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Abstract

In this paper we study a partial differential equation model of cyclic catalysis of replicating entities (i.e. a
hypercycle). In the presence of a spatial gradient in the decay rate of molecules we observe spiral drift towards the
region of faster rotating spirals. On a radial gradient onc spiral anchors in the region of fastest rotation. If the drop
in the gradient is large enough. this spiral will break up in the periphery and form new spiral centres. The system

settles in a dynamic equilibrium.

This equilibrium turns out to be persistent even against strong parasites, i.e.. molecules that receive increased
catalysis but do not give any catalysis. If just one peripheral spiral manages to escape the first attacking wave of the
parasite, this spiral will gradually push out the parasites and in the long run the dynamic equilibrium will be
completely restored. We conclude that a gradient can supply regenerative power to the hypercycle.

1. Introduction

The concept of a hypercvele was introduced in
the early seventies (Eigen 1971) as a model for
cyclic helping of sclf-replicating entities. Fig. 1A
shows a schematic diagram of a hypercycle: cach
member of the cvele supports the replication of
the next member. Eigen and Schuster (1979,
1982: Eigen 1992) suggested that hypercycles of
RNA molecules may have played a role in pre-
biotic evolution. They showed that in a system
containing sclf-replicative molecules the length
of the molecules is restricted by the accuracy of
replication. The maximum length that the mole-
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cules can attain by the process of Darwinian
selection seems to be much too short to accumu-
latc the information necessary to improve on the
fidelity of replication (e.g. by coding for repli-
cases). They call this the “‘information thres-
hold™: there is too little information to permit an
increase in the amount of information. Eigen
and Schuster suggested that a hypercycle of
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Fig. 1. Schematic diagram of a hypercycle. The hypercycle
consists of n self-replicating molecule species X,. (A) Each
species provides catalytic support for the subsequent species
in the cycle. (B) As (A). but now a parasitic species X, is
coupled to the hypercycle.
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RNA molecules that catalyse the replication of
each other in a cyclic way could cross the
information threshold. Each molecule species in
the cycle is still bound to the maximum string
length, but the molecules can combine their
information and thus cross the threshold.

There are two major problems connected with
this idea. The first problem is that hypercycles
can contain only a small number of specics.
Hypercycles that consist of five or more species
show limit cycle behaviour and the size of the
limit cyvcle quickly expands with the number of
species (Eigen and Schuster 1979: Hofbauer and
Sigmund 1988). In a biological system this im-
plies that large hypercycles will be unstable
because some species will become  extinet. [t
scems unlikely that a short hypercycle can con-
tain the information necessary to cross the in-
formation threshold. The second problem is that
the giving of catalytic support to another mole-
cule is in fact an “altruistic” property and there-
fore the property will not be maintained (see ¢.g.
Maynard Smith 1979). This is best demonstrated
by the fact that hypercycles are vulnerable to
so-called “parasites™ (sce Fig. 1B). A parasitic
molecule receives catalysis from a molecule in
the cycle. but it does not give any catalysis in
return. If the parasite receives more catalysis
than the competing species in the cycle (i.e. a
“strong” parasite). it will first outcompete this
species and finally the complete cycle will be
lost. There seems to be a large class of parasites
that are fatal to hypercycles. i.e. hypercycles are
evolutionarily unstable.

In our earlier work on cellular automaton
models of hyvpereycles (Boerlijst and Hogewceg
19914.b) we have shown that spatial self-structur-
ing completely solves the extinction problem and
partially solves the parasite problem. In a spatial
model hypercycles that consist of five or more
species (there seems to be no upper limit)
spontancously genecrate spiral waves. Such a
spiral wave is a rotating pattern of all species in
the hypercycle and within a spiral wave global
extinction of species no longer occurs (although
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locally there is a continuous extinction and re-
invasion process). Furthermorc, spiral waves
provide stability against parasites (Boerlijst and
Hogeweg 1991a; May 1991). Spiral waves are
resistant to parasite invasions that do not start
near the centre of the spiral. If, however, the
centre of a spiral is infected by parasites the
entire spiral will be lost. As long as there are
uninfected spirals the hypercycle will be main-
tained, but therc is no regeneration of “killed”
spirals. Thus the emergence of spiral waves
reduces the parasite problem, but it does not
completely solve it.

In this study we will show that in the presence
of spatial heterogeneity a combination of resist-
ance to parasites and regeneration of spirals can
be achieved. We will introduce this heterogeneity
in the form of a spatial gradient in the decay rate
of molecules. From experimental and theoretical
excitable media spirals it is known that spiral
waves respond to  gradients. Typically on a
gradient the centre of a spiral will drift and thus
the whole spiral will slowly move (c¢.g. Markus et
al. 1992: Davidenko et al.. 1992). Furthermore,
spirals can break up into ncew spirals if the drop
in the gradient is large enough (analogous to ¢.g.
Yamaguchi and Miiller 1991). In this paper we
first show that these two effects of drift and
break-up occur in the case of hypercycle spirals.
Secondly, we will demonstrate the implications
of a gradient for the stability of hypercycles
against parasites. Finally we will discuss the
situation of a medium with multiple gradients.

2. The model

In this section we present the partial differen-
tial equation (PDE) model that was used for
numerical computations. The general results of
this paper also hold for the cellular automaton
(CA) model that we used in our earlier papers
on hypercycles (Boerlijst and Hogeweg 1991a,b).
The PDE-model is completely deterministic, the
spiral waves are better behaved and easier to
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study than in the stochastic CA-model. On the
other hand. in the CA-model the individuals are
well-defined, whereas in the PDE-model an
explicit extinction threshold (and thus loss of
mass) is necessary to prevent the diffusion ot
unrealistically small fractions (Durrett and Levin
1994).

2.1. Processes

Let X, denote a molecule of type i, and let
there be # types of molecules. In our model we
want to include the following processes:

A. Decay of molecules

&
‘

X . (1)

in which &, stands tor the decay rate of molecule
type .

B. Non catalysed replication

P
X —2X,. (2)
in which p_stands for the non-catalysed replica-
tion rate of molecule tvpe 7.

C. Catalysed replication

X, + X, — 52X, + X . (3)

in which «,  stands for the rate of catalysed
replication of molecule type 7. which is catalysed
by molecule type J.

D. Competition

In the original hypercycle model competition
is modelled by assuming a chemostat, i.e.. the
total number of molecules is kept constant by
introducing a flux which is equal to the average
growth of the system at any given time. In our
model we use a different kind of competition.
We assume that the rate of replication is propor-
tional to the fraction of “empty spots™ (as in a
ccllular automaton model: see Toffoli and Mar-
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golus 1987; Boerlijst and Hogeweg 1991a), which
is cqual to:

Y X
-5 (4)
in which N stands for the total number of spots
available.

The reason for using this ““carrying capacity”
assumption instead of a chemostat assumption is
that in the PDE model we want to make it
possible for the local density of molecules to vary
(for instance due to differences in the local
amount of catalysis).

2.2. ODE (ordinary differential equation) model

The processes mentioned in Section 2.1 lead to
the following ODE model:

X = x,( 5+ {1 ~Ail X,\}{p, + K,,,..X,.}> ,
| (s)

in which i denotes the previous species in the
cycle: note that we have got rid of N by scaling
X, to fractions.

As a default parameter setting for a hypercycle
of n members we use:

Vii5, =005 p=01. «, =05 (6)

The dynamics of this model resembles that of the
chemostat hypercycle model (Hofbauer and Sig-
mund 1988; Eigen and Schuster 1979): hypercy-
cles of 4 or less members attain a stable equilib-
rium. whereas hypercycles of 5 or more members
show limit cycle behaviour. The size of the limit
cycle quickly increases with the number of
species in the cycle, so that for practical (bio-
logical) purposes some species will become ex-
tinct and the cycle will be lost. Note that for
simple cases the ODE model corresponds to
simple ecosystem models. For instance, for one
species and no catalysis the model collapses to a
model of a logistically growing population with
carrying capacity 1 — 8,/p,. If there are more than
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onge specics, but no catalysis. Eq. (5) collapses to
a Lotka-Volterra model of competing species
with complete niche overlap, a case of competi-
tive exclusion (sec ¢.g. McGehee and Armstrong
1977).

2.3. PDE model

In order to study the effects of spatial pattern
formation on the dynamics and evolutionary
propertics of the hypercycle. we simply extend
the ODE model (Eq. (5)) with a Laplacian
operator V;

X,:X,( S {1 - /\’A}{p( KX, })

A

+DVX . (7)

For numerical computations we use the explicit
Euler method with Neumann boundary condi-
tions and a rectangular grid of 100 x 100 ele-
ments up to a maximum of 200 X 200 elements.
X, should be interpreted as the fraction of
molccules of type 7 at a given grid point, and D
is the diffusion coctficient. We use an explicit
extinction level at a fraction of X, << 0.001. The
basic properties of the hvperevele spirals, such as

A) 13
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rotation speed and spiral tip dynamics, are
hardly affected by this extinction level. Further-
more. the phenomena that are described in the
next section (i.e. spiral break-up and spiral drift)
do not depend on the explicit extinction. For e.g.
resistance against parasites the explicit extinction
is necessary. because otherwise the parasite
would diffuse in unrealistically small fractions to
every grid point and thus it would infect all spiral
centres. The effects of spatial dependence of §; in
Eq. (7) are the main subject of this paper.

3. Hypercycles on a decay gradient

In order to obtain a better understanding of
the response of a hypercycle spiral to a decay
gradient we first describe the behaviour of a
spiral for differcnt fixed values of the decay.
Figs. 2A and B show superimposed pictures of
one species in a hypercycle spiral in two different
decay regimes. In Fig. 2A the decay rate is
relatively small at Vi: 8, = 0.03. The spiral has a
large period of approximately 1,650 time steps.
The tip of the spiral is rotating around a small
circular core (as in Jahnke et al. 1989). In Fig.
2B the decay rate is much larger at Vi: §, = 0.07;

Fig. 2. A hyperevele spiral in two decay-regimes (A) Slow decay: Vi: 8 = 0.03. (B) Fast decay: Vi: 8 = 0.07. A hypercycle of
twelve members is simulated in the PDE of Eq. (7) with the default parameters of Eq. (6) except for §,. For computation a grid of
100> 100 clements 18 used with a time step of 1. The diffusion cocetficient D equals 0.16. Both figures show three superposed
images of the spiral arm of species X', with an interval of 200 time steps. The spiral in the fast decay regime rotates faster; it
contains smaller fractions of all species and its tip rotates around a slightly larger circular core than the spiral in the slow decay

regime.
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the spiral is now rotating almost twice as fast. at
a period of around 900 time steps. but its tip is
rotating around a slightly larger core. The differ-
ences in period and in core size cause (wo
gradient phenomena. namely break-up of spirals
and drift of spirals. We will describe these
phenomena in the next two sections.

3.1. Spiral break-up

If the drop in the gradient is large cnough (i.c.
if the difference in period between both sides of
a gradient is large cnough) a spiral will break up
in the slower region. In Figs. 3a—d the right-hand
side of the field has a homogeneous decay rate of
Vi: 6 =0.07. Starting from the middle to the
left-hand side of the field there is a smooth
gradient from Vi: 6, =0.07 to Vi: §,=0.03. In
Fig. 3a a single spiral is initialised on the right-
hand side of the ficld. Figs. 3b—d show that the
spiral is unable to force its period through the
slower region. This will first result in the collision
ot subsequent waves (Fig. 3b) which causes thesc
waves to break (Fig. 3¢). The process of colliding
and breaking of waves will finally result in the
formation of multiple spiral centres (Fig. 3d).
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This situation is dynamically stable: the new
spirals are dominated by the faster spiral on the
right-hand side of the field and this dominant
spiral pushes the other spirals towards the edge
of the field (due to spiral competition, see
Maselko and Schowalter 1991; Boerlijst and
Hogeweg 1991b), where they disappear. New
spirals are generated by the colliding and break-
ing of subsequent waves of the dominant spiral.
If the drop of a gradient is too small a spiral will
not break up. Note that the steepness of the
gradient is not the critical factor. The situation is
analogous to that of the mammalian intestine
(sec e.g. Winfree 1980), where the intrinsic
frequency of peristaltic contractions at the
stomach end is faster than that at the anus end,
and thus some of the peristaltic waves fail to
propagate and break.

3.2, Spiral drift

If the centre of the spiral wave is situated
within the gradient a second phenomenon can be
obscrved: the spiral will drift on the gradient. In
Fig. 4 this phenomenon is visualised. The gra-
dient is from Vi: § = 0.05 at the middle to Vi:

a) b) c) d)
- .

0.07 i

Fig. 3. Spiral break-up in the direction of slower rotation. The right-hand side of the field has a homogeneous decay-rate of Vi
8 =0.07 and starting from the middle of the ficld on the left-hand side there is a smooth gradient from Vi: § = 0.07 to Vi
3, = 0.03. The diffusion rate ix 1) = (.04, Other parameters. numerics and grey scale are as in Fig. 2. We checked scaling up to
200 % 200 ¢lements with D =016 and a time step of 0.01. and found identical results. (a) Abundance of species X after 2,000
time steps. (b) After 7.620 time steps. (¢) After 8,500 time steps. (d) After 35.000 time steps.
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0.05

Fig. 4. Spiral drift in the direction of faster rotation. The
lett-hand side of the ficld has a homogeneous decay rate of
Vi: § =0.05 and starting from the middle of the field on the
right-hand side there is a smooth gradient from Vi: §, = 0.05
t Vi 6, = 0.07. The diffusion rate is D = 0.04. Other param-
cters. numerics and grey scale are as in Fig. 2. A single spiral
was initialised with the spiral tip at the position indicated by
the arrow. The white dots indicate the positions of the spiral
tp atter every 20 rotations. The abundance of species X,
after 101,400 time steps is shown

6, = .07 at the right; in this case the left side of
the field is homogeneous at Vi: § =0.05. The
spiral begins to move at an angle in the direction
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of faster rotation (note that the spiral would drift
downwards if it were rotating clockwise instead
of counter-clockwise). We think this direction of
drift is caused by the increase in core size in the
region of faster rotation. The precise mecha-
nism. however, is not yet fully understood. Drift
of spirals in the direction of faster rotation has
been observed before (e.g. Mikhailov et al.
1994) although in most cases spirals drift in the
direction of slower rotation (e.g. Rudenko and
Panfilov 1983; Markus et al. 1992). The final
outcome of this experiment will be that the
centre of the spiral drifts off the field, resulting
in the extinction of most species and loss of
catalysis. This instability can be overcome by
incorporating the full gradient in the field namely
from Vi: 8, = 0.03 on the left to Vi: §,=0.07 on
the right. In that case new spirals will be created
as a result of break-up before the dominant
spiral drifts off the field. After the loss of the
dominant spiral the fastest remaining spiral will
become dominant and it will start to drift to the
right. In this manner a dynamic equilibrium will
be maintained.

3.3. Radial gradient: dvnamic equilibrium
In the case of a radial gradient another type of

stable dynamic equilibrium will be attained. On
the radial gradient of Fig. 5, both spiral drift and

O

Fig. 5. Drift, break-up and anchoring of an initial single spiral on a radial gradient. There is a smooth gradient from Vi: §, = 0.07
in the middle of the field to Vi: 8 = 0.03 in the corners. The diffusion rate is D = 0.04. Other parameters, numerics and grey scale
are as in Fig. 2. The white dots indicate the positions of the spiral tip after every 10 rotations. (A) 2,500 time steps after
initialisation & single spiral has devetoped. (B) After 10.900 time steps this spiral has formed peripheral break-up spirals. (C)
After 139,100 time steps the dominant spiral has anchored in the region of fastest rotation and a dynamic equilibrium is reached.
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spiral break-up take place. The single spiral in
Fig. SA will dnft (with a radial angle) towards
the region of fastest rotation. In approaching the
centre the spiral speeds up and in Fig. 5B this
has resulted in a break-up into new spirals in the
periphery. In Fig. 5C the dynamic equilibrium of
the system is reached: the initial spiral has
anchored in the middle of the field and there are
some “break-up™ spirals in the periphery. Note
that the dominant spiral in the middle prevents
the break-up spirals from drifting to the middle.
There is a continuous rencwal of break-up spir-
als. analogous to the situation in Fig. 3D.

4. Strong parasites: regenerative power

Figs. 6A-D (colour plates) show what happens
when a strong parasite invades a radial gradient.
In plate 6A the centre of the dominant spiral of
Fig. 5C is infected with a parasite. The parasite
is competing with specics 1. as depicted in Fig.
IB. It receives 109 more catalvsis than species
I, but it does not give any catalysis and all other
parameters are identical to species 1. The centre
of the dominant spiral turns out to be the best
possible place for a parasite to start, for all other
invading parasites will be pushed out quickly by
the dominant spiral. In plate 6B, after a short
time, the parasite has killed the centre of the
dominant spiral and now it is “'riding” on the last
wave of species 2, its catalyst. It turns out that
most break-up spirals do not have a domain and
thercfore the parasite can get into the centre,
which implies that the spiral will be “killed”.
Plate 6C shows that one break-up spiral centre
on the upper left-hand side of the field has
escaped the first attacking wave of the parasites.
In most of the ficld the parasite has now com-
pletely replaced the hypereycle and 1t has
reached its non-catalytic carrving capacity. Final-
ly. in plate 6D, the remaining spiral turns out to
be stronger than the parasite. This spiral will
completely push out all parasites. Furthermore.
it will drift to the centre and it will generate new
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break-up spirals and thus the dynamic equilib-
rium will be restored completely. This re-estab-
lishment of the dynamic equilibrium after a
parasite invasion does not happen in a homoge-
neous situation (Boerlijst and Hogeweg 1991a),
for in that case a “killed” spiral will be lost for
ever. We conclude that a spatial gradient can
supply regenerative power to the hypercycle
spirals.

In fact the situation of the hypercycle facing a
parasite invasion in plate 6A is rather critical.
Most break-up spirals do not have a domain of
their own and therefore chances are high that the
first parasitc wave will reach the centre of all
break-up spirals and thus the parasite will win.
However, the parasite resistance can be en-
hanced by increasing the length (or steepness) of
the gradient, so that the field contains many
more break-up spirals. Furthermore, in a situa-
tion of multiple gradients, a gradient that is lost
to a parasite can be re-invaded by spirals from an
adjacent gradient. This multiple gradient situa-
tion has more intriguing features, which will be
discussed in the following section.

5. Multiple fast regions: ‘‘sub-neutral selection®’

In the case of multiple regions of fast rotation
typically each of the regions will accumulate a
dominant spiral. Fig. 7A shows such a case of
two identical radial gradients, shortly after a
random initialisation. After a while, in Fig. 7B,
each fast region has attracted a spiral that
dominates the local gradient. These dominant
spirals are unable to force their period into the
region of the other gradient; instead there is
break-up of spirals in the periphery. This implies
that the two dominant spirals are effectively
disconnected by the gradient.

In plate 8A all molecules of species 1 which
are near the centre of the dominant spiral on the
right-hand side of Fig.7B are replaced by mole-
cules of a mutant species. The mutant only
differs from species 1 in that it decays 30% more
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A) B)

Fig. 7. Multiple gradients. Two gradients identical to the gradient of Fig. 5 are simulated on a field of 200 X 100 elements. As a
starting pattern each grid point is assigned a random species and this species is set at its carrying capacity (1 —8,/p,). (A) After
3,000 time steps many spiral waves have developed. (B) After 100.000 time steps a dynamic equilibrium is reached in which each

region of fast rotation has attracted a spiral that dominates the local gradient.

slowly. In plate 8B it turns out that the mutant
quickly takes over the whole domain of the
dominant spiral. It has also invaded some of the
break-up spirals on the left gradient. It takes
over these spirals because locally the mutant is
much stronger than species 1. However, in plate
8C, in the long run the mutant species is re-
stricted to the right gradient, whereas species 1
stays on the left gradient and this situation is
stable in time.

Measurements of rotation speed show that the
dominant spiral containing the mutant rotates at
a slightly slower speed than the spiral containing
species 1. In a situation without a gradient this
would result in a slow increase of the domain of
the faster rotating spiral (Boerlijst and Hogeweg
1991b; Maselko and Schowalter 1991). The gra-
dient however disconnects the spirals in that the
faster spiral is unable to force its period through
the gradient. Therefore, in a multiple gradient
situation, spirals with different rotation speeds
can coexist. In fact the situation of multiple fast
regions creates an environment in which there is
what we call ‘‘sub-neutral selection™. In the
situation of plate 8A any mutant creating a spiral

that rotates at a speed reasonably close to the
period of the spiral with species 1 will accumu-
late and coexist with species 1. The limits of this
coexistence are when the decay rate of the
mutant is about 35% slower than that of species
1 and when the decay rate is about 70% faster
than that of species 1. Mutants with a decay rate
that is 35% slower than species 1 decay so slowly
that they do not become extinct between spiral
arms and therefore they can invade the spirals
containing species 1 and thus outcompete species
1. Mutants with a decay rate that is 70% faster
than that of species 1 decay so fast that they
destabilise the spiral. In this case the spiral
rotates so slowly that it is outcompeted by the
surrounding break-up spirals containing species
l. Any mutant with a decay rate within these
limits will accumulate in the system.

6. Conclusions and discussion
In this study we have shown that two gradient

phenomena, namely spiral break-up and spiral
drift, can create a dynamic equilibrium for hy-

Fig. 6. Resistance to parasites. A parasitic species X, is described in the text; all other parameters are as in Fig. 5. (A) Parasite
invasion in the centre of the dominant spiral of Fig. 5C. (B) 10,000 time steps after infection the first wave of parasites infects
most peripheral spiral centres. (C) After 30,000 time steps one spiral centre near the upper left corner has escaped the first attack
wave of the parasite. (D) After 90,000 time steps the remaining single spiral is slowly outcompeting the parasite region.

Fig. 8. “Sub-neutral selection™ in a multiple gradient situation. (A) In the situation of Fig. 7B the centre of the dominant spiral
on the right gradient is infected with a mutant of species X, that has a 30% reduced decay rate. (B) After 20,000 time steps the
mutant has overtaken the right gradient and it has infected some peripheral spirals on the left gradient. (C) After 50,000 time
steps the right gradient is dominated by the mutant and the left gradient is dominated by species X|.
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percycle spirals. In the case of a radial gradient
this equilibrium consists of one dominant spiral
that has anchored in the fastest region and
break-up spirals in its periphery. When the
equilibrium is disturbed, for instance by a strong
parasite invasion, it will be completely restored
as long as there is one spiral centre left. In a
homogeneous situation spiral waves can also
have regenerative power in the parameter region
of “chaotic spirals” (see Boerlijst and Hogeweg
1991b; Hassell et al. 1991). However, these
chaotic spirals are inherently vulnerable to para-
sites, because in that case the break-up is caused
by the fact that concentrations between spiral
arms do not go to zero. We have shown earlier
(Boerlijst and Hogeweg 1991a, Boerlijst et al.
1993) that extinction between subsequent waves
is necessary for selection at the level of spirals.
Only in the case of a gradient can resistance to
strong parasites and regenerative power of spir-
als be combined.

In the paper so far we have focused on decay
gradients and on mutants that differ in their
decay rate. Preliminary results suggest that the
conclusions reported apply to any kind of gra-
dient or mutant: the spirals drift into the region
of faster rotation, there is spiral break-up if the
drop in the gradient is large enough and in a
multiple fast region situation there is sub-neutral
selection. The drift towards the region of faster
rotating spirals seems to depend on the relatively
weak catalysis: in the case of much stronger
catalysis the spirals will drift almost perpendicu-
lar to the gradient and they will only drift
towards the region of faster rotation on a very
long time-scale. We never observed drift in the
opposite direction, i.e. drift towards slower rota-
tion, although this is the common tendency in
other excitable media (see e.g. Rudenko and
Panfilov 1983; Markus et al. 1992).

In a multiple gradient situation the competi-
tion between spirals no longer occurs in a simple
way. Dominant spirals in different fast regions
cannot force their period into other regions. It is
as if each spiral sits in its own local valley and in

order to compete in other valleys it first has to
climb the hills surrounding it and in doing so it
loses much of its competitive strength. The result
is that spirals in different valleys can substantial-
ly differ in properties, and yet be unable to
outcompete each other. This coexistence of
different mutants increases the capacity for the
accumulation of information within the system,
although the different schemes hardly interact.
The case of multiple gradients should not be
mistaken for a case of multiple isolated good
habitats. In fact the centres of the gradients
should be considered as bad habitats, for the
molecules decay fast in these regions. Further-
more, the gradients are only isolated due to the
presence of the spiral waves. If, for instance, one
gradient loses all spirals as a result of a parasite
invasion, it will easily be re-invaded by spirals
from adjacent gradients.

The implications of our results for (pre-biotic)
RNA hypercycles are yet unclear. Currently a
two-dimensional experimental system containing
RNAs with a hypercyclic interaction structure is
being developed (McCaskill, personal communi-
cation; building upon McCaskill and Bauer
1993). It will be exciting to find out whether this
system will exhibit spiral waves or other self-
structuring patterns such as the patchy patterns
we observed in a hypercycle model with negative
interactions (Boerlijst and Hogeweg 1995) or the
self-replicating spots recently observed in a
chemical model system (Lee et al. 1994). In this
paper we have shown that a spatial gradient can
enhance the persistence of self-structuring pat-
terns, at least when these are spiral waves.
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