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Abstract
In this paper, we formulate a model for human ventricular cells that is efficient
enough for whole organ arrhythmia simulations yet detailed enough to capture
the effects of cell level processes such as current blocks and channelopathies.
The model is obtained from our detailed human ventricular cell model by using
mathematical techniques to reduce the number of variables from 19 to nine.
We carefully compare our full and reduced model at the single cell, cable and
2D tissue level and show that the reduced model has a very similar behaviour.
Importantly, the new model correctly produces the effects of current blocks
and channelopathies on AP and spiral wave behaviour, processes at the core of
current day arrhythmia research. The new model is well over four times more
efficient than the full model. We conclude that the new model can be used
for efficient simulations of the effects of current changes on arrhythmias in the
human heart.

1. Introduction

Sudden cardiac death is a major cause of death in the industrialized western world. In a
majority of the cases sudden cardiac death is caused by the occurrence of a cardiac arrhythmia
called ventricular fibrillation. Despite the fact that cardiac arrhythmias have been studied for
over half a century, the precise mechanisms causing and sustaining fibrillation are still poorly
understood.

Mathematical models and computer simulations play an increasingly important role in
cardiac arrhythmia research. Major advantages of computer simulations are the ability to study
wave propagation in the 3D cardiac wall, which is currently still impossible in experiments,
and the ability to bridge the gap between changes in ionic currents and ion channel mutations
at a sub-cellular and cellular level and arrhythmias that occur at the whole organ level. A
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further important application of modelling is studying arrhythmias in the human heart, given
the limited possibilities for experimental and clinical research on human hearts.

To be able to study human whole heart arrhythmia dynamics and how these are linked
to (sub)cellular processes such as ion channel mutations, a human cardiac cell model that
is both detailed and computationally efficient is needed. Second generation ionic models
(Luo and Rudy 1994, Noble et al 1998, Winslow et al 1999, Rice et al 1999, Iyer et al
2004) contain a lot of electrophysiological detail, but are computationally very expensive,
whereas phenomenological models such as FitzHugh–Nagumo like models (FitzHugh 1960,
1961, Nagumo et al 1962, Aliev and Panfilov 1996) and the Fenton–Karma model (Fenton
and Karma 1998) are computationally very efficient, but lack electrophysiological detail. We
therefore need a model of an intermediate type.

Bernus et al (2002) constructed a relatively simple ionic model for human ventricular cells
based on the second generation Priebe–Beuckelmann ionic model (Priebe and Beuckelmann
1998). The disadvantage of this intermediate-type model is that the Priebe–Beuckelmann
model itself is based on only a limited amount of at that time available human cardiac cell
data. Therefore, the main aim of this paper is to formulate a new intermediate-type model
for human ventricular cells. In the first part of our paper we derive this new model from our
recently published detailed human ventricular cell model (Ten Tusscher and Panfilov 2006,
Ten Tusscher et al 2004), using a similar approach as followed in Bernus et al (2002).

The second part of our paper consists of a careful comparison of the behaviour of our
reduced and full model in single cell, cable and two-dimensional settings to validate that both
models behave in the same manner. We show that our reduced model has a similar action
potential shape, duration and restitution, can reproduce different cell types, can reproduce the
consequences of IKs and IKr current block and can reproduce the effects of genetic mutations
such as the LQT-3 and Brugada syndrome. We demonstrate that our reduced model has similar
conduction velocity restitution and has similar spiral wave dynamics and stability as our full
model.

Finally, we demonstrate that our reduced model is well over four times more efficient
than our full human ventricular cell model. This speedup can be crucial for making ionic
whole organ simulations achievable without the use of supercomputers or very large clusters.
Without the speedup, performing whole organ simulations within a reasonable run time would
require the use of around 100 parallel processors. With the speedup, reasonable run times can
be achieved using affordable 10–20 processor parallel clusters.

2. Materials and methods

2.1. Model development

2.1.1. Intracellular sodium and potassium concentrations. Similar to the approach followed
in Bernus et al (2002) we treat intracellular sodium and potassium concentrations as constant-
valued model parameters rather than variables. The rationale behind this approach is that
intracellular sodium and potassium concentrations hardly change over the duration of a few
action potentials. Significant changes in sodium and potassium concentrations, such as occur
under conditions of ischaemia or hyperkalaemia, occur over timescales of several minutes
(Boyett and Fedida 1988). Such timescales are far beyond the timescales that are currently
computed in whole heart arrhythmia simulations.

2.1.2. Intracellular calcium concentrations and calcium release. Intracellular calcium
concentrations change significantly during each action potential. These dynamics are essential
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for cardiac contraction and feed back on cardiac excitation by influencing ionic currents such
as the L-type calcium channel and the sodium calcium exchanger. The influence of calcium
dynamics on cardiac excitation is of particular importance when studying conditions such
as calcium overload, spontaneous calcium release and calcium-induced alternans. However,
when not studying these particular conditions, AP morphology, duration, restitution and
propagation can very well be reproduced using a model that does not incorporate calcium
handling (Bernus et al 2002). We therefore decided to remove intracellular calcium dynamics
from our model, and treat calcium as a constant-valued parameter.

Now we can also remove the subspace calcium inactivation gate (fcass) and the Cass

dependent driving force from our L-type calcium current description. This results in an L-
type calcium current description with only voltage dependent gates, similar to ICaL in Bernus
et al (2002), Luo and Rudy (1991), Zhang et al (2000). To compensate for the absence of fcass

and obtain similar inactivation dynamics for ICaL in the reduced and full model we adjusted
the time dynamics of the fast voltage inactivation gate (f2). The new equations for ICaL are:

ICaL = GCaLdff2(V − 60) (1)

f2∞ = 0.67

1 + e(V +35)/7
+ 0.33 (2)

αf 2 = 600 e− (V +27)2

170 (3)

βf 2 = 7.75

1 + e(25−V )/10
(4)

γf 2 = 16

1 + e(V +30)/10
(5)

τf 2 = αf 2 + βf 2 + γf 2. (6)

Removing intracellular calcium dynamics significantly increases the computational
efficiency of our model, as it reduces the number of variables by five (Cass, Cai, CaSR, R,
fcass) and the number of equations by 25 (intracellular calcium fluxes, buffering and reversal
potentials).

2.1.3. Simplifying ionic currents. To further reduce the number of variables, we use quasi-
steady-state approximations for some of the fast changing current gating variables, similar to
the approach followed in Bernus et al (2002). Fast changing gates in our model are: the m
gate of INa, the r gate of Ito, the xr2 gate of IKr and the d gate of ICaL.

For Ito, IKr and ICaL using a steady-state approximation for the r, xr1 and d gates can be
done without significant changes of the AP or conduction properties of the model. However,
using a quasi-steady-state approximation for the INa m gate has significant consequences for
action potential upstroke velocity, conduction velocity and conduction velocity restitution.
Therefore, we decided to keep the INa m gate as a model variable.

The new equations for Ito, IKr and ICaL become

Ito = Gtor∞(V )s(V − EK) (7)

IKr = GKrxr1xr2∞(V )(V − EK) (8)

ICaL = GCaLd∞(V )ff2(V − 60). (9)

This further reduces our model with three variables. In total we removed ten variables,
leaving nine variables in our reduced model.
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Table 1. Parameter values in the full and reduced model for the default and steep settings. If
parameter values are not mentioned, they have been left unchanged from the default setting of the
full model and can be found in Ten Tusscher and Panfilov (2006). Concentrations are in mM,
conductances are in nS pF−1, except for L-type calcium conductance in the full model which is
in cm ms−1µF−1, due to the Goldmann–Hodgkin–Katz formulation for the driving force. For the
steep setting, τf was multiplied by a factor 2 for the voltage range V > 0, to slow down inactivation
but not recovery dynamics.

Setting Parameter Full model Reduced model

All Nai Variable 7.67
Ki Variable 138.3
Cai Variable 0.000 07
GCaL 3.980−5 0.2786

Default GKr 0.153 0.101
GKs 0.392 0.257
GpK 0.0146 0.0293

Steep GKr 0.172 0.126
GKs 0.441 0.321
GpK 0.002 19 0.002 19
GpCa 0.8666 1.238
τf ×2 ×2

2.1.4. Parameter adjustments. To obtain a similar action potential shape and duration
characteristics for the full and reduced model, a number of parameter values were adjusted. In
table 1 parameter values for ICaL, IKr, IKs and IpK conductance in the full and reduced model
are shown for the default setting of both models. It should be noted that for all changed
parameters the values in the reduced model are within the same order of magnitude as in
the full model. Furthermore, both the parameter values in the full model and in the reduced
model are within the range of values found experimentally for ventricular cells. Other current
characteristics, such as activation, inactivation and I, V curves were left unchanged from the
full model (Ten Tusscher and Panfilov 2006, Ten Tusscher et al 2004). All other parameter
values were unchanged from the full to the reduced model.

Given the small number of parameters changed, and the relatively small changes in
parameter values, we hypothesize that the relative importance of the different ionic currents
should be similar in the full and reduced model. This will be tested in subsequent sections.

2.2. Numerical methods

Action potential generation and propagation was described using the following differential
equation (Keener and Sneyd 1998):

Cm

∂V

∂t
= Iion + Istim + D�V (10)

where Cm is the membrane capacitance, V is the transmembrane potential, Istim is the externally
applied transmembrane current, Iion is the sum of all transmembrane ionic currents and D is
the diffusion coefficient. For Iion we use either our new human ventricular cell model (Ten
Tusscher and Panfilov 2006), or the reduced version of this model which was described in the
previous section. For D we use D = 0.001 54 cm2 ms−1 in 1D and 2D simulations to obtain
a maximum planar conduction velocity (CV) of 68 cm s−1 consistent with measurements in
human ventricular tissue (Taggart et al 2000), and a value of D = 0 cm2 ms−1 for single cells.
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Table 2. Dependence of conduction velocity (CV) and action potential duration (APD) on time
step (�t) of integration for a space step �x = 0.025 mm.

Model �t (ms) CV (cm s−1) APD (ms)

Full 0.04 66.2 310
0.02 68.7 310
0.01 70.0 310
0.005 70.7 310

Reduced 0.04 63.0 314
0.02 65.0 312
0.01 66.1 312
0.005 66.7 313

Table 3. Dependence of conduction velocity (CV) and action potential duration (APD) on space
step (�x) of integration for a time step �t = 0.02 ms.

Model �x (mm) CV (cm s−1) APD (ms)

Full 0.040 63.0 310
0.025 68.7 310
0.015 72.6 310

Reduced 0.040 58.9 312
0.025 65.0 312
0.015 69.2 313

Physical units used in our model are as follows, time (t) in milliseconds, voltage (V )

in millivolts, current densities (IX) in picoamperes per picofarad and ionic concentrations
(Xi,Xo) in millimoles per litre.

For single cell simulations, forward Euler integration with a time step of �t = 0.02 ms
was used to integrate equation (10) . For 1D and 2D computations, the forward Euler method
was used to integrate equation (10) with a space step of �x = 0.25 mm and a time step of
�t = 0.02 ms. In all cases the Rush and Larsen integration scheme (Rush and Larsen 1978)
was used to integrate the Hodgkin–Huxley-type equations for the gating variables.

We test the accuracy of our numerical simulations in a cable of cells by varying the time
and space step of integration (tables 2 and 3). We see similar results for the full and reduced
model. From table 2 we can see that for a space step of �x = 0.25 mm decreasing �t from
0.02 ms to 0.005 ms leads to a 2–3% increase in CV and a 0–0.3% increase in action potential
duration (APD). From table 3 we can see that for a time step of �t = 0.02 ms decreasing
�x from 0.025 mm to 0.015 mm leads to a ∼6% increase in CV and a 0–0.3% increase in
APD. These changes are similar to those reported for other models (see, for example, Qu
et al (1999)). Throughout the rest of this paper we use a time step of �t = 0.02 ms and a
space step of �x = 0.2 mm, similar to values used in other studies (Qu et al 1999, Cao et al
1999, Xie et al 2001, Bernus et al 2002).

In single cells, we use the dynamic protocol to determine action potential duration
restitution. We apply a series of 50 stimuli at a specified BCL, following which cycle
length is decreased. The APD restitution curve is obtained by plotting the final APD for each
BCL against the final DI. In cables, we apply the dynamic restitution protocol to determine
conduction velocity (CV) restitution. We do so by pacing one end of the 800 cells long cable
at a certain BCL until a steady state APD and CV are reached, after which the cycle length is
decreased.
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Figure 1. Steady state 1 Hz action potential and major ionic currents of the full and reduced
model. (A) Action potential. (B) Fast sodium current. Note the difference in time scale relative to
the other figures. (C) L-type calcium current. (D) Transient outward current. Note the difference
in time scale relative to the other figures. (E) Rapid delayed rectifier potassium current. (F) Slow
delayed rectifier potassium current.

We use two-dimensional tissue sheets of 1000 × 1000 cells (space step �x = 0.25 mm).
In 2D spiral waves are generated by first applying an S1 stimulus producing a planar wavefront
propagating in one direction, then, when the refractory tail of this wave crosses the middle
of the medium, an S2 stimulus is applied generating a second wavefront perpendicular to the
first. This produces a wavefront with a free end around which it curls, forming a spiral wave.
Stimulus currents lasted for 2 (S1) and 5 (S2) ms and were twice the diastolic threshold. Phase
singularities (PS), the points around which spiral waves rotate, are detected by intersecting an
isopotential line (−60 mV) and the dV/dt = 0 line (Fenton and Karma 1998).

Simulations were coded in C++ and run on a single processor of a Dell 650 Precision
Workstation (dual Intel xeon 2.66 GHz).

3. Results

3.1. Normal electrophysiological properties

3.1.1. Action potential and ionic currents. In figure 1 we show a steady state (epicardial)
AP and the major ionic currents contributing to this action potential at 1 Hz pacing for our
full and reduced model. In figure 1(A) we can see that AP shape is almost identical in the
full and reduced model. The resting potential is −85.6 mV in the full and −86.0 mV in the
reduced model, V̇max = 292 V s−1 in the full and V̇max = 297 V s−1 in the reduced model.
Amplitude and shape of the fast sodium current are similar for the full and reduced model
(figure 1(B)). In figure 1(C) we can see that the dynamics of ICaL in the full and reduced model
are qualitatively similar: both show a first phase of fast activation and fast partial inactivation
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Figure 2. Steady state 1 Hz action potential morphology for epicardial (A), endocardial (B) and
M cells (C) in the full and reduced model. See the text for details on the differences in parameter
settings between the cell types.

and a second phase of slower inactivation. However, there are some quantitative differences:
in the full model the calcium current inactivates to a relatively constant plateau level until final
inactivation, whereas in the reduced model the calcium current gradually decreases during the
AP plateau phase.

Ito shape and duration are also somewhat different in the full and reduced model
(figure 1(D)). However, the integral of the Ito current in the two models is very similar,
resulting in a similar effect of Ito current on AP shape. In figure 1(E) we see a qualitatively
similar shape of IKr current, except for the initial peak. This peak is absent in the reduced
model due to the instantaneous rather than time dependent inactivation of IKr (xr2∞), as is the
case in most models (Zeng et al 1995, Priebe and Beuckelmann 1998, Courtemanche et al
1998, Iyer et al 2004). In addition the IKr current in the reduced model has a slightly smaller
amplitude as in the full model. In figure 1(F) we can see that the IKs current has a similar
shape and slightly smaller amplitude as in the full model. The smaller IKr and IKs current
amplitudes are due to a smaller conductance in the reduced model (see table 1), which were
necessary to obtain the same APD as in the full model.

3.1.2. Three different cell types. Using both the full and the reduced model we are able to
simulate the three different cell types found across the ventricular wall (Drouin et al 1995,
Li et al 1998). Figure 2 shows steady state epicardial (A), endocardial (B) and M cell (C)
action potentials for the full and reduced model for a BCL of 1000 ms. Epicardial cells are
simulated by using the standard parameter setting of our full (Ten Tusscher and Panfilov 2006)
and reduced (table 1) model. Endocardial cells differ from epicardial cells in their 75% lower
Ito density, and in their slower recovery from inactivation of the Ito current (Ten Tusscher et al
2004), leading to a virtual absence of the AP notch. These differences are based on data from
(Nabauer et al 1996, Wettwer et al 1994). In our model M cells differ from epicardial cells
only in having a 75% lower IKs density (Pereon et al 2000), leading to a longer AP duration,
similar to our approach in (Ten Tusscher et al 2004).

We can see that epicardial, endocardial and M cell action potentials are very similar both
in duration and morphology in the full compared to the reduced model.

3.1.3. APD and CV restitution. The APD and CV restitution curves describe how action
potential duration and action potential propagation speed change as a function of the duration
of the diastolic interval between the current and preceding action potential. It has been
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Figure 3. Restitution properties of the full and reduced model. (A) Dynamic action potential
duration restitution. (B) Conduction velocity restitution.

extensively demonstrated (Panfilov and Holden 1990, Karma 1993, Karma 1994, Qu et al
1999, Cao et al 1999, Cherry and Fenton 2004, Ten Tusscher and Panfilov 2006) that action
potential duration and conduction velocity restitution properties are of critical importance
for determining what kind of reentrant arrhythmia will occur, i.e. whether stable spiral wave
rotation or spiral breakup will occur. Therefore, our reduced model should have realistic APD
and CV restitution properties.

In figure 3(A) we can see that the full and reduced model have very similar dynamic APD
restitution properties. Note that the restitution properties of our full model have been fitted
to reproduce recently measured human restitution curves (Nash et al 2006, Ten Tusscher and
Panfilov 2006). In figure 3(B) we can see that the full and reduced model have a qualitatively
similar, gradually declining CV restitution curve. Quantitatively, CV in the full model starts
decreasing for slightly longer DIs than in the reduced model, resulting in somewhat lower
conduction velocities for the shortest DIs. However, these small differences turn out not to
have a significant effect on spiral wave dynamics and stability (see figure 7).

3.2. Effect of current blocks and channelopathies

3.2.1. IKs, IKr, Ito and ICaL block. The main aim of this study was to develop a model
that is computationally efficient yet maintains a lot of detailed characteristics for the major
ionic currents. Here we check whether our reduced model produces the correct responses to
IKr, IKs, Ito and ICaL current block.

Figure 4 shows a normal AP, and APs when IKr or IKs current is fully blocked. We can
see that both blocks result in an increase of APD. Normal APD is 315 ms, APD under IKr

block is 355 ms, an increase of 40 ms or 12.7%, similar to experiments reporting an increase
of 6% (88 ms) (Li et al 1996) and 11% (47 ms) (Iost et al 1998) upon full IKr block. APD
under IKs block is 467 ms, an increase of 152 ms or 48.3%, similar to experiments reporting
an APD prolongation of approximately 40% (140 ms) upon full IKs block (Bosch et al 1998).
These results are also very similar to results for the first version of our full human ventricular
cell model (Ten Tusscher et al 2004, TenTusscher and Panfilov 2004).

Figure 5 shows a normal AP, an AP when Ito current is fully blocked, and an AP when
ICaL current is fully blocked in both the full (figure 5(A)) and reduced (figure 5(B)) model. As
expected we see that block of Ito results in the absence of the epicardial AP notch, and that
block of ICaL results in a significant shortening of APD. Ito and ICaL block have very similar
effects on APD and AP shape in the reduced and full model.
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Figure 4. Steady state 1 Hz action potentials in the reduced model for the normal parameter
setting, for 100% IKr current block and for 100% IKs current block.
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Figure 5. Steady state 1 Hz action potentials in the full (A) and reduced (B) model for the normal
parameter setting, for 100% Ito current block and for 100% ICaL current block.

3.2.2. LQT-3 and Brugada syndrome. Here we investigate whether our reduced model can
be used to study the LQT-3 syndrome and the Brugada syndrome.

LQT-3 syndrome. LQT-3 syndrome is caused by mutations in the SCN5A gene coding for the
fast sodium channel (Grant 2001, Rivolta et al 2001) that lead to a partial loss or slowing of
inactivation of the fast sodium current. We simulated a case of LQT-3 syndrome in which INa

inactivation is incomplete, by adjusting the steady-state functions of the inactivation gates h
and j of INa:

h∞ wild type = j∞ wild type = 1

(1 + e(V +71.55)/7.43)2
(11)

h∞ LQT-3 = j∞ LQT-3 = (1 − l)

(1 + e(V +71.55)/7.43)2
+ l (12)

where the fraction describes the inactivating part of INa (100% in the wildtype (100 − 100l)%
in the LQT-3 mutant), and l represents the non-inactivating part of INa responsible for INa,late.
In figures 6(A) and (B) we simulated LQT-3 syndrome in M cells in both our full and reduced
model at a BCL = 1250 or 1750 ms. We used values of l = 0.0305 for the full model and
l = 0.025 for the reduced model in figure 6(A), resulting in INa,late amplitudes of 3.05% and
2.5% of peak INa amplitude, respectively. In figure 6(B) we used l = 0.0315 for the full
model and l = 0.026 for the reduced model, resulting in INa,late amplitudes of 3.15% and
2.6% of peak INa amplitude, respectively. These LQT-3 INa,late amplitudes are in the range of
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Figure 6. M cells and LQT-3 syndrome in the full and reduced model. (A) LQT-3 M cell action
potentials with a single EAD at a BCL = 1250 ms. (B) LQT-3 M cell action potentials with
multiple EADs at a BCL = 1750 ms. See the text for a full description of M cells and LQT-3
syndrome parameter settings. Note that EADs also occurred under these parameter settings for
BCL = 1000 ms, but that this leads to interference between the prolonged EAD and the next
stimulus. We therefore decided to display EADs at slightly longer BCL for clarity.
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Figure 7. Epicardial cells with a deep notch and the Brugada syndrome in the full and reduced
model. (A) Epicardial action potentials with a deep notch (BCL = 1000 ms). (B) Brugada
syndrome: short triangular and long ‘coved dome’ shaped APs as a result of an Ito increase of
function mutation (BCL = 328 ms). (C) Brugada syndrome: short and long APs as a result of an
ICaL decrease of function mutation (BCL = 325 ms). See the text for a detailed description of
deep-notch epicardial cell and Brugada syndrome parameter settings.

experimentally found values (Wei et al 1999, Keller et al 2003). We see that for approximately
the same percentage of non-inactivating INa we get the same type and number of EADs in
both our full and reduced model.

Brugada syndrome. Brugada syndrome is characterized by the occurrence of both very short,
triangular and prolonged, ‘coved dome’ shaped APs at short BCL (Dumaine et al 1999). The
short APs occur as a result of complete repolarization during the AP notch, whereas the long
APs occur as a result of a deep and long lasting AP notch leading to an increase in AP plateau
duration. Epicardial cells with a large Ito current and deep AP notch are particularly prone
to developing Brugada characteristics (Clancy and Rudy 2002, Fish and Antzelevitch 2003).
So far, Brugada syndrome has only been linked to mutations in the SCN5A gene, which lead
to a reduction of fast sodium current (Antzelevitch 1999). However, mutations leading to an
increase in Ito or a decrease in ICaL current are likely candidates for Brugada syndrome in
patients where no mutations in SCN5A are found (Antzelevitch 1999).

In figure 7(A) we simulated an epicardial AP with a deep notch in both our full and
reduced model. This cell type was constructed by shifting the half-activation potential of the
Ito r gate from V1/2 = 20 mV to V1/2 = 2.5 mV for the full and to V1/2 = −5 mV for the
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Figure 8. Spiral wave dynamics. (A) Stable spiral wave dynamics in the full model for a setting
with an APD restitution slope slightly steeper than one. (B) Spiral breakup in the full model for a
setting with an APD restitution slope considerably over one. (C) Stable spiral wave dynamics in
the reduced model for a setting with an APD restitution slope slightly over one. (D) Spiral breakup
in the reduced model for a setting with a restitution slope considerably over one.

reduced model, leading to a larger amplitude and faster activation of Ito. In figure 7(B) we
simulated a hypothesized Brugada syndrome mutation leading to a gain of function in the Ito

current by increasing Gto with 27% in the full and 44% in the reduced model. In both models
we see the interchange of short triangular APs and long ‘coved dome’ APs typical for Brugada
syndrome. In figure 6(C) we simulated a hypothesized Brugada syndrome mutation leading
to a loss of function in the ICaL current, by reducing GCaL with 35% in both the full and the
reduced model. Again we see the interchange of long and short APs in both models.

3.3. 2D propagation and computational efficiency

3.3.1. Spiral wave dynamics. Figure 8 shows spiral wave dynamics for our full model (top
row) and reduced model (bottom row) for the default parameter settings of both models which
results in an APD restitution slope slightly over one (1.1) (left column) and for an alternative
setting which results in a restitution slope considerably steeper than one (1.8) (right column).
(For parameter settings see (Ten Tusscher and Panfilov 2006) and table 1.) We can see that for
both models, the default parameter setting results in stable spiral wave rotation and the steep
parameter setting results in spiral breakup.

To further compare spiral wave dynamics in the full and reduced model, we determined
spiral wave meander pattern, rotation period and frequency spectrum for the stable spiral
waves shown in figures 8(A) and (B). Figures 9(A) and (B) show spiral tip meander patterns
for the full and reduced model. We see that both the shape (circular) and size of the meander
patterns are very similar. For stable spiral wave rotation we find a period of 192 ms in the full
model and a period of 200 ms in the reduced model. In figure 9(C) and (D) we show frequency
spectra of electrical activity recorded in point (400, 400) during spiral wave rotation. We can
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Figure 9. Spiral wave dynamics, continued. (A) Stable spiral wave meander pattern in the full
model. (B) Stable spiral wave meander pattern in the reduced model. (C) Frequency spectrum
of electrical activity in point (400, 400) during stable spiral wave rotation in the full model. (C)
Frequency spectrum of electrical activity in point (400, 400) during stable spiral wave rotation in
the reduced model.

see that the frequency spectra in the full and reduced model look very similar. We conclude
that spiral wave dynamics in the reduced model closely resemble spiral dynamics in the full
model.

An important question is whether our reduced model is able to reproduce the experimental
finding that reducing ICaL flattens APD restitution and stops fibrillation (Riccio et al 1999,
Koller et al 2000, Garfinkel et al 2000). To determine this we started with the steep parameter
setting (figure 8(D)) and gradually decreased GCaL (figure 10(A)) and hence restitution slope
(figure 10(B)). Figure 8(D) shows spiral wave dynamics 4 s after the start of the simulation,
when GCaL and restitution slope are (still) at their maximal value, full blown spiral breakup
has developed and a total of 18 phase singularities (PS) are present. In figures 10(C) and (D)
we show spiral wave dynamics 7 s and 9 s after the start of the simulation. At 7 s, when GCaL

has been decreased to approximately 30% of its original value, the number of spiral waves
present is significantly reduced (4 PS). At 9 s, when GCaL has been decreased to ∼20% of
its original value, spiral breakup has stopped and a single stable spiral wave remains (1 PS).
So despite the absence of intracellular calcium dynamics in our reduced model, the model
correctly reproduces the effect of reducing ICaL current.

3.3.2. Computational efficiency. We performed a comparison of the computer time needed
to simulate 4 s of spiral wave dynamics in a 1000 × 1000 tissue sheet using either our full or
reduced model (the above discussed simulations). For the full model we needed ∼7400 min
and for the reduced model we needed ∼1680 min for a single 4 s simulation. Thus, using the
reduced model we obtained a speedup of a factor 4.4 over the full model.

Note that the speedup is almost two times more than could be expected based on the
reduction of the number of variables (19/9 = 2.1). This can be explained by the fact that
removing all intracellular ion concentrations as variables significantly reduces the number
of equations that need to be solved for the remaining variables, since for example reversal
potentials and buffering fractions now have a constant value.
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Figure 10. Influence of GCaL on spiral breakup. (A) Percentage change in ICaL conductance over
the course of the simulation. The first 5 s GCaL is left unchanged from its original, maximal value
to allow full blown spiral breakup to develop. After that, GCaL is gradually decreased using the
function GCaL = GCaL((1 − P) + P e(t−T0)/τ ), with P = 0.8, T0 = 5 s and τ = 1 s. (B) Dynamic
APD restitution for the steep parameter setting of the reduced model (see table 1) for 100%, 60%,
40%, 30% and 20% of its normal GCaL value. (C) Spiral wave dynamics 7 s after the start of the
simulation. (D) Spiral wave dynamics 9 s after the start of the simulation.

For further comparison, we determined the time needed to simulate 4 s of spiral wave
dynamics using the Luo–Rudy phase one model, which was 923 min. Thus our reduced human
ventricular cell model is only a factor 1.8 slower than the Luo–Rudy phase one model.

4. Discussion

In this paper, we developed a reduced, computationally efficient model for human ventricular
myocytes that retains the detailed characteristics of all major ionic currents. The model is
intended for whole heart arrhythmia simulations in which the consequences of (sub)cellular
processes such as channelopathies are investigated.

We performed a careful comparison of the behaviour of the reduced and full model in
single cell, cable and 2D tissue sheet settings. We show that our reduced model has similar AP,
ionic current morphology and APD restitution as the full model. We also show that our reduced
model is capable of correctly reproducing characteristics of different cell types, responses to
current blocks and behaviour in the presence of channelopathies. We demonstrate that our
reduced model has similar CV restitution, spiral wave dynamics and spiral wave stability as
our full model. Furthermore, we show that our reduced model is capable of reproducing the
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experimental finding that reducing ICaL current flattens restitution and reverts fibrillation to
tachycardia, despite the fact that the reduced model does not incorporate calcium dynamics.

The reduced model is well over four times faster than the full model and is less than a
factor 2 slower than the widely used phase one Luo–Rudy model, which does not incorporate
an Ito current (important for Brugada syndrome), does not have a separate description for the
IKs and IKr currents (important for M cells, LQT and SQT syndrome), and is intended for
simulating guinea pig cardiac cells. A speedup of well over four makes ionic whole heart
modelling feasible with the use of small, affordable 10–20 processor parallel clusters.

4.1. Limitations

There are several limitations to the model we developed in this paper. First, because of
the absence of sodium and potassium dynamics we cannot investigate the development
of conditions such as ischaemia and hyperkalaemia. However, the development of these
conditions occurs over a timescale of minutes, which is too long for the whole heart arrhythmia
simulations our model is intended for. Note that using our model we can simulate the effect
of a developed condition of ischaemia or hyperkalaemia by changing the parameter values of
intracellular sodium or extracellular potassium.

Second, because of the absence of intracellular calcium dynamics our model cannot be
used for studying conditions such as calcium overload, spontaneous calcium release, calcium-
induced alternans and the influence of calcium dynamics on wave break. Clearly, for these
types of research questions the full model should be used (Ten Tusscher and Panfilov 2006).

Third, using steady-state assumptions for the fast activating gates of Ito, IKr and ICaL

causes them to activate instantaneously rather than with some time-delay. This may influence
action potential upstroke characteristics, especially under conditions of reduced fast sodium
current amplitude, such as during ischaemia or acidosis, when Ito, IKr and ICaL dynamics
become more important.

5. Conclusion

We formulated a computationally efficient simplified version of our detailed human ventricular
cell model. The reduced model retains the essential details of all major ionic currents and
is therefore capable of simulating effects of (sub)cellular processes such as IKr or IKs block,
LQT-3 syndrome or Brugada syndrome. Because of its computational effectiveness, the model
is very suited for studying the consequences of such conditions on whole heart arrhythmia
dynamics.
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