent death approaches the steady state somewhat earlier than
the population with density-dependent production. In the presence of noise, i.e., by frequently
adding or removing a randomly drawn small value to N (with 2.5% standard deviation), we ob-
serve that the (red) population with density-dependent production is somewhat more sensitive
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Density dependent birth is not always a linear function of N
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Chapter 4

Non-linear density dependence

From the previous chapter we have learned that a general procedure to develop a mathematical
model is to enumerate the various processes contributing to the change of the population size,
and to sketch how each of these processes should depend on the population size(s). Typically, it
was most convenient to describe a process in terms of the change “per individual”. For instance,
we sketched how the per capita birth and death rates depend on the population size. The simple
models developed in the previous chapter above assumed that the birth and/or death rates were
linear functions of the population density. This is obviously not generally the case. Intuitively,
one would expect that competition only kicks in at high population densities.

In the appendix we let you become familiar with a few families of convenient functions, e.g.,
Hill-functions and exponential functions

f(x) =
xn

hn + xn
and f(x) = 1� e� ln[2]x/h , (4.1)

respectively (see Page 121). Both can be used to formulate positive and negative e↵ects of
populations onto each other. Hill-functions and exponential functions define two families of
functions f(x) that increase with x, that are zero when x = 0, are half-maximal when x = h,
and that approach a maximum f(x) = 1 when x ! 1. Because these functions are dimensionless
and remain bounded between zero and one, i.e., 0  f(x) < 1, one can easily multiply any term
in a model (corresponding to some biological process) with such a function. The maximum
f(x) = 1 yields the maximum positive e↵ect of the populations onto each other, and f(x) = 0
the minimum e↵ect (whenever one would need a di↵erent maximum in the model, one simply
multiplies f(x) with some parameter). Having increasing functions 0  f(x) < 1, one can easily
define decreasing functions by taking g(x) = 1� f(x).

4.1 Density dependent birth

For a replicating population with density dependent growth one would write

dN

dt
= (bf(N)� d)N , (4.2)

and one could use several candidates of the decreasing density dependent function f(N) like

f(N) = 1� N

2k
, f(N) =

1

1 +N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e� ln[2]N/k , (4.3)
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Figure 3.5: Density dependent birth rates based upon examples taken from Eq. (3.16). The declining
red curves in Panels (a)–(c) correspond to per capita birth rate, bf(N), where the density dependence
is defined by one of the three functions in Eq. (3.16). The horizontal black lines depict the density
independent per capita death rate of Eq. (3.15). The intersects therefore correspond to steady states.

Because all functions in Eqs. (3.12–3.14) are dimensionless, and remain bounded between zero
and one, i.e., 0  f(x) < 1, one can easily multiply any parameter in a model (corresponding
to some biological process) with f(x), to define non-linear density dependent e↵ects of any
population onto any biological process. For down-regulatory e↵ects, i.e., decreasing functions,
one can use either the simple Eq. (3.12), or the Hill function or exponential function of Eq.
(3.14). A minor technical di↵erence is that the h parameters of Eq. (3.14) “naturally” define
the value of x where g(x) = 0.5, whereas the k parameter in Eq. (3.12) most “naturally” defines
the value of x where f(x) = 0. For positive e↵ects approaching a maximum one typically uses
one of the functions in Eq. (3.13), and for e↵ects without a maximum one could resort to the
simple f(x) = (x/h)n. We will illustrate this with a few examples below.

Non-linear negative density-dependent birth

For a replicating population with density dependent growth we can now generalize Eq. (3.5)
into

dN

dt
= (bf(N) � d)N , (3.15)

and use one of the several candidates from Eq. (3.12) or Eq. (3.14) to choose a decreasing density
dependent function, f(N). For instance, the linear density dependent birth rate depicted in Fig.
3.2a would speak in favor of using the linear f(N) = 1 � N/k from Eq. (3.12). For non-linear
examples we here sample from Eq. (3.14), e.g.,

f(N) =
1

1 + N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e� ln[2]N/k

, (3.16)

and depict their shape and the steady state they would deliver in Fig. 3.5. Because the birth rate
should probably remain close to its maximal value, as long as the population size is su�ciently
small, i.e., is only expected to decrease when competition kicks in, the sigmoid function of Eq.
(3.16b), or the concave f(N) = 1 � (N/k)2 of Eq. (3.12) seem most realistic.

Each of the three models in Fig. 3.5 has a single non-trivial steady state (see Table 3.1), and
this steady state is always stable (see Fig. 3.5). The latter can be seen graphically because at
the steady state, where dN/dt = 0, increasing the population size to a value slightly above its
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Figure 3.5: Density dependent birth rates based upon examples taken from Eq. (3.16). The declining
red curves in Panels (a)–(c) correspond to per capita birth rate, bf(N), where the density dependence
is defined by one of the three functions in Eq. (3.16). The horizontal black lines depict the density
independent per capita death rate of Eq. (3.15). The intersects therefore correspond to steady states.

Because all functions in Eqs. (3.12–3.14) are dimensionless, and remain bounded between zero
and one, i.e., 0  f(x) < 1, one can easily multiply any parameter in a model (corresponding
to some biological process) with f(x), to define non-linear density dependent e↵ects of any
population onto any biological process. For down-regulatory e↵ects, i.e., decreasing functions,
one can use either the simple Eq. (3.12), or the Hill function or exponential function of Eq.
(3.14). A minor technical di↵erence is that the h parameters of Eq. (3.14) “naturally” define
the value of x where g(x) = 0.5, whereas the k parameter in Eq. (3.12) most “naturally” defines
the value of x where f(x) = 0. For positive e↵ects approaching a maximum one typically uses
one of the functions in Eq. (3.13), and for e↵ects without a maximum one could resort to the
simple f(x) = (x/h)n. We will illustrate this with a few examples below.

Non-linear negative density-dependent birth

For a replicating population with density dependent growth we can now generalize Eq. (3.5)
into

dN

dt
= (bf(N) � d)N , (3.15)

and use one of the several candidates from Eq. (3.12) or Eq. (3.14) to choose a decreasing density
dependent function, f(N). For instance, the linear density dependent birth rate depicted in Fig.
3.2a would speak in favor of using the linear f(N) = 1 � N/k from Eq. (3.12). For non-linear
examples we here sample from Eq. (3.14), e.g.,

f(N) =
1

1 + N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e� ln[2]N/k

, (3.16)

and depict their shape and the steady state they would deliver in Fig. 3.5. Because the birth rate
should probably remain close to its maximal value, as long as the population size is su�ciently
small, i.e., is only expected to decrease when competition kicks in, the sigmoid function of Eq.
(3.16b), or the concave f(N) = 1 � (N/k)2 of Eq. (3.12) seem most realistic.

Each of the three models in Fig. 3.5 has a single non-trivial steady state (see Table 3.1), and
this steady state is always stable (see Fig. 3.5). The latter can be seen graphically because at
the steady state, where dN/dt = 0, increasing the population size to a value slightly above its
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respectively (see Page 121). Both can be used to formulate positive and negative e↵ects of
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functions f(x) that increase with x, that are zero when x = 0, are half-maximal when x = h,
and that approach a maximum f(x) = 1 when x ! 1. Because these functions are dimensionless
and remain bounded between zero and one, i.e., 0  f(x) < 1, one can easily multiply any term
in a model (corresponding to some biological process) with such a function. The maximum
f(x) = 1 yields the maximum positive e↵ect of the populations onto each other, and f(x) = 0
the minimum e↵ect (whenever one would need a di↵erent maximum in the model, one simply
multiplies f(x) with some parameter). Having increasing functions 0  f(x) < 1, one can easily
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Figure 3.5: Density dependent birth rates based upon examples taken from Eq. (3.16). The declining
red curves in Panels (a)–(c) correspond to per capita birth rate, bf(N), where the density dependence
is defined by one of the three functions in Eq. (3.16). The horizontal black lines depict the density
independent per capita death rate of Eq. (3.15). The intersects therefore correspond to steady states.

Because all functions in Eqs. (3.12–3.14) are dimensionless, and remain bounded between zero
and one, i.e., 0  f(x) < 1, one can easily multiply any parameter in a model (corresponding
to some biological process) with f(x), to define non-linear density dependent e↵ects of any
population onto any biological process. For down-regulatory e↵ects, i.e., decreasing functions,
one can use either the simple Eq. (3.12), or the Hill function or exponential function of Eq.
(3.14). A minor technical di↵erence is that the h parameters of Eq. (3.14) “naturally” define
the value of x where g(x) = 0.5, whereas the k parameter in Eq. (3.12) most “naturally” defines
the value of x where f(x) = 0. For positive e↵ects approaching a maximum one typically uses
one of the functions in Eq. (3.13), and for e↵ects without a maximum one could resort to the
simple f(x) = (x/h)n. We will illustrate this with a few examples below.

Non-linear negative density-dependent birth

For a replicating population with density dependent growth we can now generalize Eq. (3.5)
into

dN

dt
= (bf(N) � d)N , (3.15)

and use one of the several candidates from Eq. (3.12) or Eq. (3.14) to choose a decreasing density
dependent function, f(N). For instance, the linear density dependent birth rate depicted in Fig.
3.2a would speak in favor of using the linear f(N) = 1 � N/k from Eq. (3.12). For non-linear
examples we here sample from Eq. (3.14), e.g.,

f(N) =
1

1 + N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e� ln[2]N/k

, (3.16)

and depict their shape and the steady state they would deliver in Fig. 3.5. Because the birth rate
should probably remain close to its maximal value, as long as the population size is su�ciently
small, i.e., is only expected to decrease when competition kicks in, the sigmoid function of Eq.
(3.16b), or the concave f(N) = 1 � (N/k)2 of Eq. (3.12) seem most realistic.

Each of the three models in Fig. 3.5 has a single non-trivial steady state (see Table 3.1), and
this steady state is always stable (see Fig. 3.5). The latter can be seen graphically because at
the steady state, where dN/dt = 0, increasing the population size to a value slightly above its
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red curves in Panels (a)–(c) correspond to per capita birth rate, bf(N), where the density dependence
is defined by one of the three functions in Eq. (3.16). The horizontal black lines depict the density
independent per capita death rate of Eq. (3.15). The intersects therefore correspond to steady states.

Because all functions in Eqs. (3.12–3.14) are dimensionless, and remain bounded between zero
and one, i.e., 0  f(x) < 1, one can easily multiply any parameter in a model (corresponding
to some biological process) with f(x), to define non-linear density dependent e↵ects of any
population onto any biological process. For down-regulatory e↵ects, i.e., decreasing functions,
one can use either the simple Eq. (3.12), or the Hill function or exponential function of Eq.
(3.14). A minor technical di↵erence is that the h parameters of Eq. (3.14) “naturally” define
the value of x where g(x) = 0.5, whereas the k parameter in Eq. (3.12) most “naturally” defines
the value of x where f(x) = 0. For positive e↵ects approaching a maximum one typically uses
one of the functions in Eq. (3.13), and for e↵ects without a maximum one could resort to the
simple f(x) = (x/h)n. We will illustrate this with a few examples below.

Non-linear negative density-dependent birth

For a replicating population with density dependent growth we can now generalize Eq. (3.5)
into

dN

dt
= (bf(N) � d)N , (3.15)

and use one of the several candidates from Eq. (3.12) or Eq. (3.14) to choose a decreasing density
dependent function, f(N). For instance, the linear density dependent birth rate depicted in Fig.
3.2a would speak in favor of using the linear f(N) = 1 � N/k from Eq. (3.12). For non-linear
examples we here sample from Eq. (3.14), e.g.,

f(N) =
1

1 + N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e� ln[2]N/k

, (3.16)

and depict their shape and the steady state they would deliver in Fig. 3.5. Because the birth rate
should probably remain close to its maximal value, as long as the population size is su�ciently
small, i.e., is only expected to decrease when competition kicks in, the sigmoid function of Eq.
(3.16b), or the concave f(N) = 1 � (N/k)2 of Eq. (3.12) seem most realistic.

Each of the three models in Fig. 3.5 has a single non-trivial steady state (see Table 3.1), and
this steady state is always stable (see Fig. 3.5). The latter can be seen graphically because at
the steady state, where dN/dt = 0, increasing the population size to a value slightly above its3.3 Non-linear density-dependence 17

Function f(0) f(k) f(1) R0 Carrying capacity Eq.

f(N) = max(0, 1 � [N/k]m) 1 0 0 b/d N̄ = k
m
p

1 � 1/R0 (3.12)
f(N) = 1/(1 + N/k) 1 0.5 0 b/d N̄ = k(R0 � 1) (3.14)
f(N) = 1/(1 + [N/k]2) 1 0.5 0 b/d N̄ = k

p
R0 � 1 (3.14)

f(N) = e� ln[2]N/k 1 0.5 0 b/d N̄ = (k/ ln[2]) ln[R0] (3.14)

Table 3.1: Properties of several functions defining a density dependent birth rate in dN/dt = (bf(N) �
d)N .
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Figure 3.6: Density-dependent death rates. Panel (a) uses the Hill function f(N) = N
m

/(hm + N
m)

and depicts the per capita death rate defined by Eq. (3.17). Panel (b) illustrates the per capita death rate
defined by Eq. (3.18). The horizontal black lines denote an arbitrary density-independent birth rate, such
that the intersections correspond to a steady state level. This figure was made with the model death.R.

steady state value brings the population density into a region where dN/dt < 0 (as indicated by
the � signs in Fig. 3.5), whereas decreasing the population to a value slightly below the steady
state value increases dN/dt (see the + signs).

Since all these functions are bounded between zero and one, i.e., 0  f(N) < 1, the fitness in
these models is always R0 = b/d. Although the di↵erent functions may reflect quite a di↵erent
biology, the models that result from incorporating them have a very similar behavior. For
instance, starting with a small population the population size plotted in time will always look
like a sigmoid function. In other words, finding a population with a sigmoid population growth
tells us very little about the shape of its underlying density dependent regulation. Table 3.1
shows for some of these models how their carrying capacity depends on the fitness R0.

Non-linear density-dependent death

One could use an increasing Hill-function to define a per capita death rate that increases with
the population density, i.e., write

dN

dt
= [b � d � �f(N)]N , (3.17)

where � is an additional death rate that is due to competition, and comes on top of the normal
death rate experienced at low densities (when f(N) ! 0). A steep sigmoid Hill-function would
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Figure 3.6: Density-dependent death rates. Panel (a) uses the Hill function f(N) = N
m
/(hm + N

m)
and depicts the per capita death rate defined by Eq. (3.15). Panel (b) illustrates the per capita death rate
defined by Eq. (3.16). The horizontal black lines denote an arbitray density-independent birth rate, such
that the intersections correspond to a steady state level. This figure was made with the model death.R.

the death rate, until the maximum per capita death rate, d+ � is approached. Since it remains
unclear whether such a maximum death rate is desirable, one could also use a power function
to define a per capita death rate that keeps on increasing with the population density, e.g.,

dN

dt
= (b� d[1 + (N/k)m])N (3.16)

which has a linear increase in the death rate when m = 1, and a faster than linear increase when
m > 1. The interpretation of k remains the same as in Eq. (3.2), i.e., when N = k the death
rate has doubled. Having a fitness R0 = b/d the steady state is N̄ = k

m
p
R0 � 1. Fig. 3.1a shows

that this steady state is stable for m = 1. Confirm for yourself that this is true for all values of
m by sketching the same picture for m = 1/2 and m = 2 (see the exercises).

3.4 Positive density dependence

Now that we learned to use saturation functions we are ready to start modeling positive feed-
backs. Replicating populations not only face competition at high densities, they may also su↵er
from a lack of conspecifics at low densities. Examples would be sexual reproduction where
individuals need to encounter partners or gametes (Berec et al., 2007), growing tumors that
by inducing angiogenesis increase their own growth rate, cooperating predators like wolves or
spoonbills, and microorganism that improve their own environment (Kramer et al., 2009).

Modeling population growth with sexual reproduction basically means that we have to extend
or model with density dependent birth and/or death with an additional function describing
the probability (or rate) at which individuals are expected to encounter mates. A mechanistic
approach would be to define a function, g(N), for the probability that there is at least one
mate in a particular neighborhood, and multiply the birth rate with that probability. This can
therefore be defined as a Poisson process, where g(N) = 1� e��N is one minus the probability
that there are no males in the neighborhood of a particular female. Knowing that such an
exponential function closely resembles the increasing Hill-function g(N) = N/(h + N) we can
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defined by Eq. (3.16). The horizontal black lines denote an arbitray density-independent birth rate, such
that the intersections correspond to a steady state level. This figure was made with the model death.R.

the death rate, until the maximum per capita death rate, d+ � is approached. Since it remains
unclear whether such a maximum death rate is desirable, one could also use a power function
to define a per capita death rate that keeps on increasing with the population density, e.g.,

dN

dt
= (b� d[1 + (N/k)m])N (3.16)

which has a linear increase in the death rate when m = 1, and a faster than linear increase when
m > 1. The interpretation of k remains the same as in Eq. (3.2), i.e., when N = k the death
rate has doubled. Having a fitness R0 = b/d the steady state is N̄ = k
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that this steady state is stable for m = 1. Confirm for yourself that this is true for all values of
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from a lack of conspecifics at low densities. Examples would be sexual reproduction where
individuals need to encounter partners or gametes (Berec et al., 2007), growing tumors that
by inducing angiogenesis increase their own growth rate, cooperating predators like wolves or
spoonbills, and microorganism that improve their own environment (Kramer et al., 2009).

Modeling population growth with sexual reproduction basically means that we have to extend
or model with density dependent birth and/or death with an additional function describing
the probability (or rate) at which individuals are expected to encounter mates. A mechanistic
approach would be to define a function, g(N), for the probability that there is at least one
mate in a particular neighborhood, and multiply the birth rate with that probability. This can
therefore be defined as a Poisson process, where g(N) = 1� e��N is one minus the probability
that there are no males in the neighborhood of a particular female. Knowing that such an
exponential function closely resembles the increasing Hill-function g(N) = N/(h + N) we can
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Function f(0) f(k) f(1) R0 Carrying capacity
f(N) = max(0, 1�N/[2k]) 1 0.5 0 b/d N̄ = 2k(1� 1/R0)
f(N) = 1/(1 +N/k) 1 0.5 0 b/d N̄ = k(R0 � 1)
f(N) = 1/(1 + [N/k]2) 1 0.5 0 b/d N̄ = k

p
R0 � 1

f(N) = e� ln[2]N/k 1 0.5 0 b/d N̄ = (k/ ln[2]) ln[R0]

Table 3.1: Di↵erent properties of several functions for density dependent growth in dN/dt = (bf(N)�
d)N .

Non-linear negative density-dependent birth

For a replicating population with density dependent growth we can now generalize Eq. (3.5)
into

dN

dt
= (bf(N)� d)N , (3.13)

and use one of the several candidates for the decreasing density dependent functions, f(N), e.g.,

f(N) = 1� N

2k
, f(N) =

1

1 +N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e� ln[2]N/k

, (3.14)

which are all depicted in Fig. 3.5. Because the birth rate should probably remain close to
maximal as long as the population size is su�ciently small, and is only expected to decrease
when competition kicks in, the sigmoid function of Eq. (3.14c) seems most realistic. Data
supporting linear density dependent growth functions are depicted in Fig. 3.2. Each of the
four models has a single non-trivial steady state (see Table 3.1) and this steady state is always
stable (see Fig. 3.5). The latter can be seen graphically because at the steady state, where
dN/dt = 0, increasing the population size to a value slightly above its steady state value brings
the population density into a region where dN/dt < 0 (as indicated by the � signs in Fig. 3.5),
whereas decreasing the population to a value slightly below the steady state value increases
dN/dt (see the + signs).

Since all these functions are bounded between zero and one, i.e., 0  f(N) < 1, the fitness in
these models is always R0 = b/d. Although the di↵erent functions may reflect quite a di↵erent
biology, the models that result from incorporating them have a very similar behavior. For
instance, starting with a small population the population size plotted in time will always look
like a sigmoid function. In other words, finding a population with a sigmoid population growth
tells us very little about its underlying density dependent regulation. Table 3.1 shows the models
di↵er in how the carrying capacity depends on the fitness R0.

Non-linear density-dependent death

One could use an increasing Hill-function to define a per capita death rate that increases with
the population density, i.e., write

dN

dt
= [b� d� �f(N)]N , (3.15)

where � is an additional death rate that is due to competition, and comes on top of the normal
death rate experienced at low densities (when f(N) ! 0). A steep sigmoid Hill-function would
allow one to define a population density, h, at which the competition starts to severely increase
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Non-linear density dependent death rate
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Figure 3.7: Positive density-dependence on the reproduction leeds to an Allee e↵ect. Panel (a) shows
that a population based up Eq. (3.17a) has a critical density (depicted by the horizontal line) above
which it increases until the carrying capacity is approached, and below which it declines. The heavy
red line in Panel (b) depicts the per capita birth rate as a function of the population density, and the
horizontal black line depicts the per capita death rate. Densities at which these line intersect are steady
state (because the birth rate balances the death rate). The steady state at a low density is the unstable
critical density and the one at a high density is the stable carrying capacity. This figure was made with
the model allee.R.

also use this somewhat more phenomenological model, and define h as the population density
where the probability of finding a mate is one half. Having either of these two functions defining
the mating we just expend Eq. (3.13) and/or Eq. (3.16) with g(N) to obtain

dN

dt
= (bf(N)g(N)� d)N or

dN

dt
= (bg(N)� d[1 + (N/k)m])N , (3.17)

where f(N) is one of the declining functions depicted in Fig. 3.5.

We study the e↵ect of a positive density-dependence by numerically solving Eq. (3.17a) with
g(N) = N/(h + N), starting with either a low, or somewhat higher, initial population density
(Fig. 3.7a). The small population declines and goes extinct and the largest population expands
and approaches carrying capacity. The horizontal black lines depicts the critical density that the
population needs to expand, and populations that would accidentally drop below this density
are expected to go extinct. The per capita birth rate is depicted by the red line in Fig. 3.7b.
At low densities the birth rate is small because it is di�cult to find mates (i.e., g(N) is small
and f(N) ' 1), and at high densities it is low because of competition (i.e., f(N) is small and
g(N) ' 1). The horizontal black line depicts a density-independent death rate, and we see that
this lines intersects the birth-rate curve at two population densities. The lower density is the
unstable steady state above which the population can grow (see Eq. (3.17a)), and the higher
density is the carrying capacity. Because the net per capita population growth is negative at low
densities this is called a “strong” Allee e↵ect, which implies that a population of zero individuals
is a stable steady state. Eq. (3.17a) therefore has three steady states, of which N = 0 and N = K

(where K is the carrying capacity) are stable, and having alternative steady states is due to the
fact that this model has a positive feedback (May, 1977).
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We study the e↵ect of a positive density-dependence by numerically solving Eq. (3.17a) with
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population needs to expand, and populations that would accidentally drop below this density
are expected to go extinct. The per capita birth rate is depicted by the red line in Fig. 3.7b.
At low densities the birth rate is small because it is di�cult to find mates (i.e., g(N) is small
and f(N) ' 1), and at high densities it is low because of competition (i.e., f(N) is small and
g(N) ' 1). The horizontal black line depicts a density-independent death rate, and we see that
this lines intersects the birth-rate curve at two population densities. The lower density is the
unstable steady state above which the population can grow (see Eq. (3.17a)), and the higher
density is the carrying capacity. Because the net per capita population growth is negative at low
densities this is called a “strong” Allee e↵ect, which implies that a population of zero individuals
is a stable steady state. Eq. (3.17a) therefore has three steady states, of which N = 0 and N = K

(where K is the carrying capacity) are stable, and having alternative steady states is due to the
fact that this model has a positive feedback (May, 1977).
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as a function of the population size (e.g., Fig. 3.2). Alternatively, one can take a long time series
of sequential population densities, Nt, and study how the per capita rate of change between
subsequent time points, i.e., (Nt+� � Nt)/Nt, depends on the previous population density,
Nt. Although the second method comes with a well-known problem (Shenk et al., 1998), it is
nevertheless still being used to detect density-dependence in time-series data (Freckleton et al.,
2006). The problem is illustrated by the following R-script (called normal.R on the website):

n <- 100; data <- rnorm(n,1,0.1);hist(data)

N <- data[1:(n-1)]; r <- (data[2:n]-N)/N

plot(N,r,type="p")

lm(r~N,as.data.frame(cbind(N,r)))

Artificial data is generated by drawing n = 100 times from a normal distribution with µ = 1
and � = 0.1, and the per capita rate of increase, r, is computed by subtracting two subsequent
data points, and dividing by the former. The relationship is plotted and quantified by linear
regression (by a call to lm()).
a. What do you expect for the relationship between r and Nt in this random data set?
b. What do you find, and how can this be?
c. Can a time-series provide solid evidence for density dependent e↵ects? The Freckleton et al.

(2006) paper provides an excellent discussion on this topic.

Question 3.9. The Fisher equation (Grind)
To model a population that is growing logistically on a one-dimensional spatial domain one can
just add a di↵usion term,

dN

dt
= rN

⇣
1� N

K

⌘
+D

@
2
N

@x2
,

where the parameter D is a di↵usion constant. This equation was introduced by the famous
Ronald Fisher in 1937 to describe the spatial spread of an advantageous allele. To study such a
PDE numerically one needs to discretize it into something like

dNi

dt
= rNi

⇣
1� Ni

K

⌘
+D(Ni�1 +Ni+1 � 2Ni) , for i = 1, 2, . . . , n

where i defines a location of a (small) compartment in space, and D describes the movement of
individuals between neighboring compartments.
a. This model is available in the website as the file fisher.R. Study how such a vector of equa-

tions can be defined in R, and realize that we have wrapped the boundaries, i.e., individuals
move from N1 to Nn and vice versa.

b. What is the behavior of the model?
c. What do you expect will happen if the model is extended with an Allee e↵ect?

Question 3.10. Cell division takes time (Grind)
A simple model for a population of proliferating cells is dN/dt = (p � d)N , which defines cells
that are dividing at a rate p and dying at a rate d. Both rates are density independent. Like all
ODEs, this model assumes that cellular division and death times are exponentially distributed,
which actually means that most cells divide and die instantaneously. Since the process of cell
division is composed of various “time consuming” phases, i.e., DNA has to be synthesized,
and chromosomes have to properly align, cell division cannot occur instantaneously, and takes
a minimal amount of time. The quite famous Smith-Martin model (Smith & Martin, 1973)
accounts for this by a implementing a fixed time delay between an exponentially distributed
“trigger” to initiate division, and the time at which the cell actually divides. This model



Smith-Martin model (first ignoring death):
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where the parameter D is a di↵usion constant. This equation was introduced by the famous
Ronald Fisher in 1937 to describe the spatial spread of an advantageous allele. To study such a
PDE numerically one needs to discretize it into something like
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where i defines a location of a (small) compartment in space, and D describes the movement of
individuals between neighboring compartments.
a. This model is available in the website as the file fisher.R. Study how such a vector of equa-

tions can be defined in R, and realize that we have wrapped the boundaries, i.e., individuals
move from N1 to Nn and vice versa.

b. What is the behavior of the model?
c. What do you expect will happen if the model is extended with an Allee e↵ect?

Question 3.10. Cell division takes time (Grind)
A simple model for a population of proliferating cells is dN/dt = (p � d)N , which defines cells
that are dividing at a rate p and dying at a rate d. Both rates are density independent. Like all
ODEs, this model assumes that cellular division and death times are exponentially distributed,
which actually means that most cells divide and die instantaneously. Since the process of cell
division is composed of various “time consuming” phases, i.e., DNA has to be synthesized,
and chromosomes have to properly align, cell division cannot occur instantaneously, and takes
a minimal amount of time. The quite famous Smith-Martin model (Smith & Martin, 1973)
accounts for this by a implementing a fixed time delay between an exponentially distributed
“trigger” to initiate division, and the time at which the cell actually divides. This model
successfully describes the growth of tumor cells in vitro. Smith & Martin (1973) write: “Some

Cell division takes time

Conventional ODE:

dA(t)

dt
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Smith-Martin model with death:
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time after mitosis all cells enter a state (A) in which their activity is not directed towards
replication. A cell may remain in the A-state for any length of time, throughout which its
probability of leaving A-state remains constant. On leaving A-state, cells enter B-phase in which
their activities are deterministic, and directed towards replication.” Adding, an exponentially
distributed death rate (which is here not di↵erent between the A-state and B-phase), the model
can be written as a delay-di↵erential equation (DDE):

dA(t)

dt
= 2pAt��e

�d� � (p+ d)A(t) and
dB(t)

dt
= pA(t)� dB(t)� pAt��e

�d�
, (3.18)

where � is the length of the B-phase, and hence e�d� is the fraction of cells surviving the
B-phase. The total number of cells at time t is defined as N(t) = A(t)+B(t), and starting with
a quiescent population N(0) = A(0) it will take at least � time steps before the first new cells
are born. Ganusov et al. (2005) have analyzed the Smith-Martin model, and derive that after
an initial phase the total number of cells, N(t), approached a growth rate, r, that can be solved
from the equation

2pe�(d+r)� � (r + p+ d) = 0 , (3.19)

which for � = 0 indeed delivers r = p�d. The Smith-Martin model, with a function call solving
Eq. (3.19) numerically is available as the file sm.R.

Because DDEs are di�cult to solve numerically, and because fixed time delays need not be
realistic, it can sometimes be better to replace the time delay by defining a large number, n,
of “dummy” intermediate populations, Bi, with a transition rate, n

� , such that the expected
length of the delay remains � time steps, irrespective of n. For large n this model approaches
a “smooth” time delay of � time steps (smooth here means without a discontinuity). An
alternative formulation of the Smith-Martin model would therefore be

dA

dt
=

2n

�
Bn�(p+d)A ,

dB1

dt
= pA�

⇣
d+

n

�

⌘
B1 and

dBi

dt
=

n

�
(Bi�1�Bi)�dBi , (3.20)

for i = 2, 3, . . . n. This model is available as the function erl() (for Erlang distribution) in the
file sm.R.

a. What is the ODE for total number of cells in the Smith-Martin model at early time points,
i.e., for t < �? Would that be di↵erent in the model with a flexible delay?

b. What is dA/dt in the Smith-Martin model at early time points, i.e., for t < �, when we
start with a quiescent population, i.e., N(0) = A(0)? Verify your answer by running the
Smith-Martin model and the erl() model for a short period of time.

c. What is the expected time between divisions in the Smith-Martin model, and what would be
the corresponding division rate in the corresponding dN/dt = (p� d)N model? Is this faster
or slower than the division rate, r + d, predicted by Eq. (3.19)? Why?

d. What is the asymptotic behavior of the Smith-Martin model? How di↵erent is it from the
simple dN/dt = (p � d)N model, and how does this depend on the relative length of the
A-stage (1/p) and the B-phase (�)?

Question 3.11. Life stages
Consider an insect population consisting of larvae (L) and adults (A). Adults give birth to
larvae (in an asexual manner), and these larvae later mature into adults. Adults have a density
independent mortality, i.e., a given expected life span. Larvae compete with adults and have a
mortality that is dependent on the density of adults (use a simple term for this).
a. Make a model consisting of two ODEs for the growth of such a population.
b. Draw nullclines and determine the stability of all steady states.

Time delays implemented as many small steps

Smooth the time delay by many (n) small steps:
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