Mathematical theories of multi*level* and multi*scale* selection

with applications to computational models

RUTGER HERMSEN

Theoretical Biology

Biology Department, Utrecht University

Outline

- 1. Introduction: Group and multilevel selection
- 2. Formal theories of group selection
- 3. A simple model of the evolution of altruism
- 4. Spatial structure without groups: Multiscale selection
- 5. Conclusions

1.1 Biological systems are hierarchically organized

1.2 Natural selection may act at multiple levels

- Entities at every "level" of the hierarchy have their own properties and their own dynamics.
- The idea of adaptation by natural selection *can* be applied at all levels.
 - (This does not mean that it is always natural or fruitful to do so...)
- Properties at one level often affect those of another level; selection pressures at different levels may not be aligned.

1.3 Group selection is often invoked to explain altruistic behaviors

What is an altruistic trait in biology?

A trait that reduces the fitness of the actor but increases the fitness of its interaction partners (the recipients).

Altruism has long been a mystery...

How could natural selection favor a trait that *reduces* fitness?

...but a wide class of solutions has long been understood.

Altruism can evolve if somehow the benefits of altruism are disproportionately enjoyed by other altruists, thus offsetting their costs.

But how??

One possibility: competition among *groups* with varying numbers of altruists.

1.4 Uncritical group selection came under fire in the late 1960s and 1970s

Naive group selection: Explanations in terms of benefits to the group.

Example: Wynne-Edwards (1959):

"A theory is put forward that, for each species, population-densities are limited at a safe level, which will protect the food-supply from long-term depletion and assure its renewal for the future. Instead of competing directly for food, animals compete for conventional substitutes, e.g. territory or social position, which are capable of imposing a ceiling density at the optimum level, and can prevent it from rising to the starvation level which would endanger future resources."

Main counter-argument: instability to cheaters

- Within each population, cheaters (also called defectors) have a higher fitness.
- Result: On the long run, cheaters take over. ("Tragedy of the Commons")

E.g., Maynard Smith (1964), G.C. Williams (1966), Dawkins (1978).

1.5 Alternative framework: Inclusive fitness theory and Hamilton's rule (1964)

Inclusive fitness theory, main idea:

- A trait can successfully spread if it promotes the fitness of the organism that possesses it or that of other organisms that possess that trait.
- Relatives are likely to share traits.
 Organisms that mainly interact with relatives may therefore accept fitness costs to benefit others.
- Inclusive fitness effect: effect on the fitness of the bearer *and others* weighted by their relatedness.

Hamilton's rule

A trait experienced positive selection if:

c = fitness cost of actor, b = fitness benefit of recipient, R = relatedness between actors and recipients.

1.6 Despite the controversy, new group-selection models emerged steadily

Examples:

- Maynard Smith's Haystack model (1964)
- D.S. Wilson's trait group model (1975, 1977, 1979)
- Queller (1992)
- Tarnita, Nowak (2002)
- ..

Group selection in these models works roughly if

- it allows altruists to mainly interact with other altruists (consistent with Hamilton's rule),
- groups with more altruists have higher mean fitness.

But debates are ongoing as to the best framing of these results.

1.7 Many controversies remain

Tough questions:

- In those cases where inclusive fitness theory and multilevel selection theory are both applicable, are they mathematically equivalent?
- Even if they do, do they describe different causal/mechanistic situations?
- Do we need to take all levels into account or is the lowest level enough?
- Are the selection pressures at all levels potentially equally important?
- Can we understand how selection pressures at different levels interact?
- Can we apply all this theory to experimental and/or simulation data?
- Can we apply group selection theory if the population is not neatly subdivided into discrete non-overlapping groups?

1.8 What will we do today?

We will:

- explain one possible formal definition of natural selection at the group level.
- prerequisites: Price equation, covariance, Simpson's paradox.
- illustrate the theory it by applying it to computational models.
- introduce Multi*scale* selection theory.

Outline

1. Introduction: Group and multilevel selection

2. Formal theories of group selection

3. A simple model of the evolution of altruism

4. Spatial structure without groups: Multiscale selection

5. Conclusions

2.1 Formal theories help to resolve confusion

Without formal definitions, it is hard to resolve differences of opinion.

- What is natural selection exactly, and how do we measure it?
- What is group selection exactly, and how do we measure it?
- What is fitness, and how do we measure a fitness cost or benefit?

Analysis based on the Price equation can brings some clarity.

2.2 Multiple frameworks exist to formalize and quantify MLS

At least three alternative formalisms exist, called:

- 1. Multilevel Selection 1 (the "Price approach")
- 2. Multilevel Selection 2
- 3. Contextual analysis

In the interest of time, we will focus on MLS 1.

2.3 The basic logic of adaptation by natural selection

Necessary and sufficient conditions for natural selection:

- 1. variation in the trait
- 2. heritability of the trait
- 3. the trait is associated with fitness

This seems so general, so logical...

Shouldn't it be possible to derive it as a mathematical theorem?

2.4 The Price Equation: selection measured as a covariance

The standard Price Equation

- Consider a time step $\Delta t \equiv t_2 t_1$.
- Change $\Delta \overline{\phi}$ in mean trait value.
- Denote number of offspring of ancestor i as W_i.
 ("Absolute fitness")
- Define $w_i \equiv W_i/\overline{W}$ (relative fitness).
- Then the Price Equation can be derived as:

$$\Delta \overline{\phi} = \underbrace{\operatorname{Cov}(\phi, w)}_{\text{selection differential } S} + \underbrace{\overline{w\Delta \phi}}_{\text{transmission } T}$$

2.6 The covariance measures whether two traits (variables) "vary together"

Definition population mean:

$$\overline{x} \equiv \frac{\sum_{i=1}^{n} x_i}{n}.$$

Definition population covariance:

$$\mathrm{Cov}\,(x,y)\equiv\overline{(x-\overline{x})(y-\overline{y})}.$$

2.6 Covariance and correlation are intimately related

Definition correlation coefficient:

$$\rho_{x,y} \equiv \frac{\mathrm{Cov}(x,y)}{\sigma_x \sigma_y}$$

Here, σ_x and σ_y are the standard deviations of x and y, respectively.

2.6 Covariance and slope of regression line are also intimately related

Regression line:

Straight line $y = \alpha + \beta x$ that "best fits" the cloud of data points.

(The one that minimizes the sum of squared vertical distances from the line.)

It can be derived that:

$$\beta = \frac{\mathrm{Cov}\,(x,y)}{\mathrm{Var}\,(x)}.$$

Hence, the covariance is also a measure of the *linear relation* between traits.

2.7 Simpson's paradox: aggregated data can be confusing

Positive or negative relation?

Suppose x is hours per week playing Minecraft. Suppose y is the score in a spatial awareness test. Groups are age groups.

(Blue: age 9–11. Red: age 15–17.)

Is playing Minecraft associated with good spatial awareness?

How does the population covariance relate to the covariance in subgroups?

$$\text{Law of Total Covariance: } \operatorname{Cov}\left(x,y\right) = \left\langle \operatorname{Cov_{w}}\left(x,y\mid g\right)\right\rangle_{\mathrm{a}} + \operatorname{Cov_{a}}\left(\left\{x\mid g\right\}_{\mathrm{w}},\left\{y\mid g\right\}_{\mathrm{w}}\right).$$

(Weighted averages if groups have unequal size.)

2.8 Quantifying MultiLevel Selection 1: the Price approach¹

George Price's idea: apply the Law of Total Covariance to the selection differential *S*!

- Imagine organisms subdivided into discrete, non-overlapping groups.
- Law of Total Covariance splits *S* into two parts:

$$S = S_{\text{within}} + S_{\text{among}}$$
.

where

 S_{within} = mean covariance *within* groups

 S_{among} = covariance between mean trait and mean fitness *among* groups

¹Price (1970)

2.8 Positive among-group selection can trump negative within-group selection

$$S = S_{\text{within}} + S_{\text{among}}$$
.

where

 S_{within} = mean covariance *within* groups

 S_{among} = covariance between mean trait and mean fitness *among* groups

Outline

- 1. Introduction: Group and multilevel selection
- 2. Formal theories of group selection
- 3. A simple model of the evolution of altruism
- 4. Spatial structure without groups: Multiscale selection
- 5. Conclusions

3.1 Spatial structure can play an important role

Assortment can promote altruism

Interactions happen locally; spatial demographics promote assortment.

Resource competition is local too

If altruists mainly compete with altruist, altruism does not help.

This inspired me to study a simple model in which

- scales of interaction and motility can be tuned directly,
- complex spatial structures emerge.

3.2 Essence of the model: simple agents interacting locally

organisms positioned in space

Individuals do three things:

- 1. Move (by unbiased diffusion)
- 2. Reproduce (asexually)
- 3. Die (at a fixed rate)

Interactions:

- Resource competition
- Altruistic cooperation (Perhaps production of a "public good".)

Single evolvable trait: Level of altruism ϕ .

3.2 Competition and altruism each have their own scale

Interaction ranges:

- Range of competition: $\sigma_{\rm rc}$
- Range of altruism: σ_a

We choose $\sigma_{\rm rc} > \sigma_{\rm a}$

Allow altruism at the expense of others.

3.3 Dynamics: Movie time!

3.3 Hexagonal pattern of colonies emerges due to a Turing-like instability

"Short-range activation plus long-range inhibition"

3.3 Colonies are unstable and die: "tragedy of the commons"

3.3 Colonies reproduce (binary fission) to replace the dead

3.3 In a 1D version of the model, colonies can be tracked

Within-colony tragedy of the commons, but among-colony selection for altruism.

3.4 Conclusions so far on the model of altruism

- Altruism can evolve (both in the 1D and 2D version).
- Spontaneous emergence of colonies that reproduce and die.
- Colonies are intrinsically unstable against corruption by cheaters: "Tragedy of the commons".
- A colony that dies is replaced through growth and division of a colony nearby.
- Altruistic colonies seem to reproduce more frequently.

Can we use theory to quantitatively measure selection within and among colonies?

3.5 Applying MLS 1 to the simulations

Outline

- 1. Introduction: Group and multilevel selection
- 2. Formal theories of group selection
- 3. A simple model of the evolution of altruism
- 4. Spatial structure without groups: Multiscale selection
- 5. Conclusions

4.1 Natural populations tend to be highly structured in space

Gapped bush vegetation patterns, Niger (photo: Nicolas Barbier, WikiMedia)

4.1 Natural populations tend to be highly structured in space

Colonies of *B. subtilis* strains (Ben Jacob, 1997)

4.1 Natural populations also tend to be genetically structured in space

PCA of genetic variation in Europeans reveals map of Europe (Novembre *et al*, Nature, 2009)

4.2 MLS theory not directly applicable to such "viscous" populations

Local environments are somewhat (un)like groups

- Interactions (competition, cooperation, ...) and reproduction are *local*; emergent spatial patterns affect who interacts with whom.
- Spatial assortment can result in relatedness among interacting individuals.
- But, MLS theory not applicable if no discrete groups can be discerned.
- Yet, we intuit: sign of *local selection* may be different from *global selection*.

4.3 Our idea to formalize this: multiscale selection

Multiscale selection in spatially structured populations Hilje M. Doekes, Rutger Hermsen bioRxiv 2021.12.21.473617

4.3 Multiscale selection instead of multilevel selection

Phenotype

Local selection measured as Local Selection Differential

- Define a local environment as a disk of radius r.
- Local Selection Differential (LSD) of that environment: $Cov(\phi, w)$ among population within the disk.

Then we can derive: $S = S_{local}(r) + S_{interlocal}(r)$

where

 $S_{local}(r)$ = mean of LSD over all possible disks

 $S_{\text{interlocal}}(r) = \text{covariance between } mean \text{ phenotype}$ and mean fitness over all disks

4.3 Properties of S_{local}(r) and S_{interlocal}(r)

Limit of small scales

All variance is lost; hence

$$S_{\text{local}}(r) \to 0$$
,

$$S_{\text{interlocal}}(r) \to S$$
.

Limit of large scales

Local environments become representative of full population; hence

$$S_{\text{local}}(r) \to S$$
,

$$S_{\rm interlocal}(r) \to 0.$$

4.3 The contribution to selection of scale r

Define the Contribution to selection of scale r as

$$s(r) = \frac{dS_{\text{local}}(r)}{dr}.$$

If $S_{local}(r)$ increases if we increase r to r + dr, the scale r contributes positively.

4.4 Selection is positive over the initial part of the simulation

4.4 Yet, locally selection is negative

Length scale *r* (scaled by range of altruism)

4.4 The contribution to selection is only negative for very small scales

Length scale *r* (scaled by range of altruism)

4.5 An SI model of the evolution of infectivity

Pathogen transmissibility (A.U.

Note: Could be a model of an organism consuming a resource.

4.6 Dynamics: Movie time!

4.6 In spatial models, transmissibility stays limited. Self-shading?

Hypothesis: *locally*, higher transmissibility is favored, *globally* it is not.

Can we define and quantify this?

4.7 Multilevel selection framework is not applicable

Patches are not groups

- Patches are too ephemeral to be conceptualized as "groups"
- No relation between scale of patch and range of interaction
- (Patches do not reproduce in any clear-cut sense)

Intuition:

in *local* environments, high transmissibility is favored; *globally*, low transmissibility is favored.

Proof: apply multiscale selection theory.

4.8 Multiscale selection: differences between local and global selection

Self-shading: rapid reproduction locally depletes susceptible hosts and hence locally reduces mean fitness.

Selection for fast transmission within patches, selection for restraint among them.

Outline

- 1. Introduction: Group and multilevel selection
- 2. Formal theories of group selection
- 3. A simple model of the evolution of altruism
- 4. Spatial structure without groups: Multiscale selection
- 5. Conclusions

5.1 Take-away messages

1. Hierarchy

Natural selection can act at any level of organization.

2. The Price Equation

Natural selection can be measured as a covariance.

3. The Law of Total Covariance

In group-structured populations, the Law of Total Covariance can split up selection into within- and among-group parts.

$$S = S_{\text{within}} + S_{\text{among}}$$

4. Simpson's Paradox

Aggregated data can conceal relations within subgroups.

5. Solving conundrums

Because of Simpson's paradox, selection on a trait *can* be positive in the population even if it is negative in each group.

Generally, rigorous mathematical definitions help to solve confusing questions on evolution.

6. Application to simulations

Such formalisms can be used to measure quantities in simulations.

