
Chapter 10: Co-existence in large communities

We have derived resource competition models from consumption models.

This lead to competitive exclusion: no more than n consumers on n resources.


Steady state result: non-equilibrium co-existence.

Chapter 10: various examples of high-dimensional models.


Chemostats and Lotka-Volterra models will be the starting point. 



Niche space models

Chapter 10

Competition in large communities

The scaled Lotka Volterra competition model of Eq. (9.29) has been used in many di↵erent
theoretical studies of competition in ecosystems. Thanks to its simplicity it has few parameters,
and this has allowed theoretical ecologists to define “understandable” models composed of many
competing species. We here discuss two examples. The first considers competition along a
resource axis, and has with the restriction discussed in Chapter 9 that all �ij parameters are
smaller than one. Conversely, in the second example the author did allow for the “founder
controlled” situations shown in Fig. 9.4d and Fig. 9.5c.
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Figure 10.1: Resource usage of three “finch species” consuming seeds of di↵erent sizes. The distance
between the preferred seed size of neighboring species is d, and � is the standard deviation of the Gaussian
seed size preferences. The niche overlap between neighboring species at distance d is ↵, and hence the
overlap between species at distance 2d is ↵4.
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Niche space model

Chapter 10

Co-existence in large communities

The scaled Lotka Volterra competition model of Eq. (9.19) has been used in many di↵erent
theoretical studies of competition in ecosystems. Thanks to its simplicity it has few parameters,
and this has allowed theoretical ecologists to define “understandable” models composed of many
competing species. We here discuss a few examples. The first considers competition along a
resource axis, and has the restriction discussed in Chapter 9 that all �ij parameters are smaller
than one. In the second example the author did allow for the “founder controlled” situations
shown in Fig. 9.5d and Fig. 9.2c. The third example generalizes even beyond the Lotka-Volterra
model and considers the Jacobian of a large (and undefined) dynamical system, and studies that
matrix by filling it randomly.

10.1 Niche space models

There is an interesting modeling formalism for resource competition that is based on a resource
axis along which species are distributed (see Fig. 10.1) (MacArthur, 1972; May, 1974; Sche↵er
& Van Nes, 2006). Think of several species of Darwin finches that each have a preferred seed
size because they evolved di↵erent beak sizes. The preference of each species can be modeled
with a simple Gaussian function of the seed size x, i.e., fi(x) = exp[�(x � xi)2/(2�2)] that is
centered around the preferred seed size xi of species i (see Fig. 10.1). One can interpret this
function as the probability of using a seed of size x, i.e., seeds of the preferred size are consumed
with probability one. For simplicity one assumes that the species are evenly distributed over
the niche space. This boils the whole problem of niche overlap down to two parameters, i.e.,
� for the standard deviation of the Gaussian functions, and d for the di↵erence between the
preferred seed sizes of neighboring species. The niche overlap between species is completely
determined by the region where their respective Gaussian functions overlap. One can define
the niche overlap as the probability of both species eating seeds of the same size, i.e., as the
product of the Gaussian preference functions, which implies that the niche overlap is highest at
the point where two neighboring species both use a resource most. To properly scale this one
can normalize with the overlap that a species has with itself:

↵ =
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104 Co-existence in large communities

! d  !d

 � | | | � !

xi�1 xi xi+1

↵ ↵

↵
4

large seeds! small seeds

Figure 10.1: Resource usage of three “finch species” consuming seeds of di↵erent sizes. The distance
between the preferred seed size of neighboring species is d, and � is the standard deviation of the Gaussian
seed size preferences. The niche overlap between neighboring species at distance d is ↵, and hence the
overlap between species at distance 2d is ↵4 (see Eq. (10.1)).

This confirms that the niche overlap ↵ only depends on the distance d weighted by the standard

deviation �. With ↵ = e�(
d
2� )

2

, the overlap of a species with itself is indeed defined by a distance
d = 0 because ↵ = e0 = 1. The overlap between the first and the last species in Fig. 10.1 is
determined substituting by their distance 2d into Eq. (10.1), i.e.,

e�(
2d
2� )

2

= e�4( d
2� )

2

= ↵
4
. (10.2)

Likewise, one can see that the niche overlap between species at distance 3d will be ↵
9.

An ecosystem of n competing species that are equally distributed at distances d on a resource
axis can therefore be described with the Lotka-Volterra competition model of Eq. (9.19),

dNi

dt
= rNi

⇣
1�

nX
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⌘
, (10.3)

where we now know all the elements of the interaction matrix,
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and where we have given all species have the same natural rate of increase, r (because the
di↵erent ri in Eq. (9.19) play no role in the competitive strength of the species at steady state).

One can analyse this model by increasing its diversity n one by one. A system of two species
obeys

dN1

dt
= rN1(1�N1 � ↵N2) and

dN2

dt
= rN2(1�N2 � ↵N1) . (10.5)
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with

hence



n=2, 3, 4, ….
dN1

dt
= rN1(1�N1 � ↵N2) and

dN2

dt
= rN2(1�N2 � ↵N1)
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We have learned in Fig. 9.2d that this 2-dimensional ecosystem will have a stable non-trivial
steady state whenever ↵ < 1. By our definition of the maximal niche overlap of ↵ = 1 one
concludes that two species can be located infinitely close on the resource axis and co-exist, i.e.,
we obtain for the critical niche overlap of a 2-dimensional system that ↵ = 1 and d/� ! 0. Note
that this is an “artifact” of using the scaled version of the competition model, i.e., Eq. (9.19). If
two species have di↵erent birth rates, consumption rates, death rates, and carrying capacities,
they will not co-exist if the niche overlap is very small.

Next consider three species. What would be the maximal niche overlap, or the minimal distance
d, required for co-existence of all three species? This can be analyzed by considering Fig. 10.1
and numbering the species from left to right as N1, N2, and N3. This is a symmetric system, i.e.,
the ODEs of N1 and N3 should have the same structure, and dN2/dt should have the strongest
competition because it has two direct neighbors, i.e.,

dN1

dt
= rN1(1 � N1 � ↵N2 � ↵

4
N3) ,

dN2

dt
= rN2(1 � N2 � ↵[N1 + N3]) ,

dN3

dt
= rN3(1 � N3 � ↵N2 � ↵

4
N1) . (10.6)

The existence and stability of the 3-dimensional steady state can be investigated by testing the
invasion of the species in the middle, N2, in the steady state of those at the ends. For this
invasion criterion one first sets N2 = 0 to compute the steady state of the 2-dimensional system.
Employing the symmetry of the system one sets N1 = N3, and obtains their steady state by
solving N̄ = 1/(1 + ↵

4) from 1 � N � ↵
4
N = 0. When N2 ! 0 the invasion of N2 is described

by dN2/dt ' rN2(1 � ↵2N̄). This means that co-existence is guaranteed whenever

1 � 2↵

1 + ↵4
> 0 or 1 + ↵

4 � 2↵ > 0 . (10.7)

This fourth order equation can be solved numerically as ↵ < 0.54 (or d/� > 1.54), which means
that the maximal niche overlap of a 3-dimensional system is ↵ ' 0.54.

For four species one can test when one of the two species in the middle can invade in an
(asymmetric) system of three species, and for five species one can again test the middle species
in a steady state of four established species, and so on. The results of such a sequence are
summarized in Fig. 10.2a which depicts the maximal niche overlap as a function of the diversity
n of the ecosystem. The figure reveals a fast convergence to ↵ ' 0.63 (or d/� ' 1.3). This
convergence is due to the fact that the impact of the species at the very ends of the resource axis
decreases when the diversity increases. The limit that is ultimately approached, i.e., d/� ' 1.3, is
called the “limiting similarity”. This simply means that species cannot be too similar; otherwise
they exclude each other. Because the maximum niche overlap converges to ↵ ' 0.63 when the
diversity increases, one speaks of “di↵use competition”: several species together determine the
intensity of the competition on each species.

Infinite resource axis

The original analysis of this model by May (1974) addressed the relationship between the niche
overlap and the diversity of the system by considering an infinite resource axis along which
infinitely many species were distributed at distance d. An infinite system has the mathematical

N̄1/3 =
1

1 + ↵4
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Test invasion:
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Figure 10.1: Resource usage of three “finch species” consuming seeds of di↵erent sizes. The distance
between the preferred seed size of neighboring species is d, and � is the standard deviation of the Gaussian
seed size preferences. The niche overlap between neighboring species at distance d is ↵, and hence the
overlap between species at distance 2d is ↵4 (see Eq. (10.1)).

This confirms that the niche overlap ↵ only depends on the distance d weighted by the standard

deviation �. With ↵ = e�(
d
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2

, the overlap of a species with itself is indeed defined by a distance
d = 0 because ↵ = e0 = 1. The overlap between the first and the last species in Fig. 10.1 is
determined substituting by their distance 2d into Eq. (10.1), i.e.,
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Likewise, one can see that the niche overlap between species at distance 3d will be ↵
9.

An ecosystem of n competing species that are equally distributed at distances d on a resource
axis can therefore be described with the Lotka-Volterra competition model of Eq. (9.19),

dNi

dt
= rNi

⇣
1�

nX

j=1

AijNj

⌘
, (10.3)

where we now know all the elements of the interaction matrix,

A =

0

BBBB@

1 ↵ ↵
4

↵
9

↵
16

. . .

↵ 1 ↵ ↵
4

↵
9

. . .

↵
4

↵ 1 ↵ ↵
4

. . .

↵
9

↵
4

↵ 1 ↵ ↵
4

. . .

. . .

1

CCCCA
(10.4)

and where we have given all species have the same natural rate of increase, r (because the
di↵erent ri in Eq. (9.19) play no role in the competitive strength of the species at steady state).

One can analyse this model by increasing its diversity n one by one. A system of two species
obeys

dN1

dt
= rN1(1�N1 � ↵N2) and

dN2

dt
= rN2(1�N2 � ↵N1) . (10.5)



R-script: niche.R

106 Co-existence in large communities

(a) (b)

●

●

●

●

●

●
●

●
●

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of species

N
ic

he
 o

ve
rla

p

1 2 3 4 5 6 7 8 9 10

Figure 10.2: The limiting overlap computed numerically for the model of Eq. (10.3) (a) with the file
niche.R, and the results of Pianka (1974) (b).

advantage that the e↵ects of the edges disappear, which means that all equations become iden-
tical. Thanks to this simplification May (1974) was able to compute the Jacobian of the infinite
system, and could compute the dominant eigenvalue of the Jacobian as a function of the niche
overlap ↵. Because all equations were identical by the assumption of an infinite system, no single
species could ever go extinct, and the dominant eigenvalues were simply approaching zero when
the niche overlap ↵ was approaching our limiting similarity of ↵ ' 0.63. In our analysis we were
breaking the symmetry of the system by distinguishing the species in the middle from those
at the borders, and were obtaining (transcritical) bifurcation points by increasing ↵, where the
species in the middle disappeared. Because the symmetry could not break in the original infinite
system, and the eigenvalues were approaching zero when the niche overlap was increased, May
(1974) had to define variation in the abiotic circumstances that required the value of the dom-
inant eigenvalue to remain below some critical negative level. Doing so he obtained a limiting
similarity that is very similar to the one derived numerically in Fig. 10.2. The mathematical
analysis of May (1974) is addressed further in the last (challenging) exercise.

Lizard man

Pianka (1974) measured the niche overlaps between several species of lizards in various desert
habitats from all over the world. He distinguished three niche dimensions: (1) food, as deter-
mined from the contents of their stomachs, (2) habitat, and (3) the time of the day at which
they were active. These observations were translated into a single measure of the niche overlap
considering both additive and multiplicative measures for defining the total niche overlap. Pi-
anka observed that the niche overlap decreased when the diversity of the ecosystem increased
(see Fig. 10.2b). Thus, at low species numbers there was no evidence for a limiting niche overlap
in the data (compare Fig. 10.2a with b). Because the diversity ranged from four to forty species,
and the theoretical niche overlap of Fig. 10.2a converged already to 0.63 before a diversity of
ten species, Pianka (1974) concluded that the data contradicted the theory.

A simple solution for this contradiction was proposed by Rappoldt & Hogeweg (1980) who
argued that the niche space considered by Pianka (1974) was in fact not 1-dimensional. In a
2-dimensional niche space the Gaussian curves become circular and can be tiled in a hexagonal
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i.e.,
dN

dt
= N(1 �

X

j

AijN) = N(1 � N

X

j

Aij) (10.8)

which has the steady state

N̄ =
1P
Aij

=
1

1 + 2↵ + 2↵4 + 2↵9 + . . .
' 1

1 + 2↵
, (10.9)

where in the latter we have ignored all ↵
k terms for k � 4. In a large system all species in the

middle should therefore approach N̄ ' 1/(1 + 2↵). Using the same approximation one could
write for the first 3 species at the left boundary

dN1

dt
= N1(1 � N1 � ↵N2) ,

dN2

dt
= N2(1 � ↵N1 � N2 � ↵N3) ,

dN3

dt
= N3(1 � ↵N2 � N3 � ↵N4) ' N3(1 � ↵N2 � N3 � ↵N̄) , (10.10)

where N̄ in the last equation is given by Eq. (10.9). The steady state of these 3 species at the
boundary can be solved, e.g., by Mathematica. Next solving at which value of ↵ the second
species goes extinct, i.e., solving when

N̄2 =
3↵

2 � 1

(1 + 2↵)(2↵2 � 1)
= 0 , (10.11)

gives ↵ = 1/
p

3 ' 0.58, which –despite the simplifications– resembles the critical ↵ = 0.63.

Infinite resource axis

The original analysis of this model by May (1974) addressed the relationship between the niche
overlap and the diversity of the system by also considering an infinite resource axis along which
infinitely many species were distributed at distance d. An infinite system has the mathemati-
cal advantage that the e↵ects of the edges disappear, which means that all equations become
identical (see Eq. (10.8)). Thanks to this simplification, May (1974) was able to compute the
Jacobian of the infinite system, and he could compute the largest eigenvalue of the Jacobian as
a function of the niche overlap ↵. Because all equations were identical by the assumption of an
infinite system, no single species could ever go extinct, and the largest eigenvalue was simply
approaching zero when the niche overlap ↵ was approaching our limiting similarity of ↵ ' 0.63.
In our analysis we were breaking the symmetry of the system by distinguishing the species in
the middle from those at the borders, and were obtaining (transcritical) bifurcation points when
increasing ↵. Because the symmetry could not break in the original infinite system, the largest
eigenvalue was just approaching zero. May (1974) therefore had to define variation in the abiotic
circumstances that required the value of the largest eigenvalue to remain below some critical
negative level. Doing so he obtained a limiting similarity that is very similar to the one derived
numerically in Fig. 10.2b. The mathematical analysis of May (1974) is addressed further in one
of the extra exercises.

Lizard man

Pianka (1974) measured the niche overlaps between several species of lizards in various desert
habitats from all over the world. He distinguished three niche dimensions: (1) food, as deter-
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dN2

dt
= N2(1 � ↵N1 � N2 � ↵N3) ,

dN3

dt
= N3(1 � ↵N2 � N3 � ↵N4) ' N3(1 � ↵N2 � N3 � ↵N̄) , (10.10)

where N̄ in the last equation is given by Eq. (10.9). The steady state of these 3 species at the
boundary can be solved, e.g., by Mathematica. Next solving at which value of ↵ the second
species goes extinct, i.e., solving when

N̄2 =
3↵

2 � 1

(1 + 2↵)(2↵2 � 1)
= 0 , (10.11)

gives ↵ = 1/
p

3 ' 0.58, which –despite the simplifications– resembles the critical ↵ = 0.63.

Infinite resource axis

The original analysis of this model by May (1974) addressed the relationship between the niche
overlap and the diversity of the system by also considering an infinite resource axis along which
infinitely many species were distributed at distance d. An infinite system has the mathemati-
cal advantage that the e↵ects of the edges disappear, which means that all equations become
identical (see Eq. (10.8)). Thanks to this simplification, May (1974) was able to compute the
Jacobian of the infinite system, and he could compute the largest eigenvalue of the Jacobian as
a function of the niche overlap ↵. Because all equations were identical by the assumption of an
infinite system, no single species could ever go extinct, and the largest eigenvalue was simply
approaching zero when the niche overlap ↵ was approaching our limiting similarity of ↵ ' 0.63.
In our analysis we were breaking the symmetry of the system by distinguishing the species in
the middle from those at the borders, and were obtaining (transcritical) bifurcation points when
increasing ↵. Because the symmetry could not break in the original infinite system, the largest
eigenvalue was just approaching zero. May (1974) therefore had to define variation in the abiotic
circumstances that required the value of the largest eigenvalue to remain below some critical
negative level. Doing so he obtained a limiting similarity that is very similar to the one derived
numerically in Fig. 10.2b. The mathematical analysis of May (1974) is addressed further in one
of the extra exercises.

Lizard man

Pianka (1974) measured the niche overlaps between several species of lizards in various desert
habitats from all over the world. He distinguished three niche dimensions: (1) food, as deter-

or     α =
1

3
≃ 0.58
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Figure 10.1: Resource usage of three “finch species” consuming seeds of di↵erent sizes. The distance
between the preferred seed size of neighboring species is d, and � is the standard deviation of the Gaussian
seed size preferences. The niche overlap between neighboring species at distance d is ↵, and hence the
overlap between species at distance 2d is ↵4 (see Eq. (10.1)).

This confirms that the niche overlap ↵ only depends on the distance d weighted by the standard

deviation �. With ↵ = e�(
d
2� )

2

, the overlap of a species with itself is indeed defined by a distance
d = 0 because ↵ = e0 = 1. The overlap between the first and the last species in Fig. 10.1 is
determined substituting by their distance 2d into Eq. (10.1), i.e.,

e�(
2d
2� )

2

= e�4( d
2� )

2

= ↵
4
. (10.2)

Likewise, one can see that the niche overlap between species at distance 3d will be ↵
9.

An ecosystem of n competing species that are equally distributed at distances d on a resource
axis can therefore be described with the Lotka-Volterra competition model of Eq. (9.19),

dNi

dt
= rNi

⇣
1�

nX

j=1

AijNj

⌘
, (10.3)

where we now know all the elements of the interaction matrix,
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and where we have given all species have the same natural rate of increase, r (because the
di↵erent ri in Eq. (9.19) play no role in the competitive strength of the species at steady state).

One can analyse this model by increasing its diversity n one by one. A system of two species
obeys

dN1

dt
= rN1(1�N1 � ↵N2) and

dN2

dt
= rN2(1�N2 � ↵N1) . (10.5)
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distributed initially over the habitats. Diversity does not come about by stable coexistence
but by the spatial distribution of the species over the habitats. This is a fine example of the
unexpected e↵ects that spatial models may have over the well mixed ODE models.

10.3 Stability and Persistence

The relationship between the complexity of a biological system and its stability has been debated
over decades. Based on fairly romantic considerations ecologists have liked to think that the
more diverse and complex an ecosystem, the higher its degree of stability. However, one could
also turn this around by arguing that stable ecosystems have had more time to become diverse.
Importantly, it remains unclear what one means with the stability of an ecosystem. This could
vary from the local neighborhood stability that we have considered in this course, i.e., robustness
against perturbations of the population sizes around the steady state (which was measured by
the return time), to a mere persistence over time. It is rather obvious that most ecosystems are
not persisting in stable steady states, because they are all driven by seasonal fluctuations and
other disturbances. Robustness to invasion by new species can also be considered to be a form
of stability. Unfortunately, we have no well-defined modeling approach to study what properties
of an ecosystem would make it resilient to disturbances like the removal or introduction of a
species.

Classical studies of the properties of random Jacobian matrices representing the local neigh-
borhood stability of steady states of complex systems have changed the thinking about the
relationship between stability and complexity (Gardner & Ashby, 1970; May, 1972, 1974). Con-
sider an arbitrary steady state of an arbitrary (eco)system, and address the question whether
this steady state is expected to be stable. To do so, one can write a random Jacobian J , of a
system with n species. To keep the analysis manageable one poses the following requirements:
1. Let every population have a carrying capacity and the same return time to this carrying

capacity. For the Jacobian matrix this means that all elements on its diagonal have the value
�1 (i.e., 8Jii = �1).

2. The o↵-diagonal elements of the matrix are set with a probability P . Thus, P determines
the likelihood that two species are involved in an interaction. P determines the connectivity
of the system, i.e., each species is expected to have P (n� 1) interactions with other species.

3. The interaction elements that are set are drawn from a normal distribution with mean µ = 0
and standard deviation �.

Summarizing, one draws a random matrix with dimension n⇥ n of the following form

J =

0

BB@

�1 0 0 a 0 0 �b 0 . . .

0 �1 0 0 0 c . . .

0 0 �1 0 . . .

�d . . . �1 . . .

1

CCA , (10.10)

and this matrix is interpreted as the Jacobian of a steady state of an (eco)system, where a, b, . . . , d
are randomly chosen values from a standard normal distribution.

Having drawn such a random Jacobian matrix, the question is how its stability depends on the
parameters n, P , and �. One can use the theory on the dominant eigenvalue of large random
matrices to prove that the probability that the largest eigenvalue is negative, i.e., �max < 0,
strongly depends on the condition

�

p
nP < 1 . (10.11)
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Consider the Jacobian of an arbitrary steady state:

1. Every species a carrying capacity with the same return time

2. Set elements with some probability P, i.e.,  connections per row

3. Draw interaction strength form normal distribution with mean 0 and sd 

P(1 − n)
σ

Largest eigenvalue is expected to be negative when
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species, nP , need not increase, and the strength of connections, �, may decrease. Another crit-
icism on this analysis is that it only considers one steady state of the system, and that complex
systems may have very many steady states, of which only a few need to be stable to guarantee
its persistence as a high-dimensional system. Additionally, communities need not be stable and
can persist by periodic or non-periodic behavior.

Despite these criticisms, this classic work did change the historical view of “diversity entails
stability” into questions like “how do complex systems persist over long periods of time?” and
“why are complex systems relatively resistant to macroscopic perturbations?”. Addressing these
questions has indeed led to novel results showing that the non-random architecture of natural
food webs makes a di↵erence. The fact that most ecosystems have a pyramid structure, having
much more biomass at the bottom than at the top, makes that loops within the network tend
to have a low weight (Neutel et al., 2002). Weak interactions indeed tend to have a stabilizing
e↵ect (McCann et al., 1998), and it was shown for several soil communities that feedback loops
caused by omnivory tend to remain weak because of this pyramidal shape (Neutel et al., 2007).

10.3 Random assembly

For several decades theoretical ecologists have tried to create complex artificial ecosystems by
drawing randomly chosen parameters for new species, and studying which of these species can
together form a persistent community (Pimm, 1980; Post & Pimm, 1983; Law & Blackford, 1992;
Yodzis, 1989; Roberts, 1974; McCann et al., 1998; Huisman et al., 2001; Rodriguez-Sanchez
et al., 2020). Typically most of the randomly assigned species will go extinct, as they could be
unviable (R0 < 1), unable to invade into the current state of the system, or become excluded
later when other species invade. However, since these studies can allow for a large initial set
of random species, the ultimate diversity of such an artificial system could still be large. A
major advantage of this approach that species may persist because the system develops periodic
or chaotic behavior, which may circumvent the expected competitive exclusion in equilibrium
situations (Law & Blackford, 1992). Investigators have added space, with migration between
di↵erent areas, and have created systems that becomes diverse because of spatial heterogeneity,
i.e., because di↵erent species persist in di↵erent areas (Yodzis, 1989). Tilman diagrams have
been studied in high dimensions to study the relationship with productivity and diversity in plant
ecosystems (Tilman et al., 1997). We here review a small subset of these randomly parametrized
and/or high-dimensional studies to become familiar with the most common approaches, and the
results that are typically obtained.

Random Lotka-Volterra models

Roberts (1974) criticized the work on the stability of random Jacobi matrices (Gardner &
Ashby, 1970; May, 1972, 1974), arguing that these matrices may include “unfeasible” systems
having negative population sizes. Although this criticism is ill-defined, as there are no explicit
population sizes in random Jacobi matrices, he illustrated his point by numerically analyzing
the stability and the feasibility of a random Lotka-Volterra model,

dNi

dt
= Ni(ri �

nX

j

AijNj) , (10.14)

Random Lotka-Volterra models

Roberts (1974): set  where  is some random number (and all )


Solve the algebraic system , i.e.,  


Not all 

He accused Gardner, Ashby and May of considering unfeasible systems
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sampled from uniform distributions, with the constraint that the positive Aij parameter of a
predator i eating prey species j was on average 10-fold lower than the corresponding consumption
rate Aji (to model the typical 10% trophic conversion). Novel species were only allowed to enter
the system after testing whether they were able to invade (R0 > 1), and after testing that the
new species would not form a loop (like A eats B eats C eats A) (Post & Pimm, 1983). Each
successful invasion adds a row and a column to the interaction matrix, Aij . At the time this was
quite a heroic attempt. For instance, it was not feasible to numerically solve high-dimensional
systems of ODEs. Rather Post & Pimm (1983) also solved the steady states by computing the
inverse of A to solve the linear algebraic system ri �

P
AijNj = 0, and disregarding solutions

having negative population densities.

Their major findings were that the number of species grows over time (but n remained fairly
small), that the larger the number of resident species, the more di�cult it is to invade, that the
return time, TR, of the full system at steady state decreases when the diversity increases, and
that invaders that eat little, but grow well, and die slowly, do best. Thus, the system becomes
more resistant to invaders over time, which is a form of robustness, but approaches a lower
degree of stability as measured by the largest eigenvalue.

Later it was realized that communities of primary resources, consumers, and consumers of
consumers, need not persist in a stable equilibrium, as species can co-exist indefinitely on a
limit cycle or a chaotic attractor (Law & Blackford, 1992; McCann et al., 1998). In these
two papers the network of interactions in the community was predefined, e.g., as a linear food
chain, a branched food chain with two competing consumers at the same level, or a chain with
consumers eating from various levels (i.e., omnivores), and the interactions strengths were drawn
randomly. It was indeed found that for a large fraction of the parameter realizations the full
community was persisting by periodic or aperiodic behavior in the absence of an n-dimensional
stable equilibrium (Law & Blackford, 1992). Interestingly, it was shown that adding weak
interactions to such networks facilitated the persistence of the full community (McCann et al.,
1998).

Random high-dimensional resource-consumer models

Several authors have studied the general Tilman model for n cellular consumers competing for
m essential resources in a chemostat (Tilman, 1982),

dNi

dt
= Ni(fi(R1, . . . , Rm) � di) , for i = 1, . . . , n

dRj

dt
= D(Sj � Rj) �

nX

i

cijfi(R1, . . . , Rm)Ni , for j = 1, . . . , m

with fi() = bi min

✓
R1

hi1 + R1
, . . . ,

Rm

him + R1

◆
, (10.15)

where fi() takes the minimum of all Monod saturation functions for each consumer to define its
actual birth rate bifi(). The resource is consumed proportional to this birth rate multiplied with
the amount of resource, cij , contained in each cell of species i. The model would therefore apply
well for algae or bacterial growing in a chemostat. The concentration of resources in the inflow
of the chemostat is defined by the Sj parameters, D is the turnover rate of the solution, i.e.,
1/D is the residence time, and if the consumers are largely lost by being washed out from the
chemostat, one would set di = D (Huisman & Weissing, 1999; Huisman et al., 2001). Drawing
random values for the saturation constants, hij , and the amount of resource contained in each

38 Killing and consumption

R
N

●

●

(a)

R

N

0
0

h

R0�1
s

w

N̄

●

(b)

R

N

(c)

Time

D
en

si
ty

N̄

R̄

Figure 5.2: Bacteria with a Monod saturated growth function. In Panels (a) and (b) the curved red
lines depict the dR/dt = 0 nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect
in a stable steady state (as indicated by the solid symbol) located at (R, N) = (R̄, N̄). The black line
in Panel (b) is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the
trivial steady state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the
bacterial growth curve looks like a sigmoid logistic growth process. This figure was made with the model
chemoMonod.R.

that is maintained by a source, and with a linear functional response (leading to mass-action
consumption and birth terms), is therefore expected to have a stable steady state (the carrying
capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities, and that this is limited by the rate at which a
bacterium can consume nutrients. Thus, the division rate of bacteria is typically proportional to
their consumption rate. The saturation at high nutrient densities is modeled with a simple Hill
function, f(R) = R

h+R
, which in this literature has been coined as the Monod saturation function.

Allowing for saturation and assuming that the rate at which bacteria divide is proportional to
the rate at which they take up nutrients, one would write

dR

dt
= s � wR � aRN

h + R
and

dN

dt
=

caRN

h + R
� (w + d)N =

caRN

h + R
� �N . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per capita
consumption rate is half maximal, we now have a model that is also realistic at high resource
densities. The fitness R0 of the bacteria can here be defined in two ways. First, one could invoke
the maximum resource density, R = s/w, to compute a maximum division rate cas/w

h+s/w
= cas

wh+s
.

With an expected residence time of 1/� this would correspond to an R0 = cas

�(wh+s) . Second, one
could go for a much simpler definition of R0 by making use of the fact that the division rate
approaches a maximum, ca, at infinite resource densities, which provides an R0 = ca

�
. The latter

R0 is elegantly simple and will be used to clean up the expressions for the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
state of the resource, R̄ = h�

ca��
= h

R0�1 , where R0 = ca

�
. The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at the non-trivial R = R̄ (see Fig.

Consider a fixed number of resources and keep on adding random consumers 
(Huisman, et al, 1999, 2001). Matrix c defines contents, matrix h the consumption.
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c. Determine the parameter conditions for successful invasion of the third species in the steady
state of the other two, and give a biological interpretation in terms of competition strengths.

d. You may try to sketch the 3-dimensional phase space of this system for the invasion criterion.
What do you expect to happen if the new species invades successfully?

Question 10.2. Random Lotka-Volterra competition
In this chapter we have reviewed the work of Roberts (1974) and concluded that it remains
somewhat abstract because the model defines consumers also experiencing resource-independent
symbiotic interactions, interference competition, or parasitic interactions with all other species.
Additionally, it would be a good sanity check what the results would have been when the growth
rates, ri, and/or o↵-diagonal Aij elements, have somewhat di↵erent random values. One can also
use the same model to study random systems of species competing for resources by restricting
the o↵-diagonal elements to Aij � 0, meaning that all interactions are competitive.
a. Modernize the model by redefining z as an average and drawing the o↵-diagonal Aij elements

from a normal distribution with an average of +z or �z. One can also draw the growth rates,
ri, from a normal distribution (e.g., r<-rnorm(n,1,0.1)). How does the ultimate diversity
of the system depend on this average value of z? Hint, remember that Eq. (10.13) suggested
that stronger interactions decrease the likelihood of find a stable steady state. How does the
ultimate diversity of the system depend on the initial number of species the simulation start
with?

b. How would you define a model for many species competing randomly for resources?
c. Study this model to gain some intuition on the relationship between the total number of

species n, and the strength of the niche overlap, i.e., the average of the o↵-diagonal Aij

elements. Hint, remember that 0 < Aij = Aji < 1 would correspond to resource competition,
and that interference competition need not be symmetric and could be larger than one.

Question 10.3. Huisman
To facilitate the comparison of the R-script huisman.R with the model defined in their paper, we
here first repeat Eq. (10.15) in the original notation of the Huisman & Weissing (1999) paper:
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In the R-script huisman.R we allow for nr di↵erent resources, i.e., m = nr, and we define a po-
tentially endless list of consumers, i.e., n = 1, 2, · · · ,1, each having a birth rate ri, a vector of m

randomly chosen saturation constants, Kij , and a vector of m resource contents, cij . The birth
rates of all consumers are collected in the vector r, the vectors of saturation constants in the list
Ks, and the vectors of resource contents in the list Cs. To not allow for consumers with low satu-
ration constants for all resources the average of the m saturation constants is scaled to 0.5 for ev-
ery invader, i.e., Ki <- runif(nr,0,1); Ki <- 0.5*Ki/mean(Ki), and by default the resource
constants correlate with the saturation constants, i.e., Cs[[i]] <- 0.05*Ki*rnorm(nr,1,0.01)

(Huisman et al., 2001). Note that in the model we have to unpack the Ks list into a numerical vec-
tor, i.e., mu <- r*unlist(lapply(Ks, function(x){min(R/(x+R))})). A total of Ninvaders
consumers is introduced sequentially. If a new consumer cannot invade into the current state of
the system, new parameters are drawn until a successful colonist is found (this may take many
trials after the community has filled up). Typically only a small subset of them can co-exist on
m resources. This is reported at the end by the variable Npresent.
a. Does this procedure of letting random consumers sequentially invade lead to the aperiodicity

that is required for having more consumers than resources?
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cell, cij , one can study how many consumers can coexist on a limited number of resources, m.
One realistic scenario is that species containing a large amount of a particular resource also need
a high concentration of this resource to achieve a half-maximal birth rate, i.e., that hij and cij

are positively correlated (Huisman et al., 2001).

Huisman & Weissing (1999) studied this model in parameter regime where the populations
fluctuate (periodically or chaotically), to show that in such non-equilibrium situations many
consumers can be maintained on a limited number of resources, i.e., they proposed that the
“Paradox of the plankton” (Hutchinson, 1961) can be solved in non-equilibrium situations. Re-
member that we have seen in Eq. (5.6) that the non-trivial steady state of a 2-dimensional
Monod-saturated consumer-resource model with a non-replicating resource tends to be stable.
Huisman & Weissing (1999) therefore enabled the high-dimensional system to oscillate by defin-
ing cyclic dependencies between the consumers, e.g., when species succeed each other by being
the better competitor a unique resource, while they are limited more by the another resource,
that the next species is the better competitor for (Huisman & Weissing, 1999). Because such a
cyclic topology need not be realistic (Huisman et al., 2001), you can study the same competitive
system with a more random network of interactions in the exercises, e.g., by drawing random
values for the saturation constants, hji, and assuming the cjis to be proportional (which is
scenario 3 in Huisman et al. (2001)).

Rodriguez-Sanchez et al. (2020) study a somewhat similar system with replicating resources to
study under what parameter regimes chaos or periodic behavior is to be expected. They define a
high-dimensional form of the Monod-saturated consumer-resource model that is parameterized
on freshwater plankton systems. They consider additive resources, i.e.,
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for i = 1, . . . , n consumers and j = 1, . . . , m resources, respectively. Note that we have derived
a similar functional response in Eq. (7.16), and that this function allows for a “kill-the-winner”
e↵ect (Winter et al., 2010), because a heavy consumption of one particular resource, i.e., a large
SijRj element, reduces the consumption of the other resources. Here ri is the maximal growth
rate of the resource, K is a carrying capacity, g is a grazing rate, e is a conversion factor, h

is the saturation constant of the saturation function, d is the death rate of consumers, Aij the
m ⇥ m competition matrix between resources, and Sij the n ⇥ m consumer-preference matrix
(Rodriguez-Sanchez et al., 2020). They vary the total number of resources and consumers, but
initialize the system with more resources than consumers, i.e., n : m = 2 : 3 (Rodriguez-Sanchez
et al., 2020). The competition coe�cients, Aij , were drawn randomly from di↵erent uniform
distributions centered below, around and above one (keeping Aii = 1, 8i).

They run simulations with strong interspecific competition (Aij > Aii), with near-neutral sys-
tems (Aij ' Aii), and with systems where the intra-specific competition (Aij < Aii) dominates.
Since not all resource specie survive in these simulations, they may find non-equilibrium situa-
tions where the number of persisting consumers outnumbers the number of surviving resource
(despite starting with n : m = 2 : 3). The major result is that this system is most likely
to be chaotic or periodic, when the competition coe�cients are very similar (i.e., in the near-
neutral Aij ' 1 regime). This establishes a connection between explaining high diversity with
non-equilibrium behavior (Huisman & Weissing, 1999), and with neutral competition (Hubbell,
1979, 2001). In the exercises you can study this system to see whether or not the number of
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lattice. In such a 2-dimensional lattice there are many more species at the borders of the niche
space, and it takes a much higher diversity for the e↵ects of the borders to peter out. The lizard
data of Fig. 10.2b therefore confirm the theory, rather than contradict it, because Pianka indeed
had more than one niche dimension in his data (Rappoldt & Hogeweg, 1980). Finally, Pianka
(1974) observed that deserts with the highest amount of rain per year had the highest diversity,
which is not suprising because the total production (and hence the length of the resource axis)
is probably limited by the precipitation in deserts. Because the niche overlap decreased when
the diversity increased (Fig. 10.2b), we can understand from this model that the amount of
precipitation was correlated negatively with the average niche overlap (see Pianka (1974)).

10.2 Monopolization

For our second example we turn to Yodzis (1978) who was interested in the relation between
the diversity of a community and the strength of its competitive interactions. It is indeed quite
di�cult to have a good intuition about this relation. One could argue that if there is more
competition that there will be more competitive exclusion, and hence less diversity. Studies by
Gardner & Ashby (1970) and May (1972) have also suggested that the more interactions there
are in ecosystems, and the stronger the interaction strengths, the lower the probability that a
diverse ecosystem will be stable (see below).

Yodzis (1978) created diverse in silico ecosystems in computer simulations changing the intensity
of the competitive interactions and the initial diversity of the simulation. Running the model on a
computer, several of the species in the initial pool went extinct until the simulation approached
a diversity that remained at a reasonably stable level over long periods of time. The model
ecosystem had a large number of habitats in which all species could be present, and there
was a di↵usive flux of individuals from habitat to habitat. The abiotic circumstances were
considered to be identical in each of the habitats, i.e., the same competition coe�cients were
used everywhere.

Yodzis (1978) considered an initial pool of n di↵erent species that were randomly distributed
over m habitats, and defined Nai as the population size of species i in habitat a. The flux
of individuals of species i between habitats a and b was described by a symmetric “dispersal”
matrix D, where Dab depends inversely on the distance from habitat a to b, and defines the rate
at which individuals move from a to b. Since Dab is a per capita flux, the total flux of individuals
from species i at habitat a to b has to be multiplied with the local population density Nai . The
net flux of individuals between two habitats is then given by

dNai

dt
= DabNbi �DbaNai = Dab(Nbi �Nai) , (10.8)

given that Dab = Dba because the distance from a to b is the same as that from b to a. Like
in a di↵usion equation, we observe that the net flux is proportional to the di↵erence in the
concentrations, i.e., the di↵erence between population sizes in the two habitats.

Combining an n-dimensional form of Eq. (9.19) with Eq. (10.8) one ends up with a model
ecosystem of n⇥m ODEs

dNai

dt
= Nai
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Figure 10.3: Figure 5.5 in Yodzis (1989) page 144: the steady state diversity as a function of the initial
number of species, for various intensities of the competition C.

for a = 1, . . . ,m and i = 1, . . . , n. Here Aij is the interaction matrix containing all competi-
tion coe�cients. The growth rates were removed mathematically by giving all species the same
growth rate, and scaling time by this fixed growth rate. All species were given the same intraspe-
cific competition by setting Aii = 1, 8i. The other competition coe�cients and the dispersal
rates were drawn randomly.

From Eq. (9.19) and Fig. 9.2 we have learned that the outcome of competition between any
two species depends crucially on the ratio of the interspecific competition parameters � and the
intraspecific competition strength (that was scaled to one). If both �-s happen to be smaller
than one, the nullclines intersect in a stable steady state, and if both are larger than one the
non-trivial steady state is a saddle point leading to founder controlled competition (see Fig.
9.2). Yodzis (1978) varied the randomly chosen interaction strengths and defined a “global”
competition strength parameter, C, for the probability that a randomly chosen matrix element
was larger than one, i.e., C = P (Aij > 1). The values of the interaction matrix, Aij , were drawn
from a normal (or uniform) distribution. Knowing C, stable coexistence between any pair of
species is expected with probability (1 � C)2, and the unstable founder controlled phase space
is expected with probability C

2. Competitive exclusion is expected when Aij < 1 and Aji > 1,
or Aij > 1 and Aji < 1, which will occur with probability 2C(1�C). We can do a sanity check
and see that the sum (1�C)2+C

2+2C(1�C) = 1. Yodzis (1978) considered systems in which
stable coexistence should be rare, i.e., he was working with distributions yielding high values of
C. Choosing C � 0.9 the probability of any species pair having a stable coexistence was small,
i.e., maximally (1 � C)2  0.01. The probability of finding the founder controlled situation is
much higher, i.e., C2 � 0.81. Having set all parameters, i.e., all matrix elements, the species
were distributed randomly but scarcely over the patches, i.e., initially most species were only
present in a few patches, and would only then start to disperse to all other patches.

Running the simulations until a steady state was approached, a fraction of the species in the
initial species pool would typically go extinct, and the ecosystem approached the diversity
depicted in Fig. 10.3. The figure shows that increasing the diversity of the initial species pool,
and/or increasing the competition strengths, increased the final diversity of the ecosystem. This
suggests that the more complex the ecosystem the higher its diversity, which is a controversial
result (Gardner & Ashby, 1970; May, 1972, 1974; Grime, 1997; Hanksi, 1997; McCann et al.,
1998). The reason why the diversity increases with competition strength in these simulations
is its spatial embedding, i.e., in each habitat one initially finds only a small selection of the
species. Having many founder controlled situations the species that settle initially in a habitat
can approach their carrying capacity before other species invade and approach su�ciently large
numbers to have a chance to win the competition. Basically the model is a “resident always
wins” system, and the final diversity is largely determined by the number of species that are
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of novel resources by the consumers, which is called “cross-feeding” (Goldford et al., 2018;
Dal Bello et al., 2021). These novel resources are typically metabolic byproducts produced by
the microbiota after consuming a primary resource. Since the consumption of these byproducts
by other microbes can lead to the production of even more metabolic byproducts, one obtains
networks where consumers create novel niches that may be exploited by other consumers, which
in a recursive manner can again create novel niches. By creating novel niches competitive
exclusion can be circumvented, since by even maintaining just a single species within each niche,
cross-feeding would be able account for high diversity in a community at steady state.

Recent models for cross-feeding consider chemostats, and tend to use mass-action consumption
terms (Goldford et al., 2018; Dal Bello et al., 2021). The formation of novel metabolic byproducts
has been chosen randomly (Goldford et al., 2018), or has been based upon the stoichiometry of
the metabolites (Dal Bello et al., 2021). In both papers the biomass of metabolites is conserved
by defining fractions summing up to one (Goldford et al., 2018; Dal Bello et al., 2021). The
co-existence of several bacterial species was studied in chemostats where bacteria are feeding on
various carbon sources, like glucose, citrate and/or leucine. It was shown that several species
can co-exist on a single resource because novel metabolic by-products are secreted into the
solution (Goldford et al., 2018). This data was studied by extending standard mass-action
resource-consumer models with the formation of novel resources, e.g.,
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where C is a matrix defining the conversion rates from resource j into species i, Si is a species-
specific stoichiometric matrix, with Si,jk defining the number of molecules of resource j secreted
by species i per molecule of resource k it has taken up. The interaction matrix A collects the
mass-action consumption rates of species i on resources j. R̂i is the concentration of resource
i in the supply, which is zero for all novel metabolic byproducts, and w is the dilution rate of
the chemostat. The energy (or biomass) of the resource is conserved because the conversion
rates, Cij , are scaled by the secretion rates, i.e., Cij = cj �

P
k
Si,jkck, where cj is the maximum

energy (or biomass) supplied by resource j (Goldford et al., 2018). These matrixes were defined
by drawing random parameters for hundreds of species, and it was demonstrate that a model like
this can account for the data, where many species co-existed in equilibrium with just a limited
number of resources in the supply, and species form functional groups specialized on particular
resources (Goldford et al., 2018).

Dal Bello et al. (2021) define a stoichiometric matrix based upon known metabolic pathways,
and consider a much simpler chemostat where every consumer, Ni, just feeds upon a single
resource, Ri,

dNi
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= (1 � ↵i)biRiNi � wNi ,
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= w(R̂i � Ri) � biRiNi +
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j

Sij↵jbjRjNj , (10.20)

where bi is a mass-action consumption rate (also defining the birth rate of the consumer), and
↵i defines a fractional “leakage” parameter (resembling the corrected conversion parameter of
Eq. (10.19)). R̂i is again the concentration of resource i in the supply (which is zero for all
novel metabolic byproducts). The stoichiometric matrix Sij defines whether the ith metabolite
is produced when metabolite j is consumed (Dal Bello et al., 2021). The chemostat starts with
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co-existence of several bacterial species was studied in chemostats where bacteria are feeding on
various carbon sources, like glucose, citrate and/or leucine. It was shown that several species
can co-exist on a single resource because novel metabolic by-products are secreted into the
solution (Goldford et al., 2018). This data was studied by extending standard mass-action
resource-consumer models with the formation of novel resources, e.g.,
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where C is a matrix defining the conversion rates from resource j into species i, Si is a species-
specific stoichiometric matrix, with Si,jk defining the number of molecules of resource j secreted
by species i per molecule of resource k it has taken up. The interaction matrix A collects the
mass-action consumption rates of species i on resources j. R̂i is the concentration of resource
i in the supply, which is zero for all novel metabolic byproducts, and w is the dilution rate of
the chemostat. The energy (or biomass) of the resource is conserved because the conversion
rates, Cij , are scaled by the secretion rates, i.e., Cij = cj �
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energy (or biomass) supplied by resource j (Goldford et al., 2018). These matrixes were defined
by drawing random parameters for hundreds of species, and it was demonstrate that a model like
this can account for the data, where many species co-existed in equilibrium with just a limited
number of resources in the supply, and species form functional groups specialized on particular
resources (Goldford et al., 2018).

Dal Bello et al. (2021) define a stoichiometric matrix based upon known metabolic pathways,
and consider a much simpler chemostat where every consumer, Ni, just feeds upon a single
resource, Ri,
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where bi is a mass-action consumption rate (also defining the birth rate of the consumer), and
↵i defines a fractional “leakage” parameter (resembling the corrected conversion parameter of
Eq. (10.19)). R̂i is again the concentration of resource i in the supply (which is zero for all
novel metabolic byproducts). The stoichiometric matrix Sij defines whether the ith metabolite
is produced when metabolite j is consumed (Dal Bello et al., 2021). The chemostat starts with
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