Re-entrant waves in contracting excitable ventricular tissue to study mechano-electrical feedback and arrhythmias

Martyn P. Nash1, Rikkert H. Kelder mann2, Alexander V. Panfilov2

1. Bioengineering Institute, University of Auckland, New Zealand.
2. Theoretical Biology, University of Utrecht, The Netherlands.

Introduction

- Many cardiac arrhythmias are driven by re-entrant electrical sources [1].
- Spiral wave break up is linked with ventricular fibrillation [2].
- Mechano-electrical feedback (MEF) can be proarrhythmic or arrhythmic [3].

Objectives

- To investigate mechanisms of ectopic pacemaking due to mechano-electrical feedback (MEF) via stretch-activated channels (SACs).
- To examine the effects of tissue contraction on the dynamics and stability of re-entrant electrical sources.

Methods: Electrical activity

Modified Aliev-Panfilov model [4]:

activation:

\[
\frac{Dv}{Dt} = \frac{1}{\sqrt{\varepsilon_C E_C}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - k v (v - a)^2 - I + I_N
\]

recovery:

\[
\frac{D\delta}{Dt} = \frac{1}{\varepsilon_\delta} \left[\frac{\partial^2 \delta}{\partial x^2} + \frac{\partial^2 \delta}{\partial y^2} \right] - \gamma (1 - \delta)
\]

SACs:

\[
I_C = G_C (v - E_C)
\]

Model parameters:

- \(a = 0.05 \)
- \(k = 8 \)
- \(E_C = 1.0 \)
- \(G_C = 0.5 \)

Finite difference method parameters:

- \(\Delta t = 0.03 \)
- \(\Delta x = \Delta y = 0.6 \)
- 49x49 grid pts

Methods: Tissue mechanics

Governing equations [5]:

- finite deformation elasticity
- non-homogeneous strain
- stress equilibrium
- 8x8 finite elements

Passive material response:

\[
W = \frac{1}{2} \varepsilon^T [\lambda_1 \delta_1 I - \delta_1 I_0] \varepsilon
\]

Active contraction:

- isotropic, homogeneous
- local mechanical coupling
- active tension \((T_a) \);
- increasing \(T_a \); decreases period.

Electromechanical coupling:

- active tension \((T_a) \) drives mechanical contraction
- conductivities \((D_{xy}) \) and SACs modulated by deformation \((C_{xy}) \)

No deformation \(\Rightarrow \) no pacemaking

Contraction + MEF \(\Rightarrow \) pacemaking

Wave propagation due to a single external stimulus, in the absence or presence of mechanical contraction.

With no deformation, just one depolarising wave resulted from the stimulus. Time-space plot (3) for the thick vertical line marked in panel (1).

Methods: Integral space-time plots

Drift trajectories

Integral of the excitation variable along:
- the horizontal spatial X-axis; and
- the vertical Y-axis; versus time.

(c) Depending on the site of initiation, the pacemaker drifted to one of five attractors (red spots) symmetrically located throughout the medium [6].

Result: Contraction and MEF \(\Rightarrow \) resonant spiral drift

- Tip trajectories were tracked for a stable spiral wave under non-contracting and contracting electromechanical conditions.
- In the absence of contraction, the spiral wave core followed a stationary circular meander pattern.
- Contraction and MEF caused the spiral tip to follow a non-stationary meander pattern.
- The re-entrant wave was attracted and further meandered around the centre of the medium.

References

Acknowledgements

MPN is grateful for the financial support of Auckland University’s Vice Chancellor’s University Development Fund. AP thanks Prof. P. Horeweg for valuable discussions.