METHODOLOGY IN SYSTEMS MODELLING AND SIMULATION
B.P. Zeigler, M.S. Elzas, G.J. Klir, T.I. fren (eds.)
© North-Holland Publishing Company, 1979

HETERARCHICAL, SELFSTRUCTURING
SIMULATION SYSTEMS:
CONCEPTS AND APPLICATIONS
IN BIOLOGY

P. Hogeweg and B. Hesper
Bioinformatica
University of Utrecht
de Uithof, Utrecht
Netherlands

1. INTRODUCTION

In this paper we outline a framework for modelling and simulation, which emphasises

local specification of entities, dynamic generation of entities, heterarchical con-

trol and self structuring properties of simulation models. Two examples of programs

using these principles are discussed in some detail. They are:

- MIRROR, a program for modelling Mov1ng, Interacting, Reproducing and Retiring
Organisms, and

- MICMAC, a program, exploring "micro/macro" relations among processes for self
structuring.

In the discussion on MIRROR we emphasise the local specification and heterarchical
control using DEMONs; in the discussion on MICMAC we employ self structuring pro-
perties through the use of EXPERTs.
Both programs are implemented in SIMULA/67 (Dahl, Myhrhaug and Nygaard, 1970). We
found the CLASS concept of this language useful, although the strict hierarchical
structure of CLASSes is less suitable for our purposes.
In the more technical part of the paper, familiarity with SIMULA/67 is assumed,
but the concepts introduced should be understandable without such background know-
ledge.

"global state considered harmful"
2. LOCAL SPECIFICATION OF ENTITIES C. Hewitt (1973)

2.1 Parts and wholes

Biology, like physics, is simple if and only if viewed locally. This implies that
an entity is to be described in terms of information avai]ab]e to the entity it-
self, without reference to an outside observer. For example, "a free falling par-
ticle is to be observed from the inside of a free falling rocket with the windows
closed" (Misner, Thorne and Wheeler, 1973).

Likewise, the behaviour of a cell is to be viewed in relation to its neighbours
only, not in terms of the global position it occupies in an organism.

Even in models which represent such a "localness" explicitly there often remains
some implicit global variable or control structure. This was true for Newton's
description of moving bodies (abso1ute space and time remained global variables).

A rather similar situation is seen in contemporary cellular models for biological
systems. While the system is subdivided into cells, supposedly autonomous units,
time remains a global variable: cell transitions are globally synchronised in cel-
Tular space systems (von Neumann, 1960; Ulam, 1962; cf Burks, 1970) and L-systems
(Lindenmayer, 1968a,b; Herman and Liu, 1973; Herman and Rozenberg, 1975)(See also
Herman et al, 1974; Lindenmayer and Rozenberg, 1975). This global synchronisation
not only affects drastically the results in all practical applications as shown by
Hogeweg (1978a,b), but also lacks any biological rationale.

221

222 P. HOGEWEG and B. HESPER

The artificiality of the global synchronisation of the transformations of the cells
is at once apparent if viewed from the standpoint of a cell as an autonomous unit.
However, from the standpoint of an outside observer, who seeks to model the trans-
formations of an entire system (subdividing it into (arbitrary) units) imposing a
global synchronicity seems quite acceptable. Indeed all differential and difference
equation models, as well as all automatic theoretic models employ such global syn-
chronicity implicitly. Likewise most simulation strategies for such models enforce
global synchronicity (on a sequential computer).

Such simulation models typically contain a global control structure (monitor) to
run the program and use global data structures (arrays, etc.) to store the varia-
bles and parameters. Thus, although, for example in continuous system languages
(CSMP, LEANS, etc.), the user decomposes the system into a set of standard blocks,
and specifies the interconnections, the system translates this into the global
transformation of a vector of system variables.

Implicitly global formulation can be very dangerous, in particular if the behaviour
of the entities is not known (or not modelled) in detail. This danger lies in the
fact that the entities are formulated as 'parts of a whole' instead of as autonomous
units. Simulation models make it feasible to study how a set of (dynamically) in-
terrelating entities can generate seemingly (i.e. in the eye of the observer)
‘emergent' properties. This obviates metaphysical discourses on emergence, unless
entities are implicitly controlled by the 'whole' whence all this metaphysics 're-

emerges’ .

In many interesting problems in biology, both the overall system and the subsystems
are supposed to be an incomplete representation of parts of the biological system
studied. If such is the case the subsystems should be regarded as autonomous units,
and should be represented in the (simulation) model as such.

Thus we envisage a system in which the behaviour of a subsystem is entirely speci-
fied within the subsystem itself, using only its own Tocal variables (no global
data structures) and those cf other subsystems with which it is acquainted. Thus
the information and the information processing capabilities of the subsystem are
stated explicitly in the model. It is important to endow the subsystem only with
capabilities and concerns which are reasonable with regard to the object it is
supposed to model (Note that we do not shun from using anthropomorphic terminology
in describing our entities: it protects us from the far more serious fallacy of
implicitly global control).

Such a simulation methodology is envisaged by us in the first place because of the
usefulness in biology (our own research is mainly in modelling morphological de-
velopment and modelling ecosystems). Besides it has many attractive properties
from the simulation point of view: complete Tocal specification of the modules in-
creases the flexibility, extendability, transferability and last and least the
readability of the model.

The maxim above this paper is "global state considered harmful". Indeed in our
type of simulation methodology, the global state is not readily available even to
the user (or output unit). In fact an output unit is, like the rest of the system,
a locally defined entity, observing the system from its own local viewpoint
through inspection of its acquaintances. As is the case for other units, the set
of acquaintances may change dynamically also for the output unit, thus extracting
the output on different parts of the system. Only as a special case can we endow
the output unit with the power to observe all the local variables.

HETERARCHICAL, SELFSTRUCTURING SIMULATION SYSTEMS 223

"an ant viewed as a behaving system is quite simple,
the apparent complexity of its behaviour in time is
largely a reflexion of the complexity of the en-
vironment in which it finds itself

"a man viewed as a behaving system is qu1te simple,
the apparent complexity of his behaviour in time is
largely a reflexion of the complexity of the en-
vironment in which he finds himself"

H.A. Simon (1969)
2.2 Sample model:
Moving, Tnteracting, Reproducing and Retiring Organisms (MIRROR)

Features of the foregoing simulation methodology will be elaborated further in the
context of a specific example: the behaviour of individual organisms in a plane.
The organisms are viewed as information processing entities whose behaviour is de-
termined (possibly stochastically) by features of the environment they can directly
observe, and by their memory structure. Because they can move about, are born or
die, the set of entities with which they interact varies with time. We endow our
organisms with only the information actually available to them at any time. This
makes it possible to study the amount and kind of information needed to perform a
certain behaviour.

Examples of simple problems we can tackle with the system are:

- Formation of spatial patterns due to interaction between organisms.

For example patterns due to density dependent influence on germination, growth
and death of plants, or due to changes in moving direction of animals in meet-
ing other animals etc.

- Influence of behaviour parameters of the prey on the density of prey needed by
various typed of predators to survive. For example, the influence of trooping
of prey on predators hiding in a bush, or predators moving about in certain
ways.

In short we want to be able to model the structuring of the environment by physical

processes, plants and animals, and the influence thereof on the behavioural patterns
of the organisms. Thus we hope to gain further insight into the simplicity and com-

plexity of behavioural patterns following the paradigm of Simon as stated above

this chapter.

We desire that the simulation system be structured so as to allow for easy model-
ling of quite simple problems (such as those mentioned above) and of much more com-
plex models, while providing a smooth path from the former to the latter.

In designing such a system it becomes apparent that the most obvious choice of in-
formation processing primitive, i.e. individual organisms, does not suffice. Orga-
nisms should be rather modelled as dynamic colonies of information processing
units. This is so because:

1. We are interested in modelling a number of partially independent processes
taking place in an individual. Different information is relevant to each of
these, they take place in different time scales, and they interact only once in
a while. Even in the simplest cases, we might need an information processing
entity which handles movement of the organism step by step, one which handles
the daily cycle of waking and sleeping and one which handles the reproduction
cycle. These processes are partially independent (an animal does not have to
check at every time of the day whether the night is falling), but also should
modify each others behaviour at certain times.

2. In order to obtain the relevant information for its behaviour, each information
processing unit may moreover need to ‘expand' itself to check on potential in-
teraction partners for important events which trigger its own activity. For
this purpose we implemented DEMON-1ike structures in our system (Charniak,
1972; see also Bobrow and Winograd (1977) on "active programming").

224 P. HOGEWEG and B. HESPER

This twofold need for organism decomposition is again a manifestation of the maxim
above: describing an organism by its global state is harmful.

Moreover such a decomposition amplifies greatly the strength of Simon's paradigm.

2.3 DEMONs

Activities of animals may have to be triggered by other events. Take as an example
an ambush predator (LION) hiding in a bush, waiting for a prey to come along. It
may have to wait for a long time, but when the prey arrives it should be fast
catching it. Implementing this by frequent checking of the environment would be
very inefficient. Instead the LION should be triggered by the arrival of the prey.
However the prey is prohibited to call the LION explicitly upon entering its sur-
rounding by our demand that the knowledge of each entity is to be confined to know-
ledge it may reasonably possess. Instead it should ward the LION without knowing it
(compare the snapping of a branch). Such a trigger can be achieved by using DEMONs.

DEMONs provide the time driven heterarchical interconnection and activation
structure of our simulation system. They may be seen as generalised and localised
'wait until'. They combine the features of process (time) oriented activation
systems and (conditional) event oriented systems. They reduce to either of these
for particular parameter settings, and go beyond these for other parameter set-
tings.

In most applications DEMONs are entirely transparant except at the time of their
creation.

DEMONs have four parameters: TIE, TARGET, DT and FLAG. TIE is a reference to the
entity which is to be 'revived' by the DEMON (which is often but not necessarily
the same as the one which created the DEMON); TARGET is a reference to an entity
to be watched by the DEMON; DT the time delay after which the DEMON activates it-
self and FLAG is a parameter to check for obsolescence of the DEMON in relation to
its TIE.

REVIVAL of an entity involves:

1. providing the entity with a reference to the cause of its revival, i.e. to
TARGET. A

2. providing the TIE with a MESSAGE

3. revival of the DEMONs associated with the entity to be revived.

4. reactivation of the entity to be revived.

REVIVAL is only executed if the DEMON is not obsolete, otherwise the DEMON is de-

leted from the system.

ATl entities in a DEMON-driven system possess a 1ist for DEMONs and a pointer
called REVIVER to receive the cause of the revival. Entities include INTEGER,REAL,
BOOLEAN,ARRAY1,ARRAYZ2..... ARRAYN,LISTS and DPROCESS and any user defined entity
which is a subCLASS of DLINK or DPROCESS. A1l entities can be member of a list.
Convenient side-effects of the representation of the variables in such a form in-
clude stacks and dynamic allocation as standard facilities for all variables.

DEMONs take the role of REACTIVATION clauses in SIMULA/67 (there implemented
through entities calles EVENT NOTICES) if TARGET is NONE and the FLAG of an entity
is increased upon DEMON creation to a level above the one given to DEMONs up to
that time (a REACTIVATION clause in SIMULA supersedes all previous ones whether

A MESSAGES are an important concept in Hewitt's ACTOR systems, which are related
to our approach (Hewitt, 1973). A MESSAGE mechanism is included in our system
(each entity has a SCRATCHPAD for this purpose) but is so far little used.

N
N
n

HETERARCHICAL, SELFSTRUCTURING SIMULATION SYSTEMS

the scheduling is for earlier or later times). If on the contrary the FLAG is in-
creased upon REVIVAL of the entity beyond the value given to all previously gene-
rated DEMONs the scheduling for the earliest time supersedes all the others. Like-
wise other FLAG manipulations can provide us with the latest scheduling or the
first generated scheduling. Moreover any amount of interaction among DEMONs of the
same TIE or the same TARGET may be achieved.

We will use the above mentioned LION as an example of a DEMON-driven animal in our
implementation of a system for modelling moving, interacting, reproducing and re-
tiring organisms.

The space in which the organisms live is subdivided into PATCHes, discrete spatial
units within which the environment is supposed to be homogeneous. Consider the
space divided in a fixed set of PATCHes, of fixed size (actually we implemented an
extended patch structure in which the number of PATCHes and their sizes are deter-
mined by the needs of the system itself, using a way of structuring similar to the
one discussed in sections 3.2 and 3.3). PATCH possesses a number of environmental
variables and a list of organisms inhabiting it (REF (DHEAD) BIOTA). The distinct-
ion between environmental variables and organisms is defined in such a way that
the set of environmental variables for each PATCH is fixed during the simulation,
while the set of organisms will vary.

ANIMAL is a subCLASS of ORG which possesses, besides the observation procedures
which are shared by all ORGs, procedures to move about. The moving procedures enter
the ANIMAL in the appropriate BIOTA list. In such a context LION is defined as a
subCLASS of ANIMAL. The LION sets up DEMONs watching over the surroundings (i.e.
the BIOTA 1ists of nearby PATCHes). Moreover the LION sets up a DEMON to warn it
when it is hunting time (i.e. when it has grown so hungry that it has to go search-
ing for its prey). An outerloop of the CLASS body of LION defines the hunting be-
haviour, i.e. moving about and setting up new DEMONs in its new surroundings; it
increases the FLAG of the LION to render obsolete old DEMONs watching over areas
now out of view. The innerloop of the CLASS body defines the behaviour while
hiding in the bush: upon REVIVAL, when the REVIVER is the surrounding area, it
tries to find a prey there; if it finds a prey it kills it, goes fast asleep and
wakes up again to watch over the surrounding area; if no prey is found (false

alarm by entry of a non-prey species into its surroundings) nothing happens. The
LION goes hunting when the hunger level is high (REVIVED by the hunger-DEMON); if
the hunt remains unsuccessful for too long it dies from starvation.

2.4 Some simple simulation results from this system

We will mention some results which became immediately apparent while working with

the system, but which, at least to us, were not obvious beforehand.

- In case of the above mentioned LION its viability is crucially dependent on
the social behaviour of its prey: if the prey animals have only a slight ten-
dency to clump (i.e. moving preferentially in the direction in which a fellow-
species is observed) a much larger prey population is needed to maintain the
LION, especially if it is not to go out searching when hungry. While such an
effect was expected, its size was rather surprising to us.

- If entities interact by changing direction of movement when meeting, this only
leads to specific spatial distribution patterns, if an entity "can see beyond
its nose". By this we mean that its sensors provide it with information about
a larger area of space than it covers in one 'step', i.e. the area it covers
without updating its information.

This result seems to have profound implications for the simulation methodology
which we advocate.

2286 P. HOGEWEG and B. HESPER

3. THE MICMAC STRUCTURE OF MODELS

3.1 Discrete event formalism and the selection of variables and events

In formulating a simulation model we have to select 'relevant' features of the
system. What is considered to be a relevant feature of a subsystem is dependent on
other subsystems, which observe some features (and react on them) and do not ob-
serve or react on other features. The user, as output unit, is just one such a sub-
system, as argued above, and selection of relevance by the user is analogous to se-
lection by other subsystems. Selection of interesting features occurs very markedly
in discrete event modelling, in which the underlying conceptualisation of conti-
nuous simulation models "everything is changing all the time" is replaced by "once
in a while something interesting is changing somewhere in the system". The latter
reduces, in theory but never in practice, to the former if "everything is consi-
dered interesting all the time". Obviously in any implementation on a digital com-
puter some selection of interest is necessary: in fixed time step simulations the
global state if considered interesting at fixed regularly spaced points in time;

in variable time step integrators the selection is on the basis of calculability

of the next global state. The selection of interesting features of the system on
the basis of calculability is also important in discrete event systems, but the
calculations are for local states as opposed to global states, and interesting
points in time will be different for different subsystems. Moreover the selection
of an interesting point for a subsystem A may be due to the fact that some other
subsystem B needs A's local state to compute its own next state (with respect to
timing or value or both). For example A may be a 'micro' entity operating on a fast
time scale and B a 'macro' entity operating on a slower time scale (or vice versa).
In fact, if no part of the model is directly or indirectly interested in the state
of a subsystem, there is no purpose in computing it.

It should be emphasised that the selection of interesting features of the model by
other components of the model contrasts with the global control denounced above.
It involves only selection, not control: the 'micro’ entity does not know the
'macro' entity. All that happens is that it receives a request to provide it with
its state at a certain time, or to provide it with the time in which it has a cer-
tain state. Recall the LION requesting to be warned when a prey enters its range
of vision; as programmed, using DEMONs, the prey warns the LION without being
aware of it itself. In the case of the LION this resulted only in a reduction of
the amount of calculation done by the LION; the prey kept moving step by step,
choosing its moves on the basis of local circumstances. Below we describe a system
in which such requests reduce the amount of computation more drastically.

3.2 Selfstructuring in simulation models

It is well known that formulating the dynamics of a model in terms of small
changes in small time steps, obviates the incorporation of indirect interactions
between variables. However, the goal of compounding these direct interactions
postulated for the model in a simulation run is exactly to gain insight in the in-
direct dependencies between variables on a longer time scale. Aids for obtaining
such an insight are: simulation of the entire system and inspection of the output,
analytical solutions of subsystems, simulation of subsystems in isolation, fixing
of variables etc.

Zeigler (1977) showed how longer time scale information gathered for subsystems
once and for all, could be repeatedly used to improve the efficiency of the simu-
lation of the composite system. Thus it is useful to incorporate partial knowledge
in the model itself. Furthermore it is useful to endow the simulator with "self
awareness" so that it can itself gather such partial knowledge about itself and
use it to improve the simulation. However, because such knowledge is partial, it
is bound to be wrong once in a while. Thus the usage of partial knowledge should
be accompanied by self criticism, and the ability to retreat to the basic formula-

HETERARCHICAL, SELFSTRUCTURING SIMULATION SYSTEMS 227

tion of the dynamics supplied to it. As an example of such a simulation methodology
we discuss our implementation and elaboration of the model for predator prey inter-
actions in a patchy environment proposed by Zeigler (1977)

3.3 Example: predator/prey in a patchy environment

The model is about a field of discontinuous patches in which predator and prey
species interact. The interaction between predator and prey is supposed to be go-
verned by Lotka-Volterra dynamics with a self-limiting term for the prey. Such dy-
namics give rise to a stable equilibrium; if however the population numbers in this
equilibrium (or anywhere along the trajectory to the equilibrium) are very small,
extinction will occur in practice. Such extinctions are often observed in homoge-
neous experimental settings of predators and prey. The model is designed to dis-
cover whether in an environment of extinction prone patches, both predator and prey
may survive. In the model proposed by Zeigler, migration between patches occurs if
and only if food shortage occurs, i.e., the prey migrates if it has reached its
carrying capacity in a patch devoid of predators, and the predator migrates if it
has exhausted the prey in a patch. It is shown by Zeigler (1978) that this system
will indeed give rise to continued existence of predators and prey for a reasonable
large number of parameter settings.

Straightforward simulation of this system consists of continuous simulation of the
predator/prey interactions of all the patches, checking all the time for the con-
ditions of migration, and, if these are fulfilled, establishing the migrations as
discrete events. This exhaustive approach is quite unfeasible if we use many
patches. However, we are interested only in occurrence of both populations and not
in exact population numbers. Moreover migrations take place only at specific stages
of the within-patch system. Thus we can simplify matters considerably by selecting
interesting events only. Such a simplification can be carried out if we know the
following partial solutions of the model: 1) how long it takes a prey to reach
carrying capacity after it has colonized a patch, and how large the population is
at that time; 2) how long it takes for a predator to exhaust its food, when migra-
ted to a patch with a certain number of prey, and how many predators there will be
at that time; 3) how long a skeleton predator population survives in a patch devoid
of prey. This knowledge can be obtained partly by analytical solution and partly by
simulating the trajectories of the predator/prey system in isolated patches. How-
ever this knowledge is not always applicable because intermediate migrations may
disturb the path which was considered to be isolated in these calculations. Zeigler
implemented the model providing it with the above mentioned knowledge, approxima-
ting the effect of intermediate migrations in the predator/prey system by inter-
polation, and changing the scheduled events for emigration from the prey patch.

We implemented Zeigler's model within the above simulation framework, emphasising
local specification of the units of the system. Moreover because we wanted the
system to be applicable (or at least easily extendible) to different models of
interaction of populations in patches (e.g., competition or symbiotic relations)
and to different numbers of interacting populations (e.g., two predators predating
on one prey species), it seemed to be begging the question to require an extensive
a priori knowledge of the isolated patches. Therefore we designed the system so as
to gather the necessary knowledge by itself, while it could use the basic formula-
tion of the model when no specialised knowledge was (yet) available.

3.4 EXPERTs

The selfstructuring properties are implemented using EXPERTs. EXPERTs have exper-
tise in carrying a process from a specified initial state to a (partially) speci-
fied next state or over a specified time stretch. In the former case an EXPERT
supplies the complete specification of the next state and the time at which it
occurs; in the latter case it supplies the next state. Thus an EXPERT is a triple
(INISTATE, NEXTSTATE, DT). EXPERTs exist in a local state space of initial condi-
tions. EXPERTs have to know when their expertise is applicable. For this they have

228 P. HOGEWEG and B. HESPER

to know the similarity structure (metric) of the surrounding state space. This si-
milarity structure may be quite different in different regions of the state space
and in different directions. Thus such knowledge is only locally applicable by the
EXPERT itself. The EXPERT has to build up this knowledge from experience within the
framework of its data structure. EXPERTs may consult other EXPERTs and the know-
ledge of nearby EXPERTs may be used as first approximation to its own knowledge.
EXPERTs are eager to learn and apply their knowledge. As soon as a situation arises
within their capabilities, they apply their knowledge to it. As soon as a situation
arises which is just outside their capabilities they generate hypotheses about it.
They may also be so doubtful about their capabilities that they do not solicit for
a job, but are nevertheless consulted. In both the last mentioned cases they play
it safe: they test their hypotheses by direct simulation.

An EXPERT is endowed with a number of alternate hypotheses it may generate. Example
hypotheses are: "my own NEXTSTATE may be used for initial conditions sufficiently
like my own INISTATE" (and what is sufficiently alike, it will learn), or, "the
NEXTSTATE for initial conditions intermediate between my own INISTATE and that of
other EXPERT(s) can be derived by linear interpolation of our NEXTSTATEs" (weighted
for different directions in state space for higher dimensional state spaces). The
hypotheses are tested and given a confidence rating. This rating extends to all
situations closer to the EXPERT than the ones which were successfully tested. If
the confidence rating is high enough the hypothesis is applied. If an EXPERT is not
consulted often enough, or its knowledge is never successfully applied, it is de-
leted from the system. EXPERTs react on REQUESTs. REQUESTs exist in the same state
space as EXPERTs, and a REQUEST is also a triple (INISTATE, partially specified
NEXTSTATE, DT). It requests the missing information not given in the triple. When

a REQUEST enters the state space, the EXPERTs nearby examine it; if they can handle
it, they supply it with the needed information and reactivate it at the appropriate
time to report back to the process which generated the REQUEST. If the REQUEST is
not handled thus, it resorts to direct simulation. Upon reaching the partially
specified NEXTSTATE, the EXPERTs which generated hypotheses for the REQUEST, test
these and finally the process which generated the REQUEST is reactivated. If an
interrupt occurs before the condition on the NEXTSTATE is fulfilled, the REQUEST
deletes the previously generated hypotheses: failure should in this case not de-
crease the confidence rating. The REQUEST then checks whether EXPERTs are available
to handle the new situation (etc.). If upon reaching the NEXTSTATE, none of the
hypotheses proves to be correct (or no hypotheses were available), the REQUEST
generates a new EXPERT, supplying it with the now attained missing information.
This newly generated EXPERT is initialised with a region in state space, about
which to generate hypotheses, of the same shape as that of its nearest neighbour-
ing EXPERT. Otherwise, if a correct hypotheses was generated upon arrival of the
REQUEST, and is now validated, no new EXPERT is generated but the system relies in
the future on this hypothesis.

3.5 MICMAC, program for simulating interacting popoulations in apatchy environment

MICMAC (micro/macro) explores the use of EXPERTs in the context of the patch
structured modeT of interacting populations. The basic entities distinguished in
MICMAC are:

CLASS PATCH(X,Y);

PROCESS CLASS MICDYN (micro dynamics);

PROCESS CLASS MACDYN(PTCH) (macro dynamics): see fig. 1.

The patches are hexagonal and arranged in a toroidal FIELD, by a procedure local to
the CLASS PATCH, which provides the pointers to neighbouring PATCHes. MICDYN
possesses the definition of the population interactions within a PATCH, in the pro-
cedure DYN(T,POP,DPOP) and the associated parameters. MICDYN takes care of direct
simulation of the population interactions as defined in the differential equations
of the procedure DYN. It uses variable time step integration using the extrapola-
tion method of Bulirsch and Stoer (1966). The timestep is adjusted on the basis of
calculability (as predicted by the extrapolation method) and on the basis of in-
terest: a check is performed to see whether an overshoot would occur with regard

HETERARCHICAL, SELFSTRUCTURING SIMULATION SYSTEMS

PATCH PATCH PATCH PATCH PATCH
-/
PATCH
X,Y
s AN
MICDYN MACDYN
MICSTATE MACSTATE
PARAMETERS CONDITIONS for state transitions
continuous population and migrations of MACSTATE, in terms
dynamics of values on MICSTATE
'k QJ *
— >t
4+
.

Fig. 1 Relationships among entities in MICHMAC

— pointer

——up generation of a new entry
P o activation of an entity
For further explanation, see text.

230 P. HOGEWEG and B. HESPER

to an interesting state using the predicted time step. If such an overshoot would
occur, the time step is repeatedly halved (down to a certain minimum), using the
intermediate calculations of the integration until the exact timing and the value
of the interesting state are determined. After computing timing and next state,
the process (MICDYN) is delayed for the calculated time stretch and afterwards
assumes the new state. If this new state is equal to the goal state requested by
MACDYN then REQUEST (and subsequently MACDYN) is reactivated and MICDYN is suspend-
ed until reactivated by a new REQUEST from MACDYN. However, MICDYN may be inter-
rupted during its idle time (after computing timing and value of the next state)
by an unexpected new REQUEST from MACDYN, which is sent because of migrations.
Therefore MICDYN has to check whether it is revived on schedule (i.e, by itself)
or by such an interrupt. In the latter case it has to recompute its next state
after readjusting the time step according to the interrupt time.

The structure of the PROCESS CLASS MACDYN is quite different from MICDYN because it
has no definition of a time dependent next state function. Instead the next state
function is expressed in terms of conditions on the state of MICDYN. MACDYN
possesses the procedure CONDITION which defines the conditions to be fulfilled for
transition to the next state given a certain initial state. For example, if the
present state is GROWTH PHASE the next state is the PREY MIGRATION PHASE and is
entered upon reaching the carrying capacity (i.e., a certain number of prey).
MACDYN should be warned at the time that these conditions are fulfilled. For this
purpose MACDYN files a REQUEST, and then is passivated. Upon reactivation it sets
its next state and files a new REQUEST, etc. Without self organising properties
the REQUEST simply reactivates MICDYN and attaches itself as a DEMON to the FLAG
COND, to be reactivated if this is set true, and reactivates MACDYN in its turn.
The importance of the REQUEST structure lies in its use in the self organising
properties of the model: EXPERTs may take over control and delay the REQUEST, so
that it does not reactivate MICDYN. The EXPERT supplies in that case the REQUEST
with the missing information, so that it knows when to reactivate MACDYN and what
should be the next state of MICDYN and MACDYN at that time (see section 3.4).

3.6 Discussion of MICMAC

We will examine the flexibility of the above described model, and its rigidity and
specificity in turn.

1. Flexibility

MICMAC easily adapts to changes in the model, which can be made by very local mo-
difications. For example the population dynamics of the patches in isolation can
be changed by modifying the procedure DYN. Likewise the dynamics of the macropro-
cess can be changed by local modifications: for example by modifying the condi-
tions for migration or the migration process itself.

Moreover the model can be generalised to any number of interacting populations. In
this case both the micro and the macro-dynamics are changed, but the changes are
confined to model-specific changes. A very interesting generalisation of the model
seems to be to change the definition of the PATCHes.

The model may be embedded in MIRROR (universe of mobile interacting ANIMALs), see
section 2.2. The PATCHes are then identified with such ANIMALs and the migration
neighbours are determined as the neighbours of ANIMALs of the appropriate species
using the procedure which ANIMALs have for this purpose.

2. Rigidity and specificity

The system as 1t stands, although flexible (i.e. able to support a large class of
models), is limited in several respects, which are not inherent in the framework
of modelling and simulation which we have in mind.

In particular, it is simplified in the sense that there is a sharp and fixed dis-
tinction between micro and macro processes. The micro process has a time con-
trolled next state function (here even with infinitely small time steps in the de-
finition), while the macroprocess has an entirely condition controlled next state
function and the time to reach the next state always exceeds the time step of the

HETERARCHICAL, SELFSTRUCTURING SIMULATION SYSTEMS 231

microprocess. Although the terms micro and macroprocess may suggest such a rela-
tion, it is not what we have in mind: MICMAC is a relation which can exist between
processes at certain times, a relation however which may change dynamically during
model simulation (it may for instance be reversed). Generalisations in that di-
rection are presently being investigated.

4. DISCUSSION AND CONCLUSION

1. "Parts and wholes"

In this paper we outTined a framework for modelling and simulation stressing as de-
siderata local representation and heterarchical control.

The implementation of the models here described has indeed achieved these deside-
rata to a considerable extent. Although the two systems were developed independent-
1y, they may each serve as a subsystem for the other.

The way in which MICMAC can be a subsystem of MIRROR has already been mentioned:
the fixed patches of MICMAC can be replaced by the mobile organisms of MIRROR. As
in the original MICMAC the surrounding of the unit (patch or organism) accessible
for migration is given in this unit. This generalisation is useful for modelling
epidemic processes in relation to interaction patterns. The other way around,
MIRROR can serve as a subsystem of MICMAC. In this case the local dynamics of the
interaction within a patch is modelled by a MIRROR-type system of interactions
between individuals. In this case, such a MIRROR-1like system operates in each

patch of MICMAC. Note that the MICDYN is not necessarily a continuous formulation
as seen in this example. EXPERTs may again find regularities in the so modelled
dynamics to speed up the simulation of the distribution of populations over the
field. Moreover, both these generalisations may be true in the same system, i.e.
MICMAC serves as a subsystem of MIRROR and MIRROR serves as a subsystem of MICMAC
at the same time (and these patterns may be nested). In this case we are modelling
individual moving organisms which interact with each other and which are infected
by several other species. The interactions between these species are again modelled
in term of the behaviour of the individuals. This mutual embedding of the two
systems in each other is the best proof for achieving heterarchical control.

2. Mixed mode, continuous and discrete event simulation

Mixed mode continuous and discrete event simulation systems proved to be very use-
ful if continuous simulation is employed in those cases in which the discrete
event simulation breaks down because of unexpected interrupts. Continuous simula-
tion should then be employed until the system arrived at a recognizable state from
which the Tlarger time scale discrete event simulation can be picked up again. In
the worst case this strategy results in a simulation similar to an analogous, en-
tirely continuous, simulation (if interrupts occur very often). This manifests a
use of mixed mode simulation opposite to the one usually advocated. In the latter
use (e.g. Cellier, this volume) continuous simulation is employed unless it

breaks down because of sudden changes in either the structure of the model or the
parameter settings.

3. DEMONs, EXPERTs and self structuring

DEMONs and EXPERTs, here introduced in diverse contexts, are closely related enti-
ties. They both are autonomous entities, generated by the system, with own local
knowledge and concerns, which take over control and restructure the system.

DEMONs proved to be a very helpful construct to augment the individual's informa-
tion processing without violating local constraints.

DEMONs serve as Tinks between potential interaction partners. They are used by an
individual to handle 'expected' interrupts, i.e. situations which it knows may
happen and which it knows to handle. In our implementation they in fact take the
rz]e of 'search images'. DEMONs may however outlive the situation which generated
them.

EXPERTs Tikewise handle expected situations and they act as DEMONs on incoming
REQUESTS. They differ from the prototype DEMON in building up their own expecta-
tions, and in containing more knowledge. Moreover, contrary to the prototype DEMON,
they Tive in state-space rather than space-space. These differences are not pro-

232 P. HOGEWEG and B. HESPER

found, however, and many such expansions are conceivable (and useful). Opposite to
the MIRROR system, EXPERT (DEMON) control tends to be the norm in MICMAC. Therefore
one is inclined to say that MICDYN, i.e. the basic continuous simulation, handles
unexpected interrupts, rather than to say that EXPERTs handle the expected inter-
rupts.

Referances

Bobrow, G.B. and Winograd. T. (1977), "An overview of KRL, a knowledge repre-
sentation language", Cognitive Science, Vol 1, pp3-46.

Bulirsch, R. and Stoer, J. (1966), "Numerical treatment of ordinary differential
equations by extrapolation methods", Numerische Mathematik 8, ppl-13.

Charniak, E. (1972), Toward a model of children's story comprenension, AI-TR-256,
MIT.

DahT, 0.J., Myhrhaug, B., Nygaard, K. (1970), Simula information, Common Base
Language, Norwegian Computing Center.

Heistad, E. et al (1975), NDRE SIMULA implementation user's manual, FFI-Mat
Teknisk Notat S-370, Reference: Job 271/17-, Kjeller, Norway.

Herman, G.T., Arbib, M.A. and Schneider, R.E. (1974), Biologically motivated
automata theory, IEEE, New York

Herman, G.T. and Rozenberg, G. (1975), Developmental systems and Tanguages, North
Holland/American Elsevier, Amsterdam.

Hewitt, C. (1973), Oral presentation at the Fourth International Joint Conference
on Artificial Intelligence.

Hogeweg, P. (1977a), "Locally synchronised developmental systems, conceptual ad-
vantages of discrete event formalism", in Zeigler, B.P. (ed.), Frontiers in
systems modelling, in press.

Hogeweg, P. (1978), "Simulation of the growth of cellular forms", Simulation.

Lindenmayer, A. (1968), "Mathematical models for cellular interactions in develop-
ment. I: Filaments with one-sided input.

IT: Simple and branching filaments with two-sided inputs".
Journal of Theoretical Biology, Vol 18, pp280-312.

Lindenmayer, A. and Rozenberg, G. (1975), Formal languages, automata and develop-
ment, University of Utrecht, Netherlands.

Misner, Ch.W., Thorne, K.S. and Wheeler, J.A. (1975), Gravitation, Freeman and Co,
San Francisco.

Neumann, J. von (1960), Theory of self reproducing automata, University of I1linois
Press, Urbana.

Simon, H. (1969), The sciences of the artificial, MIT press.

Ulam, S.M. (1962), On some mathematical problems connected with patterns of growth
of figures, reprinted in A.W. Burks (ed.), Essays on cellular automata, Uni-
versity of I11inois Press (1970). ‘

Zeigler, B.P. (1977), "System theoretic description of models: a vehicle for re-
conciling diverse modelling concepts", in: Proceedings of the NATO conference
on trends in applied general systems research, ed. G.J. Klir, Plenum Press.

Zeigler, B.P. (1978), "™ulti-Tevel multi-formalism modelling - an ecosystem
example", in: Theoretical ecological systems, ed. E. Halfon, Academic Press.

