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Quantification of T-cell dynamics:

from telomeres to DNA labeling

Summary: Immunology has traditionally been a qualitative science
describing the cellular and molecular components of the immune system
and their functions. Only quite recently have new experimental techniques
paved the way for a more quantitative approach of immunology.
Lymphocyte telomere lengths have been measured to get insights into
the proliferation rate of different lymphocyte subsets, T-cell receptor
excision circles have been used to quantify the daily output of new T cells
from the thymus, and bromodeoxyuridine and stable isotope labeling have
been applied to measure proliferation and death rates of naive andmemory
lymphocytes. A common problem of the above techniques is the translation
of the resulting data into relevant parameters, such as the typical division
and death rate of the different lymphocyte populations. Theoretical
immunology has contributed significantly to the interpretation of such
quantitative experimental data, thereby resolving diverse controversies
and, most importantly, has suggested novel experiments, allowing for
more conclusive and quantitative interpretations. In this article, we review
a variety of different models that have been used to interpret data on
lymphocyte kinetics in healthy human subjects and discuss their
contributions and limitations.

Keywords: T-cell dynamics, telomeres, TREC, BrdU, stable isotopes, mathematical
modeling

Introduction

Despite great advances in immunological research during the

past decades, relatively little is known about the quantitative

characteristics of lymphocyte kinetics. There is a large contro-

versy on the production rates, division rates, and lifespans of

mouse and human lymphocyte populations. As a consequence,

fundamental questions like the maintenance of memory, the

maintenance of a diverse naive lymphocyte repertoire, and the

nature of homeostatic mechanisms remain largely unresolved.

Many important questions in immunology are of a quantitative

nature. For example, researchers are trying to show how human

diseases, like HIV infection and rheumatoid arthritis, and

therapeutic interventions, such as chemotherapy or hemato-

poietic stem cell transplantation, affect lymphocyte kinetics, but

as long as there is controversy about the lymphocyte kinetics in

healthy individuals, such questions remain hard to address.
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Recently, several experimental techniques have been devel-

oped that have enabled the generation of quantitative data on

lymphocyte dynamics. Some are based on the quantification of

natural characteristics of lymphocytes that depend on lympho-

cyte kinetics, such as lymphocyte telomere lengths and T-cell

receptor excision circles (TRECs). Others have made use of

different lymphocyte-labeling techniques, such as the fluores-

cent dye, carboxyfluorescein diacetate succinimidyl ester, the

base analog 5-bromo-2#-deoxyuridine (BrdU), or deuterated

glucose or water. Remarkably, a simple PubMed search showed

that more than 10% of the recent articles in the immunological

literature involve such labeling experiments (P. Hodgkin,

personal communication). Yet, the interpretation of such

kinetic data has turned out to be notoriously difficult (1–15).

In this article, we review how mathematical models have given

insights into the possibilities and limitations of the different

experimental techniques and have thereby helped the quanti-

tative interpretation of immunological data.

Estimating lymphocyte turnover from telomere data

In the 1980s, it was shown that the unique structures at the end

of chromosomes consisting of tandem DNA repeats shorten

with each cell division and thereby provide a record of a cell’s

proliferation history (16, 17). Because of the incapability of

DNA polymerases to copy the very ends of chromosomes, each

cell division leads to the loss of 50–100 terminal nucleotides

from the chromosomes. This telomere shortening was shown

to have functional consequences, as it limits the replication

capacity of cells (18–20), and the implications of this sene-

scence on immune responses has been addressed by mathe-

matical modeling (21).

Weng et al. (22) made use of this phenomenon to study the

replication behavior of naive and memory T lymphocytes. The

average telomere lengths of naive and memory CD4þ T cells

were found to decrease with age at very similar rates, which

suggested that they divide at very similar rates. The average

telomere length of naive CD4þ T lymphocytes was consistently

found to be 1.4 kb longer than that of their memory

counterparts (Fig. 1). It was therefore concluded that the

magnitude of expansion occurring when naive CD4þ T cells are

primed to become memory cells is 1400/100 ¼ 14 divisions.

Additionally, the fact that naive telomeres shorten with age was

taken as evidence that naive T cells divide throughout their

lifespan: a loss of 1.5 kb in 45 years was estimated to amount to

1500/(100� 45)¼ 0.3 cell divisions/year. This estimate is in

good agreement with previous studies on naive lymphocyte

turnover, whichwere based on the rate at which patients treated

with radiotherapy lose lymphocyteswith chromosomal damage

(23). The latter studies showed that CD45RA naive T cells divide

once every 3.5 years, whereas memory lymphocytes divide

once every 22 weeks (23, 24). Remarkably, the fact that naive

CD4þ T lymphocytes are thought to proliferate much less than

memory CD4þ T lymphocytes did not at all seem to be reflected

in the telomere data, which intuitively suggested similar

kinetics of naive and memory lymphocytes (22).

A mathematical model for telomere loss (Box 1) helped

understand the apparent controversy (25). The model pointed

out that the intuitive derivation of the rate of naive T-cell

turnover from the telomere data (22) was wrong for several

reasons. Among others, it was shown that the average telomere

length decreases at twice the average division rate because every

parent cell is replaced by two daughter cells with shortened

telomeres. Thus, with a telomere loss of 100 base pairs/cell

division, 0.15 divisions/year would suffice to observe a loss of

the average naive telomere length of 1.5 kb in 45 years (25).

Additionally, Weng et al. (22) ignored the export of newly

produced T cells from the thymus into the periphery. Because

recent thymus emigrants form a permanent source of cells with

relatively long telomeres, they increase the average telomere

length of the naive T-cell population. Ignoring thymic output

may therefore lead to an underestimation of the naive T-cell

division rate.

Fig. 1. Comparison of the mean TRF length of naive and memory T

cells. Thirty donors were studied, ranging in age from 24 to 72 years.
Open circles denote the mean TRF length of each individual’s naive T
cells; the solid line represents the regression analysis of the TRF lengths
of naive cells as a function of age; solid squares denote the mean TRF
length of each individual’s memory T cells; the dotted line represents
the regression analysis of the TRF lengths of memory cells as a function
of age. Reprinted with permission from Weng et al.(22). Copyright
1995, The National Academy of Sciences. TRF, telomere restriction
fragment.
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The above example also shows the difficulties in estimating the

proliferation rate of memory T cells from telomere data. Just like

the average telomere loss of naive T cells is diminished by the

influx of newly produced cells from the thymus, the average

telomere loss ofmemory cells is diminished by activation of naive

cells that are primed into thememory pool and, on average, have

longer telomeres than memory T cells. Indeed, the mathematical

model showed that the telomere shortening rate of memory cells

does not only reflect their own division rate but also critically

depends on the rate at which naive cells are primed into the

memory pool, the loss of telomere length during clonal

expansion, the ratio between naive and memory lymphocyte

numbers, and the difference in the average telomere length of

naive and memory lymphocytes (25) (Box 1, Eqn 1).

The mathematical model also pointed out that the difference

between the average telomere length of naive and memory cells

does not directly reflect the clonal expansion that naive CD4þ T

cells undergo when they are primed to become memory cells

but also reflects the difference in proliferation rates of naive and

memory T cells (Box 1, Eqn 2). If memory T cells divide more

frequently than naive T cells, the 14 divisions that were

estimated to occur during clonal expansion (22) only provide

an upper-bound estimate. Interestingly, the model shows that

even if no telomere shortening were to occur during clonal

expansion, the average telomere length of naive and memory T

cells would approach a fixed difference (25). It has indeed been

suggested that hardly any shortening of telomeres may occur

during clonal expansion because telomerase, an enzyme that is

able to extend shortened telomere ends, has been shown to be

active in lymphocytes (26, 27).

According to themathematical model, the fact that there is an

age-independent difference in naive and memory telomere

Box 1. A mathematical model for telomere loss in

T cells

dN

n0 n1 n2 n3 n4 n5 n...
N=Σni 

m0 m1 m2 m3 m4 m...
M=Σmi 

m5

dM

γ

C

pN

pM

i

i

Fig. Box 1. A scheme of the model. The boxes ni and mi

represent the number of naive and memory T cells that have

gone through precisely i cell divisions, respectively. N andM

are the total number of naive and memory T cells, that is

N ¼ +ini and M ¼ +imi, respectively. The arrows p and d

represent division and death rates, respectively. The arrow gC
represents the influx of naive cells into the memory pool

through priming and proliferation during immune responses

to foreign antigens. Adapted from De Boer and Noest (25).

In the model (25), the differential equation for the

average telomere loss index (m) of naive T cells (N) and

memory T cells (M) is:

dmN
dt

¼ 2pN and
dmM
dt

¼ 2pM � gC
N

M
ðmM �mN �KÞ; ð1Þ

where K is the telomere loss during clonal expansion, g is the
rate at which naive T cells are primed into the memory pool,

and C is the average number of cell divisions occurring

during clonal expansion (25). Eqn 1 shows that the telomere

loss caused by memory T-cell proliferation is diminished by

activation of naive cells that are primed into the memory

pool and, on average, have longer telomeres than memory

cells. The difference between the average telomere loss index

of naive and memory cells (D ¼ mM � mN) will ultimately

approach the steady state:

D ¼ K þ 2ðpM � pNÞ
gC

M

N
; ð2Þ

that is the difference between the average telomere index of

naive and memory cells is only partially determined by the

telomere loss during clonal expansion. It also reflects the

difference in proliferation rates of naive and memory cells

(pN and pM) and their densities (N and M). Even if telomerase

compensates completely for the telomere loss during clonal

expansion (K ¼ 0), there is an age-independent difference

between the average telomere length of naive andmemory T

cells, provided that memory cells divide more frequently

than naive cells (pM > pN). Once the equilibrium of Eqn 2 is

approached, filling in Eqn 2 into Eqn 1 shows that the rate of

telomere loss in the memory population is completely

dictated by the rate of telomere loss in the naive T-cell pool,

that is mM ¼ mN þ D.
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lengths (22) implies that the average rate at which memory

lymphocytes lose their telomeres is independent of their own

division rate and is largely dictated by the rate of telomere loss

in the naive T-cell compartment (Box 1). This insight resolves

the apparent contradiction between the parallel loss of telo-

meres in naive and memory T lymphocytes and the fact that

memory T cells are thought to divide more frequently than

naive T cells.

Estimating thymus output from TREC data

The above-mentioned problems in the interpretation of

telomere data stress the need to quantify all different processes

that contribute to peripheral T-cell kinetics. One process that has

been difficult to quantify is the output of newly produced T cells

from the thymus. Previous studies established that naive T cells

are largely generated in the thymus, but after thymectomy in

mice, naive T cells can bemaintained by peripheral proliferation

(28–31). Recent studies in humans have suggested that naive T-

cell proliferation may contribute significantly to the generation

and maintenance of the naive T-cell pool (32). A large step

forward was made by the introduction of the TREC assay (33,

34). TRECs are extrachromosomal DNA circles, which are

formed as a by-product during T-cell receptor gene rearrange-

ment in the thymus and are not copied during T-cell division.

When the average number of TRECs per CD4þ or CD8þ T cell

was measured in individuals of different ages, an exponential

loss of TRECs was observed, reminiscent of the supposedly

exponential decay of thymus output with age (34). TREC

contents of T lymphocytes have therefore widely been used to

measure thymus output. For example, the fact that TREC

contents of CD4þ and CD8þ T cells tend to decline during HIV

infection has been taken as evidence for HIV-induced loss of

thymus output (34), and the increase in CD4þ and CD8þ TREC

contents that are generally observed following stem cell

transplantation have been interpreted as evidence for thymus

rebound (35).

The advantage of TRECs is that their production is confined to

T-cell receptor gene rearrangements and thereby to de novo naive

T-cell generation. In contrast to naive T cells themselves, TRECs

cannot be formed through cellular division. Unfortunately,

TRECs are usually measured as a fraction of the amount of DNA

analyzed and are therefore typically expressed as TREC content

(i.e. TREC numbers per cell), a measure that is to a large ex-

tent influenced by T-cell division. Another difficulty in the

interpretation of TREC data is that TRECs are known to be long-

lived and are thus not a good marker of current thymus output.

Indeed, in patients who had been fully thymectomized, TRECs

could still be identified in CD4þ and CD8þ T cells up to 39 years

after thymectomy (34). Intuitive interpretation of TREC data

may therefore easily lead to false conclusions (15, 36).

A simple mathematical model describing the kinetics of naive

T cells and TRECs showed that an age-dependent decrease in

thymus output is not sufficient to explain the decrease in naive

CD4þ and CD8þ TREC contents with age (37, 38) (Box 2). In

fact, the TREC content of a T-cell population that is dependent

on the influx of cells from the thymus may be totally insensitive

to changes in thymus output (Fig. 2). With hindsight, this

0 20 40 60 80 100
Age (years)

109

1010

1011

1012

Po
pu

la
tio

n 
si

ze

Naive Tcells
TREC totals

(A)

0 20 40 60 80 100
Age (years)

10–4

10–3

10–2

10–1

100

T
R

E
C

 c
on

te
nt

(B)

10–4

10–3

10–2

10–1

100

T
R

E
C

 c
on

te
nt

0 20 40 60 80 100
Age (years)

(D)

109

1010

1011

1012

Po
pu

la
tio

n 
si

ze

0 20 40 60 80 100
Age (years)

(C)
Naive Tcells
TREC totals

Fig. 2. Naive T-cell numbers (N), total
TREC numbers (T), and TREC contents (A)
as a function of age, when thymus output

decreases exponentially with age. (A, B) In
the presence of homeostatic proliferation or
death, the TREC content declines significantly
with age (B) because naive T-cell numbers are
less affected by the involution of the thymus
than total TREC numbers (A). (C, D) In the
absence of homeostatic processes within the
naive T-cell pool, the naive TREC content only
changes somewhat with age during an initial
transient. After this transient, the total number
of TRECs and naive T cells decrease at the
same rate (C) and the TREC content (D)
approaches a fixed fraction. Model and
parameters as in Hazenberg et al.(37): s(t) ¼
109e�0.1a cells/day, where a is age in years,
c ¼ 1, d ¼ 0.001/day, and p ¼ 0.1/(1 þ
(N/2.5 � 1010)2) per day (A and B) or p ¼
0.0005/day (C and D) (see also Box 2).
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counterintuitive finding is easy to understand. In a population

that is dependent on thymus output, not only the number of

TRECs but also the number of cells decreases as thymus output

declines, and their ratio could remain unaffected. The fact that

naive CD4þ and CD8þ TREC contents do decrease with age (39)

thereby shows another aspect of T-cell dynamics: according to

the mathematical model, an age-dependent naive TREC decline

can only occur if there is at least some form of homeostasis in

the naive T-cell pool (38). If the body responds to the age-

dependent decline in thymus output, for example by increasing

the level of naive T-cell proliferation, the total number of TRECs

will decline faster than the total number of naive T cells, causing

an age-dependent decline in the average TREC content of naive

T cells. Alternatively, the level of naive T-cell proliferation may

be constant, and cells may simply survive longer when thymus

output declines, which would also lead to a decline in naive

TREC contents with age (38).

The above example shows how strongly TREC content data

may be influenced by cellular division rates and the care that

should hence be taken when interpreting TREC content data.

The decrease in TREC content that is typically observed on HIV

infection, for example, may not at all reflect a decrease in

thymus output but insteadmay result from the increased level of

T-cell activation that is characteristic for HIV infection (37).

Similarly, increases in TREC contents that have been observed in

patients with lymphopenia and have been interpreted as

evidence for thymic rebound, that is an increased rate of

thymus export to compensate for low T-cell numbers (34), may

in fact reflect the normal influx of recent thymus emigrants into

a virtually empty peripheral T-cell pool that has not yet diluted

its TREC content (37). Additionally, the fact that TREC contents

are often measured in peripheral blood mononuclear cells or

in total CD4þ or CD8þ T cells hampers the interpretation

because changes in the ratio of naive and memory cells may

strongly influence the average TREC content within these

populations (15).

In contrast to TREC contents, total TREC numbers per

milliliter of blood are not influenced by T-cell proliferation and

hence provide amore direct measure of thymus output (15, 40,

41). When analyzing thymus output, it would therefore be

good common practice to analyze total TREC numbers in

addition to TREC contents (15, 40). However, even TREC totals

have to be taken with care because they are affected not only by

thymus output but also by changes in T-cell death rates (Box 2).

Remarkably, in the literature, the use of telomeres is typically

restricted to measuring T-cell division, whereas TREC data are

quite strictly used tomeasure thymus output. The abovemodels

(25, 37, 38) show, however, that in fact, both telomere and

TREC data are influenced by thymus output and T-cell

proliferation.

BrdU labeling to measure lymphocyte turnover

T-cell turnover rates have extensively been studied by the use of

BrdU, a nucleoside analogue that is incorporated instead of

thymidine through the nucleotide salvage pathway when a cell

divides. BrdU has widely been applied in rodents and non-

human primates, but its potential toxicity on long-term in vivo

administration has limited its use in humans to short-term

labeling periods (42–45). The use of BrdU is relatively

straightforward, as it can be administered through the drinking

water and as its incorporation in cells can be detected by flow-

cytometry. Obtaining T-cell turnover rates from BrdU-labeling

data, however, has turned out to be less straightforward, and

BrdU-labeling data have long been interpreted rather qualita-

tively (46, 47). The fraction of cells that have acquired BrdU

during label administration and the rate at which labeled cells

lose BrdU after label cessation are often intuitively taken to

reflect the fractions of cells that have undergone proliferation

Box 2. Mathematical model for TREC analysis

In the model for TREC analysis by Hazenberg et al. (37), the

dynamics of naive T cells was described as:

dN

dt
¼ sðtÞ þ pN � dN; ð3Þ

where s(t) is an age-dependent thymic production, p is the

renewal rate, and d is the death rate of naive T cells. The

dynamics of the total number of TRECs was described as:

dT

dt
¼ csðtÞ � dT ; ð4Þ

where c is the TREC content of a recent thymic emigrant.

From these equations, one can derive that the TREC content

(A ¼ T/N) changes according to:

dA

dt
¼ sðtÞðc � AÞ

N
� pA; ð5Þ

so that the equilibrium of the TREC content is given by:

A ¼ c

1 þ pN=sðtÞ: ð6Þ
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and death, respectively. For example, Kovacs et al. (43) observed

a bi-phasic loss of BrdU-labeled cells during the down-labeling

phase, and they fitted two exponential slopes to the data. These

slopes were interpreted as the death rates of two distinct

subpopulations.

Mathematical models have pointed out that in fact, the

labeling and the delabeling curve are influenced by both T-cell

proliferation and cell loss (1, 48). Indeed, from the model

described in Box 3, one can observe that the rate at which the

fraction of labeled cells increases during label administration is

equal to the sum of the proliferation rate and the rate at which

cells are lost from the population through cell death or

maturation. Naturally, the rate at which the fraction of labeled

cells increases is equal to the rate at which the fraction of

unlabeled cells decreases, and unlabeled cells are lost from the

population not only on cell division but also on cell death or

maturation. In analogy, the rate at which the fraction of labeled

cells decreases after label cessation gives the difference between

the rate of cell loss and proliferation, not directly the rate of cell

loss (Box 3). The latter is because of the fact that BrdU-labeled

cells that proliferate in the absence of label still give rise to

two labeled daughter cells. This leads to the paradoxical insight

that a T-cell population in which the fraction of labeled cells

hardly decreases after label cessation may be a population

of long-lived cells but could just as well be a cell population

with rapid turnover, in which high rates of T-cell proliferation

are compensated by high rates of T-cell death or maturation.

Only after extensive T-cell proliferation in the absence of

label, BrdU labeling may have diluted to such an extent that

cells are no longer picked up as label positive. In this case, the

fraction of labeled cells would be underestimated, which causes

another difficulty in the interpretation of BrdU-labeling data,

for which more extensive mathematical models have been

developed (48).

Given the fact that the rate at which BrdU labeling is lost after

label cessation is dictated by the difference between lymphocyte

proliferation and loss (p � d, Box 3), one would expect to see

hardly any loss of BrdU-labeled cells after stopping label

administration because in a T-cell population at steady state, the

rate at which cells proliferate (p) and the rate at which cells are

lost from the population (d) should be nearly identical. It is

therefore rather surprising that most BrdU studies show

a significant decline during delabeling, suggesting that the

average proliferation rate of lymphocytes (p) should be smaller

than the average loss rate of BrdU-labeled cells (d). Indeed,

separate estimates of d and p have shown up to 10-fold larger

rates of cell loss compared with the rate of T-cell proliferation

(1). It has been proposed that this discrepancy between cell loss

and proliferation may be compensated for by a constant source

of T cells, for example from the thymus or from a compartment

of resting cells, and special models have been designed to

account for such a source (1, 11, 12, 48).

Box 3. Mathematical model for BrdU labeling

A mathematical model for BrdU labeling (1, 11, 12, 48)

describes the dynamics of unlabeled cells, U, and labeled

cells, L, during the up-labeling phase by

dU

dt
¼ �pU � dU and

dL

dt
¼ s þ 2pU þ pL � dL: ð7Þ

In the presence of BrdU, proliferation (at rate p per day) of

an unlabeled cell leads to the loss of that unlabeled cell and

the formation of two labeled cells because BrdU is built into

one strand of DNA of each chromosome. The net result of

proliferation of a labeled cell, on the other hand, is the

formation of just one extra labeled cell. Both unlabeled and

labeled cells are lost at rate d per day through T-cell death or

maturation to another T-cell population. In addition, labeled

cells may be generated from a source at rate s cells per day.

During the down-labeling phase, the dynamics are

given by:

dU

dt
¼ s þ pU � dU and

dL

dt
¼ pL � dL: ð8Þ

In the absence of BrdU, proliferation of an unlabeled cell

adds another unlabeled cell to the population, whereas

proliferation of a labeled cell adds a labeled cell (albeit with

lower BrdU intensity) because the previously labeled

chromosomes are randomly distributed over both daughter

cells. Both unlabeled and labeled cells are lost from the

population at rate d. Unlabeled cells may additionally be

generated from a source at rate s cells per day.

To describe the fraction of labeled cells (L/(L þ U)), one

can use dU/dt ¼ �(p þ d)U during the up-labeling phase

and dL/dt ¼ (p � d)L during the down-labeling phase. This

shows that the upslope is determined by p þ d, whereas the

downslope represents p � d. Note that if unlabeled and

labeled cells are lost from the population at different rates,

for example because recently divided cells die faster than

cells that have not recently divided (57), the rate of label

accrual during BrdU administration should be calculated

from the more complicated equation for dL/dt (Eqn 7b), as

was performed by Debacq et al. (49). If one adds a parameter

C for the maximum labeling level (1), the initial upslope is

C (p þ d) per day.

Borghans & de Boer � Quantification of T-cell dynamics
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When the model described in Box 3 was used to calculate

proliferation and death rates of T cells in healthy and simian

immunodeficiency virus-infected rhesus macaques, large

confidence intervals on the estimated rates of T-cell pro-

liferation were obtained (1). Such large confidence intervals

may well be as a result of the sensitivity of the parameter

estimates on the underlying assumptions of the specific

mathematical model used (11). For instance, having both

a source and a proliferation term for the production of new cells

allowed for compensation between these parameters, which

implies that the original estimates for s and p (1) were unreliable

(11, 12). Extensive comparisons of the parameter estimates

obtained from very different mathematical models for BrdU

labeling have pointed out, however, that one parameter, the so-

called average turnover rate (i.e. the cellular death rate averaged

over all subpopulations), can be determined with much better

reliability and thereby provides the most robust and model-

independent parameter from BrdU-labeling data (11, 12).

Summarizing, the pioneering work on developing the most

appropriate mathematical models for estimating average

cellular turnover rates from long-term BrdU data (1, 48) seems

to have converged on simple models with just one or two

parameters (11, 49), and these simple models have allowed

us to reliably estimate the average turnover rates of naive

and memory CD4þ and CD8þ T cells, natural killer cells, and

B cells (12).

Labeling with stable isotopes to measure lymphocyte

turnover

An important shortcoming of BrdU is its potential toxicity on

long-term administration and hence the limitations of its use

in human subjects. More recently, new methods have been

developed by which T-cell turnover can be measured using

stable-isotope-labeled compounds, such as deuterated glucose

(2H2-glucose) (50) or deuterated water (2H2O) (51), which

are incorporated into the DNA of newly dividing cells. After

label intake, cells are sorted from peripheral blood; their

genomic DNA is extracted, hydrolyzed, and derivatized; and

the fraction of 2H incorporation in the deoxyribose moiety

of deoxyadenosine is subsequently analyzed by a combination

of gas chromatography and mass spectrometry (52). The

advantages of the method are several. First, in contrast to BrdU

labeling, 2H labeling measures de novo nucleotide synthesis,

thereby capturing the major component of lymphocyte

proliferation, and is relatively insensitive to label reutilization.

Second, the use of stable isotopes circumvents the radiation-

induced DNA damage and potential toxic effects that are

intrinsic to the use of radioisotopes and nucleoside analogues

(52). Third, stable isotope labeling simplifies the interpretation

of the data because the fraction of labeled DNA strands rather

than the fraction of labeled cells is measured. The decay of

labeled DNA after cessation of stable isotope administration

thereby directly reflects the loss of cells (see below). In contrast

to BrdU labeling, cell division after label cessation can no longer

lead to label enrichment.

Stable-isotope-labeling data have been interpreted in various

ways. The most widely used method is the application of the

precursor–product relationship that has been adopted from

classical protein chemistry (50, 52):

f ¼ Sb

Sa
¼ 1 � e�kt: ð9Þ

The equation describes that the fraction f of new cells

generated within a time period t can be derived from the label

enrichment Sb measured in the DNA of the cell population of

interest (the product), divided by the label enrichment Sa of the

precursor. In case of labeling with deuterated glucose, the

precursor enrichment is typically measured as the label

enrichment in plasma glucose multiplied by a factor 0.65 to

account for intracellular label dilution (52). In case of labeling

with deuterated water, Sa is derived from the label enrichment

of cells with extremely rapid turnover, such as monocytes or

granulocytes (51). The precursor–product relationship shows

the fractional replacement rate k and thereby the half-life (ln2/

k) of the cells of interest. A limitation of the application of the

precursor–product relationship in biology is the fact that

replacement is assumed to occur randomly, as in chemical

processes. The kinetics of the cell population of interest,

however, may not be as homogeneous as a pool of identical

molecules.

Hellerstein et al. (2) used the precursor–product relationship

to interpret data from 2-day labeling with deuterated glucose,

and they estimated that CD4þ and CD8þ T cells in healthy

subjects have half-lives of 87 and 77 days, respectively. Using

the samemethod, McCune et al. (53) estimated a longer half-life

of CD8þ T cells: CD4þ and CD8þ T cells were estimated to have

half-lives of 82 and 139 days, respectively. Separate analyses of

naive and effector/memory (E/M) cells showed that E/M T

cells have a considerably shorter half-life than naive T cells (53)

(Table 1). A drawback of both studies is that there was no clear

distinction between the phases of accumulation and loss of

isotope enrichment. The peak in label enrichment could occur

up to 10 days after cessation of label infusion. To estimate

fractional replacement rates, both studies therefore used the

maximum level of enrichment that was ever attained after label
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infusion, thereby losing all information from other data points,

making the estimates vulnerable to variation.

More recently, Hellerstein et al. (54) presented the results of

the first long-term labeling experiment based on 9 weeks of

administration of deuterated water. The non-linear accrual

of isotope label that was observed during administration of
2H2O was intuitively interpreted to reflect the turnover of

different subpopulations within the total and E/M CD4þ and

CD8þ T-cell pools. However, even based on the precursor–

product relationship, a non-linear accrual of label would be

expected. Indeed, using Eqn 9 to estimate the cellular half-lives

from the level of enrichment attained after 5 and 9 weeks of

label administration gives very similar estimates for the

replacement rate k. The estimated half-lives of total CD4þ

(385 days), total CD8þ (420 days), E/M CD4þ (213 days), and

E/M CD8þ (235 days) T cells based on this study were,

however, several folds larger than those of the previous studies

based on deuterated glucose labeling (Table 1).

An important limitation of the use of the precursor–product

relationship in the interpretation of labeling data is that it only

measures the net accrual of label. Cells that have taken up label

during division but are lost from the population during the

labeling period do not contribute to the turnover measured by

the precursor–product relationship. The use of the precursor–

product relationship is therefore expected to underestimate the

extent of T-cell turnover, especially during long-term labeling,

when the chance to loose labeled cells during the labeling

period is large. Although the single parameter k that can be

estimated by the use of the precursor–product relationship is

a natural parameter in terms of protein chemistry, it may be very

hard to interpret in immunological terms. A perfect illustration

of this problem was given when stable-isotope-labeling data

from healthy individuals and HIV-infected patients with and

without therapy were compared (2). The maximal level of

label enrichment that was achieved after 2-day labeling with

deuterated glucose was found to be the lowest in healthy

individuals and the highest in patients with HIV on highly active

anti-retroviral treatment (HAART). As a result, the replacement

rate k was found to be higher in patients on HAART than in

untreated patients with HIV and healthy individuals. From these

data, the paradoxical conclusion was drawn that the half-life of

T cells in patients onHAART is shorter than in untreated patients

and that themechanismbywhichHAART increases the CD4þT-

cell count in patients with HIV is not through increased CD4þ T-

cell survival but by increased production of new CD4þ T cells

(2). Moreover, these data were taken as evidence for increased

CD4þ T-cell production during HAART because the absolute

CD4þ T-cell production rate, that is kmultiplied by the CD4þ T-

cell count, was found to be higher in patients on HAART than

in untreated patients. Analogously, it was argued that HIV

infection decreases the half-life of CD4þ T cells and that there is

no increased CD4þ T-cell production to compensate for this

reduced survival because kwas higher in patients with HIV than

in healthy individuals, whereas the absolute CD4þ T-cell

production rate was not. These interpretations may fail for two

reasons. First, the absolute CD4þ T-cell production rates that

were calculated are largely determined by the CD4þ T-cell

counts of the individuals, and it may thus not be surprising that

they were higher in patients on HAART than in untreated

patients. Second, high levels of enrichment may be as a result of

high levels of T-cell proliferation or increased survival of cells

that have recently picked up label (see below). The fact that

Table 1. Average half-lives (in days) of different T-cell populations in healthy individuals estimated by stable isotope labeling

Reference (2) (53) (54) (7) (8) (55) (56) (57) (Vrisekoop et al.)

Method 2H2-glucose 2H2-glucose 2H2O
2H2-glucose 2H2-glucose 2H2-glucose 2H2-glucose 2H2-glu-

cose

2H2O

Label period 2 days 2 days 9 weeks 1 week 1 week 1 day 1 day 1 day 9 weeks

Model pp pp pp 1comp 2comp Asq Asq Asq Asq

CD4 87 82 385 173 154
CD8 77 139 420 231 257
Naive CD4 187 118 361 119 184 1517
Naive CD8 204 154 131 112 2398
Memory CD4 80 213 26 21 28 36 155
Memory CD8 40 235 14 18 24 244

The half-lives have been recalculated from previous studies (2, 7, 8, 53, 54, 55–57). For every model distinguishing between proliferation and death rates,
we based the half-life on the proliferation rate (which is mostly based on the upslope during the labeling period) because the downslope reflects the
turnover rate of labeled cells (6, 58), which tends to be faster than the average turnover rate. pp, precursor–product relationship; 1comp and 2comp, 1-
and 2-compartment mathematical models, respectively; Asq, the model by Asquith et al. (6) accounting for cellular heterogeneity. The two columns
under ref (57) refer to T-cell half-lives measured in young and elderly individuals, respectively.
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patients with HIV reached higher levels of label enrichment

than healthy individuals may therefore be because of increased

rates of T-cell proliferation, which have indeed frequently

been observed in patients with HIV (7, 37, 59, 60), whereas

the even higher levels of enrichment in patients on HAART

may be because of increased survival of recently divided cells

(8). Both conclusions conflict with those originally drawn from

the data (2).

Mathematical models distinguishing between proliferation

and cell loss

Mathematical models have helped interpret stable isotope data.

By fitting labeling data both during and after label administra-

tion to a mathematical model, separate estimates of the

proliferation and loss rates of the different T-cell populations

have been obtained. Based on such a mathematical model, label

enrichment in CD4þ and CD8þ T cells in healthy humans

was analyzed during and after 7-day infusion of 2H2-glucose

(7). CD4þ and CD8þ T cells were found to have average

proliferation rates of 0.004 and 0.003/day, whereas their loss

rates were as high as 0.044 and 0.043/day, respectively.

Because T-cell numbers were not changing over the course of

the experiment, the rates of T-cell proliferation and loss a priori

were expected to be nearly identical. The discrepancies between

relatively low proliferation rates and high loss rates were

explained by the presence of a large source of unlabeled cells

(7). It was this source of unlabeled cells, however, that was

highly criticized in the literature: the estimated contribution of

the source of unlabeled cells would have to be about 5–30 times

higher than the contribution of T-cell proliferation. If the source

of unlabeled cells were to come from the thymus, it would

require a thymus output of 1010 instead of the previously

estimated 108 T cells/day. Alternatively, it has been proposed

that a large source of unlabeled cells may come from

a compartment of resting cells (7–9). Fitting a model including

such a population of resting cells to the same data led to very

similar estimates for the proliferation and loss rates of CD4þ and

CD8þ T cells (8, 9) (Table 1).

With hindsight, the common observation with both

deuterium and BrdU labeling that the estimated loss rate of

lymphocytes exceeds their proliferation rate is not all that

surprising. Proliferation rates, which are estimated during label

administration, provide a characteristic of the population as

a whole, including cells that will and cells that will not go into

division during the labeling period. Loss rates, in contrast, are

based on the loss of cells that have picked up the label and hence

only involve the part of the lymphocyte pool that has recently

divided (6, 8, 58). Ribeiro et al. (8) captured part of this

heterogeneity in their model by distinguishing between resting

and activated cells. Proliferation and loss rates within the

activated pool were assumed to be equal to allow for a constant

population size, but the proliferation rate of the total T-cell

pool was again several folds lower than the loss rate of the

labeled cells.

In an illuminating article on the interpretation of labeling

data, Asquith et al. (6) proposed a more rigorous approach to

account for this heterogeneity. It was argued that even

modeling two compartments may be insufficient to fully

capture the effects of cellular heterogeneity because the kinetics

of cells that have picked up label may be intrinsically different

from those that have failed. First, the labeled fraction is expected

to be biased toward the part of the T-cell population with the

most rapid kinetics. Second, cells that have recently divided are

likely to be lost from the population at a higher rate than those

that have not picked up the label because they are more likely to

undergo activation-induced cell death (58). To cope with this

cellular heterogeneity, a mathematical model was introduced in

which the proliferation rate p of thewhole T-cell populationwas

uncoupled from the loss rate of labeled cells d*:

f ¼ p

d�
ð1 � e�d�tÞ and f ¼ p

d�
ð1 � e�d�tÞe�d�ðt � tÞ; ð10Þ

during and after labeling, respectively (6). The model describes

the accrual of label during label administration as well as the loss

of enrichment after label cessation at day t. The first equation is
very similar to the widely used precursor–product relationship,

but it now distinguishes between proliferation and cell loss and

saturates at a lower fraction of labeled cells, that is when

a fraction p/d* of the cells is labeled. Both equations become

identical if p¼ d*, in other words, if the loss rate of labeled cells

is identical to that of the non-labeled cells and hence if the T-cell

population is fully homogeneous. Stable-isotope-labeling data

have shown, however, that this is typically not the case,

underscoring the limitations of the use of the precursor–

product relationship.

The above kinetic heterogeneity model has given the

additional insight that the parameter estimates resulting from

labeling data depend on the length of the labeling period (6).

Long labeling periods will give rise to lower rates of T-cell loss

because the population that has picked up the label becomes

more representative of the total T-cell population. Indeed, meta-

analysis of stable-isotope-labeling studies with different labeling

periods showed such a negative correlation between the length of

the labeling period and the estimated death rate (6).
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Based on the above kinetic heterogeneity model, T-cell

turnover in healthy individuals was estimated following 1 day

of 2H2-glucose labeling, showing proliferation rates of naive

CD4þ (0.6% per day), naive CD8þ (0.5% per day), memory

CD4þ (2.7% per day), andmemory CD8þ (5.1% per day) T cells

(55) that were higher than previous estimates based on the

precursor–product relationship (53). In two later studies, the

same mathematical model (6) and a similar 1-day infusion of
2H2-glucose were used to study the turnover rates of naive

CD4þ T cells, CD4þCCR7þ effector-memory (EM) T cells, and

CD4þCCR7� central memory (CM) T cells (56) and of naive and

memory T cells in young and elderly people (57). Turnover rates

of naive CD4þ (0.2% per day), CD4þCCR7þ EM (1.5% per day),

and CD4þCCR7� CM(4.7% per day) T cells were estimated from

these data (56). Because 57% of the memory cells were CM T

cells, the average turnover rate ofmemoryCD4þ T cells was 3.3%

per day,which is close to the earlier estimate (55) (Table 1). T-cell

proliferation rates were found to be very similar in young and

elderly people (57) and were in the same range as in the other

two studies with this labeling regimen and mathematical model

(Table 1). A possible caveat of these three studies (55–57) is that

the earliest data point was taken at day 3, whereas labeling was

stopped at day 1. The fraction of labeled cells at the peak could

therefore not be measured and was estimated by extrapolating

the exponential loss of labeled cells during the down-labeling

phase to day 1. The estimated proliferation rates (and half-lives in

Table 1) are quite sensitive to this extrapolation because the

predicted exponential loss during the first days is relatively steep.

If the true peak occurred somewhat later than day 1, that is the

time-point at which 2H2-glucose was withdrawn, the pro-

liferation rate p may have been overestimated several folds.

The T-cell half-lives shown in Table 1 are all based on average

proliferation rates that are largely estimated from the upslope

during the up-labeling period. The downslopes during

delabeling provide an estimate for the death rate of recently

divided cells (5, 6, 58), which tend to be larger than the average

turnover rates that we are interested in. Although both up-

labeling and down-labeling data are essential for estimating p

and d*, most data sets take most of their samples during the

delabeling phase only. There is only one published data set on

deuterium labeling with sufficient sampling points during the

up-labeling phase to reliably estimate the approach to the peak.

Mohri et al. (7) labeled human volunteers for 1 week with 2H2-

glucose, drawing daily blood samples during the up-labeling

phase. The percentages of labeled T-cells increased approxi-

mately linearly toward peak values of 2–3% at day 7 (7). We

have refitted the data from the healthy controls (7) with the

model proposed by Asquith et al. (6) (Eqn 10) and found very

similar fits and proliferation rates p, as were originally estimated

with the earlier source, proliferation, and deathmodels (7). The

estimated T-cell half-lives from this study (Table 1) would

therefore remain the same if they had been estimated with the

model of Eqn 10. This can be understood from the early

upslopes of these mathematical models. At early time-points,

Eqn 10 approaches f¼ pt, which is in good agreement with the

observed linear increase of the percentage of labeled cells.

Because the early upslope of the model by Mohri et al. (7) also

approaches f¼ pt, the models were indeed expected to estimate

very similar average turnover rates p.

Our refitting of the data by Mohri et al. (7) was giving larger

death rates (d*) than the death rates (d) that were originally

estimated (results not shown). This is also natural because the

models differ markedly in the biological interpretation of

this death rate. In the model proposed by Asquith et al. (6), d* is

the death rate of labeled cells, which are not assumed to be in

steady state. The other models make use of the fact that the total

population size is not changing, and their death rate d is

satisfying the steady state of the population (7–9).

We very recently finished a long-term labeling study in five

healthy humans, aged 20–25 years, using 2H2O. During a 9-

week up-labeling and subsequent 16-week down-labeling

period, blood samples were drawn at 14 different time-points.

By analyzing the enrichment of the naive and memory CD4þ

and CD8þ T-cell populations, using a mathematical model

based on the model by Asquith et al. (6), we estimated the half-

lives of naive CD4þ and CD8þ T cells to be as long as 4.2 and 6.6

years, respectively, whereas memory CD4þ and CD8þ T cells

had half-lives of 0.4 and 0.7 years, respectively (Vrisekoop et al.,

manuscript submitted) (Table 1).

Summarizing, labeling with stable isotopes provides an

attractive alternative for the use of BrdU because stable isotopes

are non-toxic and because changes in label enrichment after

cessation of stable isotope administration truly represent the

loss of labeled cells and not – as in the case of BrdU – the

difference between cell loss and proliferation. The exact

estimates of lymphocyte kinetics resulting from stable isotope

labeling depend both on the method of labeling and on the

specific model used (Table 1). First, parameter estimates are

sensitive to the duration of label administration. The longer the

period of label administration, the more representative the

fraction of labeled cells is for the whole population (6),

showing the advantage of the use of 2H2O, which has been

administered orally for long periods of time, compared with
2H2-glucose, which has typically been administered intrave-

nously. This effect of the duration of label administration is

indeed evident in the studies summarized in Table 1. Second,
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values based on the precursor–product relationship tend to

underestimate lymphocyte turnover, that is give rise to longer

half-lives, than estimates based on mathematical models in

which proliferation and loss rates can be analyzed separately.

Finally, parameter estimates made during label administration

show less turnover than estimates that are derived during the

decay phase because the turnover of cells that have recently

divided tends to be higher than the average turnover in the total

cell population. Interestingly, the common discrepancy

between proliferation and loss rates in labeling data, which

used to be a subject of concern, may in fact be taken to one’s

advantage. Under steady-state conditions, the loss rate of the T-

cell population under consideration will be close to the

proliferation rate that is estimated during label administration.

The rate at which labeled cells are lost, in contrast, provides

information as to whether T cells that have divided tend to

contribute to the T-cell population or tend to be lost.

Conclusions

The theoretical models reviewed here show how theoretical

immunology has contributed to the quantification of lympho-

cyte dynamics and illustrate the pitfalls of mere intuitive

interpretation of kinetic immunological data. Although telo-

mere lengths are generally used to measure lymphocyte

proliferation and TRECs are measured to quantify thymus

output, mathematical models have shown that both telomere

lengths and TREC data are strongly influenced by both

lymphocyte proliferation and thymus output. Moreover,

mathematical analysis of telomere data has pointed out that

the parallel decline of naive and memory telomere lengths with

age does not imply that naive and memory lymphocytes divide

at equal rates. These insights have shown the limitations of the

use of telomere lengths and TREC data in the quantification of

lymphocyte dynamics.

Lymphocyte-labeling techniques, including BrdU and stable

isotope labeling, are expected to provide better insights into

lymphocyte dynamics. Even these data are difficult to interpret

by intuition, however. Although BrdU up- and down-labeling

are generally interpreted to reflect lymphocyte proliferation and

death, respectively, mathematical models have pointed out that

both the up- and the down-labeling phase are influenced by

lymphocyte proliferation and death. This is not the case in

stable-isotope-labeling experiments because lymphocyte pro-

liferation in the absence of stable isotopes will never lead to the

formation of new labeled DNA strands. In this respect, stable-

isotope-labeling data are more straightforward than BrdU data.

However, even the interpretation of stable-isotope-labeling

data hinges on the use of a good mathematical model.

Unfortunately, many stable-isotope-labeling data have so far

been analyzed using the precursor–product relationship, which

as we have shown above may lead to false immunological

interpretations.

There is only one published stable-isotope-labeling study

that has sufficient data points during the up- and down-labeling

phase to reliably estimate the average turnover rate and the rate

of loss of labeled cells (7). Our refitting of these data with the

model proposed by Asquith et al. (6) confirmed the original

estimates of average proliferation rates of 0.004 and 0.003/day,

that is half-lives of 173 and 231 days, of CD4þ and CD8þ T cells,

respectively, in healthy humans. Our own recent work based on

long-term labeling of the naive and memory T-cell subsets with
2H2O showed cellular half-lives of approximately 1500 and

2400 days for CD4þ and CD8þ naive T cells, respectively,

whereas memory CD4þ and CD8þ T cells had half-lives of

approximately 150 and 250 days, respectively (Vrisekoop et al.)

(Table 1). The previously estimated half-lives of naive T cells

(Table 1) are short compared with the more reliable 200-day T-

cell half-life reported by Mohri et al. (7) and our own labeling

results of the naive T-cell subset. These differences are probably

because of the short labeling periods and lack of samples around

the peak in most previous studies.

Investments in the development of useful mathematical

models will remain required because the interpretation ofmany

kinetic data is too complex to be interpreted by intuition alone.

Indeed, mathematical modeling is ‘nomore – but no less – than

a way of thinking clearly’ (61). The differences between the

studies reviewed in this article show that we should intensify

our efforts in both collecting better kinetic data and developing

better mathematical models, allowing for more reliable

parameter estimates. The current intensive collaboration

between experimental and theoretical immunologists should

therefore be expanded and nurtured if we indeed want to move

immunology to a more quantitative field of science.
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