

Quadratic equation: The general solution of a quadratic equation $ax^2 + bx + c = 0$ is given by the so-called *abc-formula*:

 $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ with $D = b^2 - 4ac$, and **complex numbers** are obtained when D < 0, by defining $i^2 = -1 \Leftrightarrow i = \sqrt{-1}$, e.g., $\sqrt{-2} = i\sqrt{2}$.

Linearization:

 $f(x,y) \simeq f(\bar{x},\bar{y}) + \partial_x f(\bar{x},\bar{y}) \left(x - \bar{x}\right) + \partial_y f(\bar{x},\bar{y}) \left(y - \bar{y}\right)$

The 1D linear differential equation dN/dt = kN has the solution: $N(t) = N_0 e^{kt}$, where N_0 is an (arbitrary) initial value of N.

Eigenvalues and eigenvectors of a 2D matrix: $\begin{pmatrix} a & b \\ c & d \end{pmatrix},$

are defined by the characteristic equation: $\lambda^2 - \text{tr}\lambda + \text{det} = 0$, where tr = a + d and det = ad - bc, i.e., $\lambda_{1,2} = (\text{tr} \pm \sqrt{D})/2$, where $D = \text{tr}^2 - 4 \text{ det}$. When D > 0 the eigenvalues are real, otherwise they form a complex pair $\lambda_{1,2} = \alpha \pm i\beta$, where $\alpha = \text{tr}/2$ and $\beta = \sqrt{-D}/2$. The eigenvectors are found by substituting λ_1 and λ_2 into:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -b \\ a - \lambda_i \end{pmatrix}$$
 or $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} d - \lambda_i \\ -c \end{pmatrix}$

The solution of a linear system of ODEs

 $\begin{cases} dx/dt = ax + by \\ dy/dt = cx + dy \end{cases} \leftrightarrow \begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ is given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = C_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} e^{\lambda_1 t} + C_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} e^{\lambda_2 t} ,$$

which grows whenever $\lambda_{1,2} > 0$, and where the integration constants C_1 and C_2 define the initial condition (x(0), y(0)).

For general non-linear systems

 $\begin{cases} dx/dt = f(x,y) \\ dy/dt = g(x,y) \end{cases}$ the equilibria are solved from setting f(x,y) = 0 and g(x,y) = 0. The x' = 0and y' = 0 nullclines are given by f(x,y) = 0 and g(x,y) = 0, respectively. The vector field switches at the nullclines, and can be determined from an extreme value of x and/or y. The equilibrium type can be found by linearizing the ODEs and evaluating the trace and determinant of the **Jacobian** $J = \begin{pmatrix} \partial_x f & \partial_y f \\ \partial_x g & \partial_y g \end{pmatrix}$ at the equilibrium.

The signs (+, -, 0) of these partial derivatives can be determined using the **graphical Jacobian** method:

Eigenvalues determine the **equilibrium type**, as shown in the figure below, where the straight lines are the eigenvectors:

The equilibrium type can be determined form the trace and determinant of the Jacobian:

Common equations:

Equation	Solution	Conditions
$x^n = p$	$x = p^{\frac{1}{n}} = \sqrt[n]{p}$	x > 0, p > 0
$g^x = c$	$x = \log_g c$	$x>0,g>0,g\neq 1$
$\log_g x = b$	$x = g^b$	$g > 0, g \neq 1$
$e^x = c$	$x = \ln c$	c > 0
$\ln x = b$	$x = e^b$	

Working with powers

Working with fractions

 $\frac{a}{b} = \frac{ca}{cb} \qquad \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} = a \times \frac{c}{b} = \frac{ac}{b}$ $\frac{a}{b} \times c = \frac{ca}{b} \qquad \qquad \frac{ac}{bd} = a \times c \times \frac{1}{b} \times \frac{1}{d} = \frac{a}{b} \times \frac{c}{d} \qquad \qquad \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$

Logarithms

The following applies: if $x = n^b$, then $\log_n x = b$, with n > 0 and $n \neq 1$. The following rules apply to working with logarithms, provided a, b, n, q > 0 and $n, q \neq 1$:

$\log = \log_{10}$	$\log_n ab = \log_n a + \log_n b$	$\log_n a^p = p \times \log_n a$
$\ln = \log_e$	$\log_n \frac{a}{b} = \log_n a - \log_n b$	$\log_n a = \frac{\log_q a}{\log_q n}$

Derivatives

function derivative g(x) = cf(x)q'(x) = cf'(x)p'(x) = f'(x) + g'(x)p(x) = f(x) + g(x)sum rule q'(x) = f'(x)q(x) + f(x)q'(x).q(x) = f(x)q(x)product rule r'(x) = f'(g(x))g'(x)r(x) = f(g(x))chain rule $q(x) = \frac{f(x)}{q(x)}$ $q'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ quotient rule

Derivatives for some common functions:

$x^n \to n x^{n-1}$	$\log_n x \to \frac{1}{x \ln n}$
$e^x o e^x$	$\sin x \to \cos x$
$g^x o g^x \ln g$	$\cos x \to -\sin x$
$\ln x \to \frac{1}{x}$	$\tan x \to \frac{1}{\cos^2 x} = 1 + \tan^2 x$

Complex numbers:

The addition of complex numbers is adding their real and imaginary parts, (a+bi)+(c+di) = (a+c+[b+d]i), like summing vectors. The multiplication of complex numbers follows similar rules:

$$(a+b\mathbf{i})(c+d\mathbf{i}) = (ac+ad\mathbf{i}+bc\mathbf{i}+bd\mathbf{i}^2) = (ac-bd+[ad+bc]\mathbf{i}).$$

November 10, 2021