Introduction	Model	Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

On the Origin of DNA Genomes in RNA World

Nobuto Takeuchi¹ Paulien Hogeweg² Eugene V. Koonin¹

¹NCBI, NLM, NIH, USA ²Utrecht University, The Netherlands

July 27, SMBE 2011, Kyoto

Introduct ●○○	tion		Model oo		Results 00000000	Conclusions o
~	6.11			e 11 - 1		

One of the fundamental properties of living systems

The division of labor between templates & catalysts

- DNA stores genetic information: template
- proteins implement genetic information: catalyst

In RNA World

- RNA is the template
- RNA is the catalyst

The division of labor between templates & catalysts evolved later through the evolution of DNA and proteins.

Introduction	Model	Results	Conclusions
000			

Proteins & DNA compared with RNA

Proteins (vs. RNA)

- Superior catalyst
- Inferior template

DNA (vs. RNA)

- Superior templates?
 - → Chemically more stable However, see (Forterre 2005)
- Inferior catalyst??
 - → No experimental evidence (Silverman 2008)

Unlike proteins, the function of DNA (i.e. dedicated information storage medium) does not seem to derive directly from the chemical properties of DNA alone.

Introduction	Model	Results	Conclusions
oo●	oo	oooooooo	o
Why did DNA evolve?			

Question

Is there any advantage for an RNA-based evolving system to evolve an entity that lacks catalytic activity and is solely dedicated to the storage of genetic information, i.e. an entity functionally equivalent to DNA?

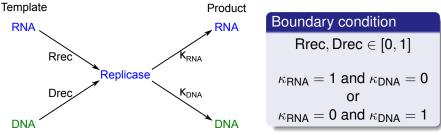
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Answer

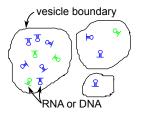
Yes, there is.

Minimal computa	tional model of RN	A-like replicator syster	ne
Introduction	Model	Results	Conclusions
	●○	00000000	o

RNA-like replicator system

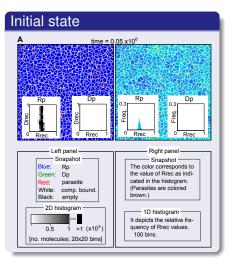

The simplest form of the RNA world that can undergo evolution $\begin{array}{c} R+T\rightleftharpoons C\stackrel{\emptyset}{\to} R+T+T'\\ R,T\rightarrow \emptyset\\ \text{R: replicase,} \quad \text{T: template,} \quad \text{C: complex,} \quad \emptyset\text{: substrate} \end{array}$

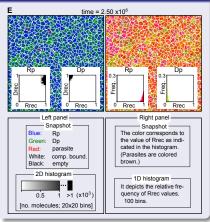
Models consist 2 types of molecules


- RNA-like molecules (RNA for short)
 - can be a template
 - can be a catalyst
- ONA-like molecules (DNA for short)
 - can be a template
 - cannot be a catalyst

Introduction	Model	Results	Conclusions
	⊙●	0000000	o
Schematic desci	ription of the model		

• 4 types of replication reactions: RNA/DNA \rightarrow RNA/DNA

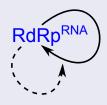

Replicators are compartmentalized by vesicle


Coupling

compartment size \propto no. replicators compartment size > threshold \rightarrow division

Introduction	Model	Results	Conclusions
	oo	●0000000	o
Results of simul	ations		

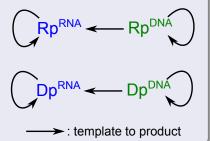
End result



Introduction	Model	Results	Conclusions
		0000000	

Schematic description of the result

Initial state


Self-replication system

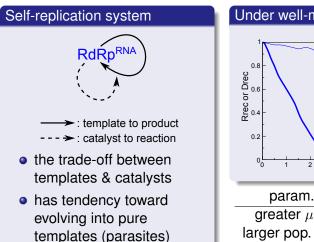
→ : template to product

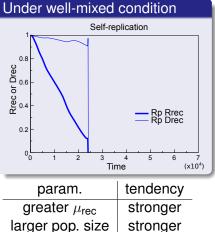
End state

• Transcription-like system

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

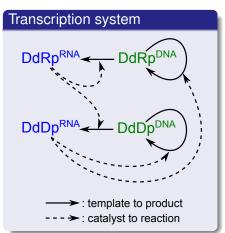
Introduction	Model oo	Results oo●ooooo	Conclusions o


Change of parameters: mutation rate & population size


Condition	RNA-only	Transcription-like
Higher μ_{rec}	Lose	Win
Lower $\mu_{\sf rec}$	Win	Lose
greater compartment size	Lose	Win
smaller compartment size	Win	Lose

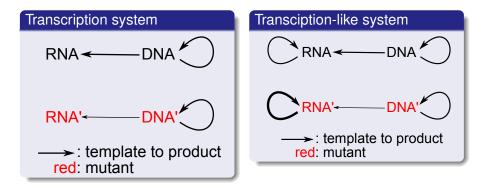
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Introduction	Model	Results	Conclusions
	oo	0000000	o


Self-replication system (i.e. RNA-only system)

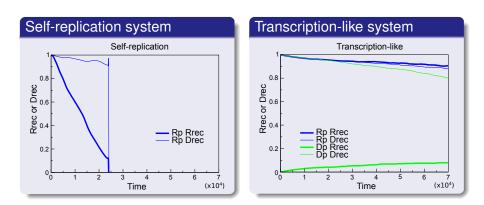
Introduction	Model	Results	Conclusions
		00000000	

Effect of including DNA into a replication cycle

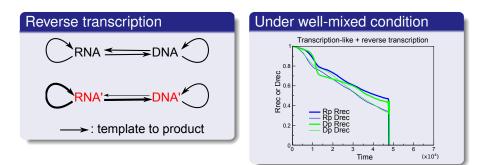

Pros and cons of DNA

- Inefficient multiplication due to increased complexity
- Releases RNA from the tendency toward evolving into parasites

parameter	tendency to parasite	transclike system
greater μ_{rec}	stronger	evolves
greater comp. size	stronger	evolves
	-	



• \rightarrow Can "parasitic" mutant invade?



Effect of DNA-like molecules on evolution

Effect of reverse transcription on evolution

Introduction	Model	Results	Conclusions
000	oo		●
Conclusion			

Advantage of DNA

Releases RNA from the tendency toward evolving into parasite

- Transcriptional buffering
- Unidirectional flow of information (DNA \rightarrow RNA)

Disadvantage of DNA

Slows down multiplication

• The increased complexity of replication cycle

(日) (日) (日) (日) (日) (日) (日)

- The lack of catalytic activity in DNA in itself can give rise to selection for the emergence of DNA.
- Given the widespread notion that DNA originated due to its greater chemical stability, this study provides a novel insight into the origin of DNA.

Ref. Takeuchi, Hogeweg & Koonin (2011) PLoS Comp Biol 7:e1002024