
Simple phase plane analysis and parameter estimation in R

Rob J de Boer, Theoretical Biology, Utrecht University, 2018

Phase plane analysis is powerful graphical method to analyze low-dimensional ODE models. At
Utrecht University we have hitherto used dedicated C-code (GRIND) for numerical integration,
phase plane analysis, and stability analysis of steady states. Thanks to the R-packages deSolve

and rootSolve developed by Karline Soetaert and colleagues [1, 2, 4], it was relatively easy to copy
most of GRIND’s capabilities into R. People liking R may also like this simple interface to phase plane
analysis. Thanks to the FME package, also developed by Karline Soetaert and colleagues [3], it was
also possible to extend GRIND with non-linear parameter estimation using a least-squares approach.
This resulted in an R-script grind.R defining five easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase plane,
• plane() draws nullclines and can provide a vector field or phase portrait,
• newton() finds steady states (using the Newton-Raphson method) and can provide the Jacobian

with its eigenvalues and eigenvectors.
• continue() performs parameter continuation of a steady state, providing a bifurcation diagram,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
The run() function calls ode() from the deSolve library, the fit() function calls modFit() from
the FME library, and newton() and continue() call steady() from the rootSolve library. For the
library functions one can get more help by typing ?..., where ... is the name of the function (e.g.,
?ode). One can get help on the Grind functions by typing args(...), where ... is one of the five
Grind functions. The following sections are tutorials illustrating the usage of Grind. Instructions for
installation are given in the final section.

1 Phase plane analysis

Lotka Volterra model. The ODEs of the model are defined in the simple notation defined for the
deSolve package. The following is an example of the Lotka Volterra model, here defined by the function
model(). This R-script is available as the file lotka.R on the website http://tbb.bio.uu.nl/rdb/grindR/:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5) # p is a named vector of parameters

s <- c(R=1,N=0.01) # s is the state

where the two lines below the function define the parameter values in the vector p, and the initial
state of the variables in the vector s. Note that the function needs a current state and returns
a list of derivatives (dR,dN). Importantly, the derivatives should be specified in the same order as
the variables in the state. The names model, s, and p are the default designations for the model,
state, and parameter values in all Grind functions. This example should be self explanatory as it just
defines the Lotka Volterra model dR/dt = rR(1 −R/K) − aRN , and dN/dt = caRN − δN , with its
parameter values and initial state as R-vectors, p <- c(r=1,K=1,a=1,c=1,d=1,delta=0.5), and s

<- c(R=1,N=0.01), respectively. A shiny interactive primer on this model is available on the website:
https://grind.shinyapps.io/lotka/.

The following tutorial is an example session illustrating the usage of the first four Grind functions, by
simulating and analyzing this Lotka Volterra model (see Fig. 1 for its graphical output):

1

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Time

D
en

si
ty

R
N

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

R

N

R
N

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

R

N

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

R

N

R
N

●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)

K

N

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

R

N

R
N

Figure 1: Numerical integration, phase plane analysis, and a bifurcation diagram of the Lotka Volterra
model. The six panels collect the graphical output of the example session listed above.

run() # run the model and make a time plot (Fig 1a)

plane() # make a phase plane with nullclines

plane(xmin=-0.001,ymin=-0.001) # include the full axis in the phase plane (Fig 1b)

plane(tstep=0.5,portrait=T) # make a phase portrait (Fig 1c)

plane() # make a clean phase plain again (Fig 1d)

p["K"] <- 0.75 # change the parameter K from 1 to 0.75

plane(add=T) # add the new nullclines

s["R"] <- 0.1 # change the initial state to (R=0.1,N=0.01)

run(traject=T) # run the model and plot a trajectory

newton(c(R=0.5,N=0.5),plot=T) # find a steady state around (R=0.5,N=0.5)a (Fig 1d)

f <- newton(c(R=0.5,N=0.5)) # store this steady state in f

continue(f,x="K",xmax=2,y="N") # continue this steady state while varying K (Fig 1e)

continue(f,x="K",xmax=2,y="N",step=0.001) # get a better value with a smaller step size

p["K"] <- 0.5 # set K to the value at which N goes extinct

plane(vector=T) # make a phase plane for this value of K (Fig 1f)

Because all optional arguments to the Grind functions are local, subsequents calls to these func-
tions do not adopt the previous definition of these options. For instance, if the axes are redefined
by plane(x=2,y=1) and one wants to add a trajectory, one has to repeat the axis arguments, i.e.,
run(x=2,y=1,traject=TRUE). This even hold for adding nullclines to an existing phase plane, e.g.,
plane(xmax=2,add=TRUE). Defining simple shortcuts around the Grind functions allow you to imple-
ment your own preferences, e.g.,
pl <- function(...) plane(x=2,y=1,eps=-0.001,...),
tr <- function(...) run(x=2,y=1,traject=TRUE,...).

Lac-operon model. A slightly more sophisticated example shows how one can continue steady states
to make a bifurcation diagram with a saddle-node bifurcation. We use a Lac-operon model defined in
the reader of our Systems Biology course at Utrecht University. The graphical output of this example
is displayed in Fig. 2, where bullets indicate stable steady states and circles depict unstable equilibria.
We start close to the three steady state, call the Newton-Raphson algorithm, and store these states
in the variables low, mid, and hig, respectively. Using parameter continuation we make a bifurcation

2

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A

M

A
M

●

●

●

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

L

A

Figure 2: Nullclines and a bifurcation diagram of the Lac-operon model.

diagram in which we follow the middle steady state as a function of the external lactose concentration,
L, by a call to continue(mid,...). This R-script is available as the file operon.R:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

R = 1/(1+A^n) # Repressor

dA = M*L - delta*A - v*M*A # Allolactose

dM = c0 + c*(1-R) - d*M # mRNA

return(list(c(dA, dM)))

})

}

p <- c(L=1,c=1,c0=0.05,d=1,delta=0.2,n=5,v=0.25)

s <- c(A=0,M=0)

plane(xmax=4)

low <- newton(s,plot=T)

mid <- newton(c(A=0.8,M=0.2),plot=T)

hig <- newton(c(A=2,M=1),plot=T)

continue(mid,x="L",y="A",xmax=2,ymax=4)

These two tutorials should be a sufficient introduction for standard phase plane analyses. The following
sections illustrate the usage of events and noise (Section 2), vectors of equations (Section 3), and
parameter estimation (Section 4), and can be read when needed. Section 5 is a reference manual that
can be skimmed through and consulted when required. Finally, Section 6 provides simple installation
instructions.

2 Combining numerical integration with events

The deSolve package allows one to execute discrete events while integrating the model numerically
by using the events argument (see the ode() manual). This remains possible in Grind because
run() passes additional options to ode() via the ellipsis (...) argument in R. We have added a
somewhat simpler option (after) to handle events that are executed after each time step within
run(). For instance run(after="state<-ifelse(state<1e-9,0,state)") will set small variables
to zero after each time step. One can also stop when any of the variables becomes negative by after

<- "if(min(state)<0)break". This new option is illustrated by the following three examples each
providing an R-command as a text, after="text" in a call of run() of the Lotka Volterra model
introduced above.

For example, after="parms[\"r\"]<-rnorm(1,1,0.1)" sets the parameter r to a random value,
drawn from a normal distribution with a mean of one and a standard deviation of 0.1 (see the
result in Fig. 3a). Note that p is called parms within run() (see the Manual), and the back-
slashes in \"r\" before the quotes around the parameter name, because these quotes would otherwise
mark the beginning or ending of a text. (Since r is the first parameter, one can also just write

3

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Time

D
en

si
ty

R
N

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Time

D
en

si
ty

R
N

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Time

D
en

si
ty

R
N

Figure 3: The three runs with after="text" executed after every timestep

"parms[1]<-rnorm(1,1,0.1)" to achieve the same effect). This random resetting of r is done every
timestep (as defined by the parameter tstep=1 in run()).

The second example, run(after="if(t==20)state[\"N\"]<-0"), sets the predators N = 0 when
time t = 20 (see Fig. 3b). Note again that s is called state in run() (see the Manual), and the
backslashes in \"N\". Again, the more simple state[2]<-0 would achieve the same effect, because
N is the second variable. Finally, the third example adds Gaussian noise to both variables, e.g.,
after="state<-state+rnorm(2,0,0.01)" (see Fig. 3c). Note that rnorm(2,0,0.01) provides two
random values, that are added to the two variables, respectively. The integration starts close to the
steady state to prevent problems arising from random values setting a population to a negative value.
These three examples are combined in the R-script events.R:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5)

s <- c(R=1,N=0.01)

run(after="parms[\"r\"]<-rnorm(1,mean=1,sd=0.1)")

run(after="if(t==20)state[\"N\"]<-0")

Use arrest to handle events at time points within time steps:

run(50,arrest=33.14,after="if(t==33.14)state[\"N\"]<-0",table=T)

f <- newton(c(R=0.5,N=0.5))

run(state=f,after="state<-state+rnorm(2,mean=0,sd=0.01)",ymax=1)

Here is an example of similar event handling in deSolve:

fun<-function(t, y, parms){y["N"]<-0;return(y)}

run(events=list(func=fun,time=20))

A final “event” to tweak the numerical data. To modify the numerical solution data com-
puted within run() one can pass on any R-command as a text with the tweak option. For instance,
run(tweak="nsol$T<-nsol[,2]+nsol[,3]"), adds a fourth column to the solution by summing the
first and second variable, and calls this column “T” (for total). Note that the numerical solution is
called nsol, and that the first column contains the time. This manipulated nsol table is subsequently
passed on to timePlot, or printed to screen (with the table=TRUE option in run()). This tweak

option can be very helpful when fitting data containing columns representing (transformed) combina-
tions of the variables of the model. Finally, note that this same tweak can be done by using apply to
call sum: run(tweak="nsol$T<-apply(nsol[,2:3],1,sum))", which shows how one can generalize

4

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

(a)

Time

D
en

si
ty

R1
R2
R3
N1
N2
N3

0 200 400 600 800 1000

0
10

00
20

00
30

00
40

00
50

00

(b)

Time

D
en

si
ty

N1
N2
N3
N4
N5
N6
N7
N8
N9
N10

Figure 4: Left: the graphical output of the “vector of equations” example. Right: the output of the
examples of mutating strains.

this to sum over a subset of columns.

3 Delay differential equations and maps

One can study maps by simply switching to Euler integration:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dN <- r*N*(1 - N) - N

return(list(c(dN)))

})

}

p <- c(r=3.75)

s <- c(N=0.01)

data <- run(1000,method="euler",table=TRUE)

plot(data$N[1:999],data$N[2:1000],pch=".")

Be careful with using the steady state functions (newton(), continue(), and plane()) because they
are not aware of the fact that this model defines a map. Steady state values of this model will be
correct because of the -N in the equation (i.e., dN=0 has the same solution as Nt+1 = rNt(1 − Nt)),
but the reported eigenvalues no longer define the stability of steady states.

One can study delay differential equations (DDEs) because the deSolve package implements a general
solver (dede()) using the same syntax as the general ODE solver (ode()). For instance, the Lotka
Volterra model with delayed growth of the predator,

dR(t)

dt
= rR(t)(1 −R(t)/K) − aR(t)N(t) , and

dN(t)

dt
= caR(t− ∆)N(t− ∆) − δN(t) ,

would look like:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

tlag <- t - Delta

if (tlag < 0) lags <- c(0,0) # no initial predation

else lags <- lagvalue(tlag) # returns lags of R and N

dR <- r*R*(1 - R/K) - a*R*N

dN <- a*lags[1]*lags[2] - d*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,d=0.5,Delta=10)

s <- c(R=1,N=0.1)

run(delay=TRUE)

5

where the option delay tells Grind to use dede() solver. This would correspond to the situation
where a prey at carrying capacity starts to be eaten by a predator at time zero, but the predator will
only start to grow Delta time steps later. The deSolve function lagvalue() stores previous values of
R and N in a vector (that is called lags[] here) that can be indexed to obtain the time lagged R and
N values. Read the deSolve manual for further documentation and/or type ?dede for help. Please
note that the steady state functions (newton(), continue(), and plane()) should not be called with
models containing calls to lagvalue(). Fitting DDE models to data should work fine (but solving
DDEs is notoriously tricky).

4 Vectors of equations

Here is an example of a model with n = 3 prey populations, Ri, that are competing with each other
via a logistic term (see the left panel in Fig. 4). Each prey has its own predator Ni,

dRi

dt
= biRi(1 −

∑
Ri) − d1Ri − aRiNi and

dNi

dt
= aRiNi − d2Ni .

In the R-script vector.R we draw random prey birth rates, bi, from a normal distribution:

model <- function(t, state, parms){

with(as.list(c(state,parms)),{

R <- state[1:n]

N <- state[(n+1):(2*n)]

S <- sum(R)

dR <- b*R*(1-S) - d1*R - a*R*N

dN <- a*R*N - d2*N

return(list(c(dR,dN)))

})

}

n <- 3 # number of species

b <- rnorm(n,mean=1,sd=0.1) # b is a global parameter

p <- c(d1=0.1,d2=0.2,a=1) # other parameters

R <- rep(0.1/n,n) # initial condition of R

names(R) <- paste("R",seq(1,n),sep="") # Name them R1, R2, ... Rn

N <- rep(0.01/n,n) # initial condition of N

names(N) <- paste("N",seq(1,n),sep="") # Name them N1, N2, ... Nn

s <- c(R,N) # combine R and N into s

run()

Mutations after each time step. Combining vectors and events one can model a series of evolving
bacterial strains with increasing replication rates (see the right panel in Fig. 4). Consider the following
model,

dNi

dt
= biNi(1 −

∑
Ni) − dNi , for i = 1, 2, . . . , n

and let strain Ni+1 evolve from strain Ni at a mutation rate µ. When the expected number of mutants,
µNi, is smaller than a single bacterium we calculate the probability that a single mutant appears, and
add a single cell to Ni+1 (and subtract it from Ni). Otherwise the expected number of mutants is
added to strain Ni+1 (and subtracted from Ni). This is realized by using after to call the function
mutate(). In the R-script evolve.R birth rates bi of the strains increase linearly from bi = 1 to
bn = 2:

model <- function(t, state, parms){

with(as.list(c(state,parms)),{

N <- state[1:n]

S <- sum(N)

dN <- b*N*(1-S/K) - d*N

return(list(c(dN)))

})

}

6

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Time

D
en

si
ty

R
N

● ● ● ●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Time

D
en

si
ty

R
N

●●●●
●

●

●

●

●

●

●

●

●
●

●●●●●●●

0 5 10 15 20 25

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(c)

Time

D
en

si
ty

R
N

●

●

●
●●●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●

Figure 5: Fitting the Lotka Volterra model to data. Lines show the model for the best estimated
parameters, and the symbols depict the data.

mutate <- function(t, state, parms){

nmut <- rep(0,n+1)

emut <- parms["mu"]*state # Expected number of mutants

nmut[2:(n+1)] <- ifelse(emut>1,emut,ifelse(runif(n)<emut,1,0))

state <- state + nmut[1:n] - nmut[2:(n+1)]

return(state)

}

n <- 10 # number of variants with

b <- seq(1,2,length=n) # increasing birth rates

p <- c(d=0.1,K=5000,mu=0.001) # other parameters

s <- rep(0,n) # set all variables to 0

s[1] <- 1 # set first to 1

names(s) <- paste("N",seq(1,n),sep="") # add names

run(1000,ymax=5000,after="state<-mutate(t,state,parms)")

5 Parameter estimation

One can fit the parameters of a model to data using the function fit(). When this function is
called without any options it is assumed that there is data.frame called data with column names
corresponding to the variables of the model, and fit() will then use the state, s, and all parameters,
p, as an initial guess for fitting the data. We illustrate this using the same Lotka Volterra model
as above, after creating a data set using run(table=T). In the example we randomize the initial
condition, s, and parameters, p, using a normal distribution (rnorm()) before we fit the model to the
data (see Fig. 5A).

fit() internally calls the function modFit from the FME package (use ?modFit to see all options), and
delivers an object providing the estimated parameters, confidence ranges, and correlations between
the parameters. Calling fit()$par just returns the estimated parameters (see below). Use the option
free to explicitly define which parameters are “free” and should be estimated (free is a vector of
names). The boolean option initial can be used to read the initial condition from the data (instead
of estimating it).

One can fit simultaneously several data sets by provide a list of data sets to the first datas option (see
the fit(list(dataR,dataN)) example). When fitting several data sets, some of the parameters could
be the same across all data sets, whereas others could differ, and have a unique value in each data set
(see Fig. 5B & C). The shared parameters remain to be provided by the free option, and the unique pa-
rameters are provided by the differ option (see the fit(list(data,data2),differ=c("R","N","K"))
example below). Here differ is just a vector of parameter names. However, in case one needs to
supply an initial guess for the different parameters in each data set, one should define differ as a
named list, containing the various guesses (see the differ<-list() example below). When data sets

7

differ in parameters that are known, these parameter values can be provided with the option fixed,
which also has to be a list (see the lines below fixed<-list() in the example). Finally, we show how
one can bootstrap the data by sampling (with recruitment) from every individual data set, and re-fit
the samples using the best parameters as an initial guess. The following script is available as the file
lotka fit.R:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5)

s <- c(R=1,N=0.01)

data <- run(20,table=T) # Make a data set

s <- s*abs(rnorm(2,1,0.1));s # Random guess for initial condition

p <- p*abs(rnorm(5,1,0.1));p # Random guess for parameters

f <- fit() # Fit data with all 7 parameters free

summary(f) # Check confidence ranges, etcetera

p <- f$par[3:7];p # Store estimates in p

p <- p*abs(rnorm(5,1,0.1));p # Another random guess for the parameters

w <- c(names(s),names(p)) # w provides the names of free parameters

f <- fit(data,free=w) # Fit the data again

f <- fit(data,initial=T,free=names(p)) # Take initial condition from data

dataR <- data; dataR$N <- NULL # Make two data sets one with R,

dataN <- data; dataN$R <- NULL # and the other with N,

f <- fit(list(dataR,dataN)) # which gives the same result

p <- c(r=1,K=1,a=1,c=1,delta=0.5) # Start again with same parameters

p["K"] <- 0.75 # Change K,

s <- c(R=0.5,N=0.05) # and the initial condition,

data2 <- run(25,table=T) # and make a new data set

s <- c(R=0.75,N=0.02) # An "average" guess for the 2 initial conditions

par(mfrow=c(1,2)) # Show two panels next to each other

f <- fit(list(data,data2),differ=c("R","N","K"),main=c("A","B"))

f$par # Show parameters only

Provide individual initial guesses as a list:

differ <- list(R=c(0.9,0.55),N=c(0.02,0.04),K=c(1.1,0.7))

f <- fit(list(data,data2),differ=differ,main=c("A","B"))

Provide fixed parameters as a list:

fixed <- list(R=c(1,0.5),N=c(0.01,0.05))

differ <- "K" # one unknown parameter (K)

free <- names(p)[-2];free # and four shared unknown parameters

f <- fit(list(data,data2),free=free,differ=differ,fixed=fixed,main=c("A","B"))

The latter is identical to taking the initial condition from the data:

f <- fit(list(data,data2),free=free,differ=differ,initial=T,main=c("A","B"))

Finally perform a 100 bootstrap simulations:

fit(list(data,data2),free=free,differ=differ,fixed=fixed,main=c("A","B"),bootstrap=100)$par

par(mfrow=c(1,1))

8

6 Manual

A model can be solved numerically from the initial state by calling run(), and the output will be a
timeplot, trajectory or table. Next to the graphics output, run() returns the final state attained by
the simulation (or all data when table=TRUE). The former can be helpful if one wants to continue
from the previous state (e.g., f<-run(); f<-run(state=f)). The full definition of run() is:

run <- function(tmax=100, tstep=1, state=s, parms=p, odes=model, ymin=0, ymax=NULL,

log="", x=1, y=2, xlab="Time", ylab="Density", tmin=0, draw=lines, times=NULL,

show=NULL, arrest=NULL, after=NULL, tweak=NULL, timeplot=TRUE, traject=FALSE,

table=FALSE, add=FALSE, legend=TRUE, solution=FALSE, delay=FALSE, lwd=2,

col="black", pch=20, ...)

run() calls the ode() function from the deSolve package. Additional arguments (...) are passed on
to ode() and plot().

The phase plane function plane() sets up a space with the first variable on the horizontal axis, and
the second on the vertical axis. The full definition of plane() is:

plane <- function(xmin=0, xmax=1.1, ymin=0, ymax=1.1, log="", npixels=500, state=s,

parms=p, odes=model, x=1, y=2, time=0, grid=5, eps=0, show=NULL, portrait=FALSE,

vector=FALSE, add=FALSE, legend=TRUE, zero=TRUE, lwd=2, col="black", pch=20, ...)

Additional arguments (...) are passed on to run() (for the phase portrait) and to plot(). Note that
plane() calls the “vectorized” R-function outer(), which implies that if one calls functions in the
ODEs they should also be vectorized, e.g., one should use pmax() instead of max(). Finally, note that
there is an extension, cube.R, for 3-dimensional nullclines.

The function newton() finds a steady state from a nearby initial state, and can report the Jacobi
matrix with its eigenvalues and eigenvectors. The full definition of newton() is:

newton <- function(state=s, parms=p, odes=model, time=0, x=1, y=2, positive=FALSE,

jacobian=FALSE, vector=FALSE, plot=FALSE, ...)

newton() calls the function steady() from the rootSolve package (which calls stode()). Additional
arguments (...) are passed on to both of them. newton() needs an initial state close to an equilibrium
point.

The function continue() continues a steady state by changing a “bifurcation” parameter defined by
the horizontal axis of the bifurcation diagram. The full definition of continue() is:

continue <- function(state=s, parms=p, odes=model, x=1, step=0.01, xmin=0, xmax=1,

y=2, ymin=0, ymax=1.1, log="", time=0, positive=FALSE, add=FALSE, ...)

continue() calls the function steady()from the rootSolve package (additional arguments (...) are
passed on), and needs an initial state close to an equilibrium point. Note that there is much more
proper software for bifurcation analysis like XPPAUT or MatCont, which reports the type of bifurca-
tions encountered, and automatically continues all branches of branch points.

The function fit() fits a model to data by non-linear parameter estimation. The output is an ob-
ject (class of modFit) containing the estimated parameters, the summed squared residuals, confidence
ranges, and correlations (see the modFit() manual). The data and the model behavior for its best fit
parameters are depicted in a timeplot. Its full definition is:

fit <- function(datas=data, state=s, parms=p, odes=model, free=NULL, differ=NULL,

fixed=NULL, tmin=0, tmax=NULL, ymin=0, ymax=NULL, log="", xlab="Time",

ylab="Density", bootstrap=0, show=NULL, fun=NULL, costfun=cost, initial=FALSE,

add=FALSE, timeplot=TRUE, legend=TRUE, main=NULL, sub=NULL, pchMap=NULL, ...)

fit() calls the function modFit() from the FME package (which calls modCost()). Additional argu-
ments (...) are passed on to both of them, and to run() and ode().

Finally the internal function timePlot() can be used to plot data and is defined as:

9

timePlot <- function(data, tmin=0, tmax=NULL, ymin=0, ymax=NULL, log="",

xlab="Time", ylab="Density", show=NULL, legend=TRUE, draw=lines, lwd=2, add=FALSE,

main=NULL, sub=NULL, colMap=NULL, pchMap=NULL, ...)

These functions have many arguments, and fortunately most of them have good default values, and
can hence typically be omitted. The arguments can be used to define various options and adjustments:
• state=s, parms=p, odes=model define the names of the state vector, parameter vector, and the

model.
• tmax=100, tstep=1 set the integration time and the reporting interval. tmin allows one to start

a specific time point (which can be convenient when a run is continued). One can also provide a
vector of time points where the run() should provide output with the times option (see the ode()

manual).
• x=1, y=2 define the variables on the axes of phase planes and bifurcation diagrams. One can also

use the names of the variables to define the axes, e.g., x="R",y="N".
• xmin=0, xmax=1.1, ymin=0, ymax=1.1, log="" define the scaling of the horizontal and vertical

axes of phase planes and bifurcation diagrams (log="y" makes the vertical axis logarithmic).
• step=0.01 defines the maximum change of the bifurcation parameter in a bifurcation diagram.

When the axis is linear the parameter is increased, or decreased, in steps not exceeding step ×
xmax. When the axis is logarithmic the parameters is maximally multiplied by 1+step. continue()
will decrease the step size to maximally step/100 when it looses the steady state.

• xlab="Time", ylab="Density" allow one to redefine the labels of the axes of a time plot.
• show=NULL defines the variables appearing in a time plot, fit, or phase plane. By default all are

shown. By explicitly providing a list of variables, one can omit some of the variables. show is
typically a list of names (show=c("P","Q")).

• after=NULL defines a command to be executed after each time step, e.g., after="state <- ifelse(

state<1e-9, 0, state)" sets small variables to zero.
• arrest=NULL defines a vector of values, or parameter names, defining time points where the in-

tegrator should stop, and report the current state (i.e., these time points are added to the times

vector of ode()). This can be helpful when fitting a piece-wise model for which the discontinuous
time points have to be estimated (e.g., arrest=c("T1","T2")).

• tweak=NULL allows one to modify the data delivered by run(). For instance one can add columns
that can be fitted to data: (tweak<-"nsol<-cbind(nsol,nsol[,2]+nsol[,3]);names(nsol)[4]<-
\"T\""), or transform the simulation data before they are fitted to data that is already transformed.

• timeplot=TRUE, traject=FALSE, table=FALSE determine the output of run() in the form of a
time plot (default), trajectory in a phase plane, and/or a table with all data.

• draw=lines draws the timeplot as continuous lines. The alternative is draw=points.
• lwd=2 sets the line width of the graphs, colMap=NULL and pchMap=NULL can be used to re-map the

colors or symbols, e.g., pchMap=c(3,2,1) reverts the order of the first three R-symbols (see pch in
points()). Note that grind.R defines its own color table (of dark colors that print well). If you
don’t like this, uncomment the second colors <- line in the grind.R script.

• main=NULL, sub=NULL allow one to put a title at the top and/or a subtitle at the bottom of the
graph (these are passed on to the R-function plot()). Note that these titles are set in a plain font
(to set that back to bold face, change the two font lines in the grind.R file).

• add=FALSE, legend=TRUE define whether or not the new plot should be added to the current one,
and a legend should be placed.

• solution=FALSE tells grind.R whether or not the model provides time derivatives (default), or a
full solution, which is particularly useful when fitting data to functions. This can only be used in
run() and fit and should obviously not be used in combination with phase plane analysis, nor
with searching steady states (newton(), continue()). Models returning a solution obey the same
format as the ODE models required by deSolve, except for the fact that they should return a value,
or a vector of values (and not a list).

• delay=FALSE tells grind.R whether or not to call the DDE solver from the deSolve package. The
time delay(s) in the model are to be defined by calling the lagvalue() function from the deSolve

package. This can only be used in run() and fit and should also not be used in combination with

10

phase plane analysis, nor with searching steady states (newton(), continue()).
• npixels=500 defines the resolution of the phase space in plane()

• time=0 defines the time point for which nullclines are computed and steady states are computed
(for non-autonomous ODEs).

• grid=5 defines the number of grid points for which the vector field or phase portrait is drawn.
• eps=0 is a shortcut in plane() to include or exclude the axis in the nullclines: eps is added to

both xmin and ymin.
• portrait=FALSE, vector=FALSE define whether or not plane() should include a phase portrait

or vector field.
• zero=TRUE draws the phase plane for all variables other than x and y set to zero (also important

when drawing nullclines of variables not appearing on the axes).
• positive=FALSE, setting positive=TRUE will restricts the search of newton() and continue() to

positive steady states only.
• jacobian=FALSE,vectors=FALSE,plot=FALSE define whether or not newton() should print the

Jacobian and eigenvectors, and indicate the steady state by a symbol in the phase plane.
• datas=data in fit() defines the name of the data frame containing the data, or defines a list of

data frames.
• free=NULL defines the names of the parameters to be fitted. By default free equals c(names(state),

names(parms)).
• differ=NULL defines the names of the parameters that differ between the data sets and need to be

fitted separately. differ can also be a named list containing the individual guesses for each data
set. (One can use makelist(differ,state,parms,nsets) to set up such a list).

• fixed=NULL defines a named list of the parameters that differ between the data sets and have
known fixed values. (One can use makelist(fixed,state,parms,nsets) to set up such a list).

• initial=FALSE allows one to read the initial condition from the data (and not estimate it).
• fun=NULL defines a function to transform the data and (numerical) solution before fitting.
• costfun=cost allows one to redefine the cost-function measuring the distance between the model

and the data. This can be useful when different data sets need different models. The default cost-
function loops over the various data sets, and calls run() for each of them. That call can easily be
adapted for each data set (the index of the loop is called iset).

• bootstrap=0 defines the number of samples to be taken randomly from the data (with replacement).
This prints a summary and adds an element bootstrap to the modFit list, containing a matrix with
all parameter estimates. Use pairs(f$bootstrap) to see the correlations between the estimates.

• ... can be used to define parameters that are passed on to other functions

7 Installation and startup

The very first time one may need to install the Soetaert libraries into the R-environment, e.g.,
install.packages(c("deSolve", "rootSolve", "FME") in R or Jupyter, or Install Packages

in the Tools menu of RStudio. After downloading grind.R one can include the grind.R envi-
ronment by typing source("grind.R"). In RStudio one can also open grind.R in one tab (and
“source” it) and open the model in another tab. The R-scripts can be found on the webpage:
http://tbb.bio.uu.nl/rdb/grindR/.

For example, download the R-codes grind.R and lotka.R in a local directory, and open them in
RStudio (if RStudio is the default R-environment one can just double click the links). It may be
convenient to set the working directory to the folder where the R-codes were stored (Set working

directory in the Session menu of RStudio). First “source” the grind.R file (button in right hand
top corner) to define the Grind functions. Then click the other tab, and select the function model()

by highlighting everything up to the closing curly bracket, and execute this by clicking the Run button
(or typing Control Enter). Subsequently proceed through that file by running it line-by-line (using
Control Enter), to see what is happening, and become familiar with the behavior of the Grind

11

functions.

Once you have a picture that you like, you may copy the lines creating that figure into the lotka.R

window for later usage. (Again, use “Run” or “Control Enter” to execute lines from the lotka.R panel
into the console). Finally, one can reduce the amount of white space in the margins, or plot panels
next to each other, by changing R’s default graphics settings (par()); see the examples in bbox.R.

August 26, 2018, Rob J. de Boer

References

[1] Soetaert, K., 2009. rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary
differential equations. R package 1.6.

[2] Soetaert, K. and Herman, P. M., 2009. A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

[3] Soetaert, K. and Petzoldt, T., 2010. Inverse modelling, sensitivity and Monte Carlo analysis in R using
package FME. Journal of Statistical Software 33:1–28.

[4] Soetaert, K., Petzoldt, T., and Setzer, R. W., 2010. Solving differential equations in R: Package
deSolve. Journal of Statistical Software 33:1–25.

A Appendix

A.1 What’s in the box?

The files on the http://tbb.bio.uu.nl/rdb/grindR/ website provide:
app.R example for making an app (see the website https://grind.shinyapps.io/lotka/)
bbox.R . examples for setting the margins (using par())
chaos.R . . . an example of 3-dimensional nullclines (using cube.R), a Takens reconstruction of a

chaotic attractor, and a bifurcation diagram formed by continuing the period doubling
cascade of a limit cycle

cube.Ran extension of Grind defining cube() and run3d() for plotting 3-dimensional
nullclines and trajectories

delay.R . an example of a DDE (delay differential equation)
events.R . examples of event handling using the option after in run()

evolve.R an example using arrays of ODEs and implementing random mutations
grind.R . the Grind wrapper around the Soetaert libraries
grind2grindR.html a webpage translating previous GRIND commands into current Grind
logisticMap.R the Logistic map, a Takens reconstruction of its chaotic attractor, and its famous

bifurcation diagram
lotka.R . the Lotka-Volterra model defined in the deSolve format
lotka.ipynb phase plane analysis of the Lotka-Volterra model in a jupyter notebook
monod.R a Monod saturated predator-prey model defined in the deSolve format
operon.R a model of the Lac-operon illustrating the usage of continue() revealing two

saddle-node bifurcations
README . a text file with some instructions and a history of Grind versions
separatrix an example for drawing a stable manifold by starting on the corresponding eigenvector,

and integrating backwards
solution.R an example of a model() returning a solution rather than derivatives
tutorial.pdf . the Grind manual
vector.R . an example with arrays of ODEs

A.2 Grind extensions

There is currently only one extension (cube.R) which uses the plot3D R-library to define a function for plotting
3-dimensional nullclines (cube()) and a function for plotting 3-dimensional trajectories (run3d()). The syntax
of these functions is similar to that of plane() and run(), respectively. See the cube.R script for some help on
the 3D projection.

12

