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Research interests

The aim of my research is to understand biotic systems as dynamic information processing systems
at many interconnected levels. In the seventies we identified the study of informatic processes in
biotic systems as an open and promising research area for which we coined the term Bioinformatics1.
Bioinformatics in this broad sense provides us with a unified framework for a research area for which
a variety of names have now become fashionable, which includes, apart from bioinformatics ss (i.e.
data-analysis of e.g. genomic data), the dynamic modeling approaches referred to as “systems
biology”, “computational life sciences”, “computational biology”, and which partially overlaps with
“complex systems research” and “Artificial Life”.

Realizing that the main challenge in modeling biotic systems is choosing interesting simplifying as-
sumptions which do not ’beg the question’ relative to the complexity of the biotic systems studied,
we pioneered the use of novel computational modeling frameworks to study fundamental biological
questions. Currently the focus is on evolutionary and developmental processes at multiple space
and time scales, including the interplay between regulatory and evolutionary adaptation, informa-
tion accumulation in prebiotic evolution morphogenesis at the inter-phase between regulatory and
mechanic processes ecosystem embedded learning processes.

Below, I summarize my main contributions to computational methods and to bioinformatic theory
in chronological order. The numbers refer to publications in the list of selected publications listed
below.
A full list of publications is available at my website (http://bioinformatics.bio.uu.nl/ph/publications).

Computational methods
• Introduction of individual based modeling strategies to study animal behavior. This modeling

strategy has led to insight in the explanatory power of “opportunity based” rather than “opti-
mality based” description for behavior. Moreover it provides a substrate for studying evolution
and learning. Our methodology of individual based modeling helped define the research under
the heading “artificial life’ - and is now generally known as agent based modeling.(cf. 38-40,42,45-

47;34,36,30,14)

• When in the beginning of the 80th the first sequence data became publicly available, we developed
some data-analyzing methods which have proven their lasting usefulness. We introduced an
algorithm for tree based multiple sequence alignment; This approach is now standard practice.
for global multiple sequence alignment. Iterative methods were introduced at that time as well
and are gaining more and more support. We also pioneered studies in RNA secondary structures
and proposed the so-called mountain range representation of RNA secondary structure which is
now incorporated in standard folding packages. (cf. 43-44,41,35,50)

• Introduction of individual based cellular automata as useful tools to study spatial ecological
processes. The spatial patterns emerging due to local interactions between individuals were
shown not only to be crucial for coexistence of species but also provide a rich substrate for
1the Oxford dictionary defines the word in this broad sense because we were the first to use it
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evolution. The combination of CA and evolutionary algorithms has been shown to be important
in studying biological evolution, and has provided new methods for evolutionary optimization.(cf.
37,32-33,29,25,20,6)

• As a framework for multilevel modeling of developmental processes in which we can combine
informatic regulatory processes with mechanical interactions we extended the 2-scale CA model
of Glazier and Graner to incorporate chemotaxis, cell growth and cell death, cell polarity, and
internal molecular dynamics. In this way a powerful modeling framework is created for studying
morphogenesis.(cf. 27,21-23,17-19,9)

• Evolution based modeling methodology to (1) deal with the parameter uncertainty inherent in
large scale biological models(cf. 10,3) (2) uncover “generic non-generic phenomena” and therewith
to tackle complex to complex mapping in biotic systems.24)

Bioinformatic theory
• self-organization in socioinformatic processes

Damped positive feedback on dominance (also called winner-looser effect) together with oppor-
tunity(rather than optimality) based behavior as an explanation of social interactions in animal
groups and its automatic adaptation to environmental changes. We demonstrated this in models
of bumblebee colonies as well as abstract entities. This insight has later been used for explaining
other e.g. primate social structures, and is now being applied to study social learning and the
development of animal cultures. (cf. 45-46,30,14,9)

• eco-evolutionary processes in space
We were the first to demonstrate the profound influence of local interaction in space on ecological
and evolutionary phenomena. When we first published these results they were hailed by Robert
May in Nature as “growth area” - and this has indeed been the case. We have shown:
- Ecological interactions (predation,parasitism,competition and mutualism) give rise to spatial

pattern formation. Spatial pattern formation (SPF)enslaves the dynamics of the replicators.
- SPF leads to stable coexistence in many cases where extinction is wrongly predicted with

classical models (cf. 32-33, 16)

- SPF leads to multilevel selection and therewith to counter intuitive selection pressures, e.g.
positive selection for decay

- In particular, due to SPF, ecological and evolutionary timescales interlock - refuting the long
held requirement of immediate benefits.(cf. 25-26, 15)

- Multiple level selection and interlocking timescales appear to be requisites for the evolution
of ’complex’ versatile organisms which adapt to the environment through physiological rather
than evolutionary changes 6,20)

• nonlinear genotype-phenotype mapping
This is an other important inroad to understand the evolution of the complexity of biotic systems.
- RNA folding. We took the RNA sequence to secondary structure mapping as paradigm as

this is the only model for genotype-phenotype mapping which is explicitly computable. Our
(and related) research has uncovered to importance of neutral path in adaptive evolution, the
feasibility of multiple coding and the evolution toward robustness.(cf. 31,28,29,5,13)

- Regulatory networks and the interplay between regulatory and evolutionary adaptation. (cf.

7,10)

• Morphogenesis at the interface between dynamic and informatic processes
Although it is a truism to say that organisms are physical dynamical systems which have evolved,
they are rarely studied as such. The modeling methodology we developed as extension for Glazier
Graner (CPM) model gives us a versatile way to do so. Using it we have demonstrated:
- the dynamic unfolding of the life-cycle of Dictyostelium discoideum through interaction of cell
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signaling, chemotaxis and differential adhesion with a role of cell differentiation only during
culmination.(cf. 27,23,19,17)

- the generic nature of a number of morphogenetic mechanisms like mistimes, convergence
extension, engulfing, by the interaction of of cell adhesion and cell differentiation.(cf. 21-22)

- mosaic evolution and mutational priming of morphological features. (cf. 18)

Current research continues on eco-evolutionary dynamics and morphogenesis and newly focuses on
“adaptive genomics” in which we combine pattern analysis of genomic data and dynamic (multi-level
modeling) bioinformatic approaches to study the interface between gene regulation and evolution
in uni- and multicellular organisms. Our experience with both static and dynamic bioinformatics
is rather unique and gives exciting opportunities to convert the flood of genomic data into theory.
Recent (2006-2007) results and current work include the demonstration of evolution of evolvability
(mutational priming), both at the level of genome organization due to transposon dynamics and
at the level of regulatory networks(cf. 7,in press), the identification of some regulatory network fea-
tures as a side-effect of the mutational processes(cf. 12) and the intriguing observation that at the
onset of the major prokaryotic lineages large changes the ratio between the number of transcription
factors and genome size occurred and then remained essential fixed within that lineage.(cf. 8) We
have demonstrated complexification in the RNA world due to interactions between RNA secondary
structure formation and spatial pattern formation (cf 4,(in press)), and we have shown that an evo-
lutionary perspective is very help full to validate large scale system biology models.(cf. 10,3,in press)

Moreover, we have developed, and experimentally verified, a detailed model of root development
spanning various orders of magnitude in space and timescales: am auxin capacitor governes root
growth from seconds to weeks.(cf. 1)

Selected Publications (updated Feb 2008)

1. Grieneisen V.A., Xu J., Maree A.F., Hogeweg P. & Scheres B. (2007),
Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449: 1008-1013.

2. Van Hoek M.J. & Hogeweg P. (2007b),
The role of mutational dynamics in genome shrinkage. Mol. Biol. Evol., 24: 2485-2494

3. Van Hoek M. & Hogeweg P. (2007a),
The effect of stochasticity on the lac operon: an evolutionary perspective. PLoS. Comput. Biol., 3: e111.

4. Takeuchi N. & Hogeweg P. (2007b),
The Role of Complex Formation and Deleterious Mutations for the Stability of RNA-Like Replicator Systems. J. Mol. Evol., 65: 668-686.

5. Takeuchi N. & Hogeweg P. (2007a),
Error-threshold exists in fitness landscapes with lethal mutants. BMC. Evol. Biol., 7: 15

6. Hogeweg P. (2007),
From population dynamics to ecoinformatics: Ecosystems as multilevel information processing systems. Ecological Informatics, 2: 103-111.

7. Crombach A. & Hogeweg P. (2007),
Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol. Biol. Evol., 24: 1130-1139.

8. Cordero O.X. & Hogeweg P. (2007),
Large changes in regulome size herald the main prokaryotic lineages. Trends Genet., 23: 488-493

9. Marée AFM, Grieneisen VA, Hogeweg P (2007) The Cellular Potts Model and Biophysical Properties of Cells, Tissues and Morphogenesis
in: Single-Cell-Based Models in Biology and Medicine (eds Anderson ARA, Chaplin MAJ and Rejniak KA) Birkhauser Verlag Basel/Switserland
2007 Maree AFM, Grieneisen VA, Hogeweg P The Cellular Potts Model and Biophysical Properties of Cells, Tissues and Morphogenesis in:
Single-Cell-Based Models in Biology and Medicine (eds Anderson ARA, Chaplin MAJ and Rejniak KA) Birkhauser Verlag Basel/Switserland

10. Van Hoek M.J. & Hogeweg P. (2006),
In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose. Biophys. J., 91: 2833-2843

11. Van Der Post D.J. & Hogeweg P. (2006),
Resource distributions and diet development by trial-and-error learning. Behav. Ecol. Sociobiol., 61: 65-80

12. Cordero O.X. & Hogeweg P. (2006),
Feed-forward loop circuits as a side effect of genome evolution. Mol. Biol. Evol., 23: 1931-1936

13. Takeuchi N., Poorthuis P.H. & Hogeweg P. (2005),
Phenotypic error threshold; additivity and epistasis in RNA evolution. BMC. Evol. Biol., 5: 9

14. Van der Post D.J. & Hogeweg P. (2004),
Learning what to eat: Studying inter-relations between learning, grouping and evironmental conditions in an artificial world. LNCS, 3305:
492-501.

15. Hogeweg P. & Takeuchi N. (2003),
Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Orig Life Evol Biosph., 33: 375-403.

16. Groenenboom M.A.C. & Hogeweg P. (2002),
Space and the persistence of male-killing endosymbionts in insect populations. Proc. R. Soc. Lond. B. Biol. Sci., 269: 2509-2518.

17. Mare A.F.M. & Hogeweg P. (2002),
Modelling Dictyostelium discoideum morphogenesis: the culmination. Bull. Math. Biol., 64: 327-353

18. Hogeweg P. (2002a),
Computing an organism: on the interface between informatic and dynamic processes. Biosystems, 64: 97-109

19. Marée A.F.M. & Hogeweg P. (2001),
How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA, 98:
3879-3883

20. Pagie L.W.P. & Hogeweg P. (2000).

3



Information integration and red queen dynamics in coevolutionary optimization. Proceedings CEC 2000, pp. 797-806.
21. Hogeweg P. (2000b),

Shapes in the shadow: Evolutionary dynamics of morphogenesis. Artif. Life, 6: 85-101.
22. Hogeweg P. (2000a),

Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. theor. Biol., 203: 317-333.
23. Marée AF, Panfilov AV, Hogeweg P (1999a),

Migration and thermotaxis of dictyostelium discoideum slugs, a model study. J Theor Biol 199(3):297-309 :1915-1919
24. Hogeweg, P. (1998),

On searching generic properties in non-generic phenomena: an approach to bioinformatic theory formation. Artificial Life VI (e.s C. Adami,
R.K Belew, H. Kitano and c.E. Taylor MIT press pp 285-294

25. Pagie, L and P. Hogeweg (1998),
Evolving adaptability due to coevolving targets. Evolutionary computation 5:401-418

26. Savill, N. J. , Rohani, P. and Hogeweg, P. (1997c),
Self-reinforcing spatial patterns enslave evolution in a host-parasitoid system J. theor. biol. 188: 11-20

27. Savill, N. J. and Hogeweg, P (1997a),
Modeling morphogenesis: from single cells to crawling slugs J. theor. Biol 184:229-235

28. Huynen, M.A. and Hogeweg, P. (1994),
Pattern generation in molecular evolution: exploitation of the variation in RNA landscapes. J. Mol.Evol 39:71-79

29. Hogeweg, P. (1994),
Multilevel Evolution: replicators and the evolution of diversity. Physica D 75 275-291

30. te Boekhorst IJA and Hogeweg, P. (1994),
Selfstructuring in artificial ’CHIMPS’ offers new hypotheses for male grouping in cgimpanzees. Behaviour 130:229-252

31. Huynen, M.A., D.A.M. Konings and P. Hogeweg (1993),
Multiple coding and the evolutionary properties of RNA secondary structure. J. Theor. Biol 165: 251-267

32. Boerlijst, M.A. and Hogeweg, P. (1991),
Selfstructuring and Selection: Spiral waves as a substrate for prebiotic evolution. in: Artificial Life II. SFI Studies in the sciences of complexity
Vol X (ed. C.G Langton) Addison Wesley pp 255-276

33. Boerlijst M.A. and Hogeweg P. (1991),
Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites. Physica D 48:17-28

34. Hogeweg P. and B. Hesper (1990),
: Individual oriented modelling in Ecology. Mathl Comput Modelling 13(6) pp 83-90

35. Konings, D.A.M. and P. Hogeweg (1989),
Pattern analysis for RNA secondary structure. Similarity and consensus of minimal-energy folding. J. Mol. Biol. 207, 596-614.

36. Hogeweg, P. (1989),
Simplicity and complexity in MIRROR universes. Biosystems 23, 231-246.

37. Hogeweg, P. (1988),
Cellular automata as a paradigm for ecological modeling. Appl. Math. Comp. 27, 81-100.

38. Hogeweg, P. (1988),
MIRROR beyond MIRROR, puddles of Life. In: Artificial Life (C. Langton, ed.). Addison Wesley Publ. Comp., pp. 297-315.

39. Hogeweg, P. and B. Hesper (1987),
Simulation modelling formalism: heterarchical systems. In: Systems and Control Encyclopeadia (M.G. Singh, ed.) Pergamon Press pp.
4350-4353.

40. Hogeweg, P. and B. Hesper (1986),
Knowledge seeking in variable structure models. In: Modelling and Simulation in the Artificial Intelligence Era (ed. Elzas, Oren and Klir)
North Holland, pp. 227-243.

41. Hogeweg, P. and D.A.M. Konings (1985),
U1 snRNA: the evolution of its primary and secondary structure. J. Mol. Evol. 21, 323-333.

42. Hogeweg, P. and B. Hesper (1985a),
Socioinformatic processes, a MIRROR modelling methodology. J. Theor. Biol. 113, 311-330.

43. Hogeweg, P. and B. Hesper B. (1984b),
The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J. Mo.l Evol. 20, 175-186.

44. Hogeweg, P. and B. Hesper (1984a),
Energy directed folding of RNA sequences. NAR 12, 67-74.

45. Hogeweg, P. and B. Hesper (1983),
The ontogeny of the interaction structure in BumbleBee colonies: a MIRROR model. Behav. Ecol. Sociobiol. 12, 271-283.

46. Van de Honk, C. and P. Hogeweg (1981),
The ontogeny of the social structure in an captive Bombus terrestris colony. Behav. Ecol. and Sociobiol. 9, 111-119.

47. Hogeweg, P. and B. Hesper (1981a),
Two predators and a prey in a patchy environment: An application of MICMAC modelling. J. Theor. Biol. 93, 411-432.

48. Hogeweg, P. (1978),
Simulation of cellular forms. In: Frontiers in systems modelling. Simulation 31, 90-95.

49. Hogeweg, P. and B. Hesper (1978),
Interactive instruction on population interactions. Comp. Biol. and Med. 8, 319-327.

50. Hogeweg, P. (1976),
Iterative character weighing in numerical taxonomy. Comp. Biol. Med. 6, 199-211.

51. Hogeweg, P. and B. Hesper (1974),
A model study on biomorphological description. Pattern recognition 6, 165-179.

Personalia
Doctoraal Biologie (Msc) 1969 University of Amsterdam.

major: Vegetation Science (Fieldwork in India)
Promotie (PhD) 1976 Utrecht University.

Thesis Topics in Biological Pattern Analysis
Promotores: Prof Dr.C. Raven and Prof. Dr. F. van der Blij

Group Leader 1977 - 1991 Bioinformatics Group, Faculty Biology, Utrecht University.
Full Professor 1991 - present Theoretical Biology and Bioinformatics, Utrecht University

(and leader of the group with the same name)
Member editorial board Journal Theoretical Biology

Bulletin Mathematical Biology
Biosystems
Artificial Life Journal
Ecological Informatics

Program committee member numerous
(mainly) biology and artificial life

4


