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We consider the response of complex systems to stimuli and argue
for the importance of both sensitivity, the possibility of large
response to small stimuli, and robustness, the possibility of small
response to large stimuli. Using a dynamic attractor network model
for switching of patterns of behavior, we show that the scale-free
topologies often found in nature enable more sensitive response
to specific changes than do random networks. This property may
be essential in networks where appropriate response to environ-
mental change is critical and may, in such systems, be more
important than features, such as connectivity, often used to char-
acterize network topologies. Phenomenologically observed expo-
nents for functional scale-free networks fall in a range correspond-
ing to the onset of particularly high sensitivities, while still
retaining robustness.

Many entities need, on the one hand, to react to low levels
of selected stimuli, whereas, on the other hand, they must

be able to maintain their state when exposed even to high levels
of other ‘‘irrelevant’’ or potentially damaging stimuli. One
example of this requirement for both sensitivity and robustness
is the immune system, where high sensitivity to antigens is
necessary and, when inadequate, can be enhanced by immuni-
zation, whereas oversensitivity results in allergic reactions or
autoimmune diseases like lupus. It is not immediately apparent
how one might incorporate the complementary attributes of
sensitivity and robustness into a single system, although nature
has clearly addressed this problem many times. Complex man-
made entities, such as power grids or communications systems,
also require this seemingly paradoxical combination of traits for
optimal performance in support of human activities. Are there
design principles that enable one to build in both sensitivity to
the ‘‘right’’ stimuli and robustness in the face of the ‘‘wrong’’
ones?

Effectiveness of Network Response
Recent efforts to understand the behavior of complex biological,
social, and technological systems have focused attention on the
topology of the network formed by the connections (links)
between the components (nodes). In particular, the distribution
of links among the nodes is thought to contain a great deal of
information about the capabilities of the system. Most studies of
networks in biological and social systems have, implicitly or
explicitly, taken the average number of links in the shortest path
between an arbitrary pair of nodes as a figure of merit, with fewer
links optimal. The shortest-path viewpoint was originally moti-
vated by the ‘‘small-worlds’’ property discovered for social
networks (1, 2), but this property, although interesting, does not
necessarily have a direct relationship to functional utility. For
example, no evidence demonstrates that biochemical networks
use such addressed communication between pairs of nodes
through multiple links. Only communication networks in mul-
tiprocessor computers, internet packet routing, and transporta-
tion networks (although these last few do not share the small-
worlds property) make use of this type of indirect point-to-point
communication. Even in social networks, where pairwise com-
munication is more prevalent, direct communication through
multiple steps in the network between individuals who are not
acquainted with each other is relatively rare. We have also shown
that observed network topologies, which are often scale-free (3,

4), meaning that the number of nodes having k links decreases
as k to some power for large k, are not necessarily optimal in their
connectivity and connectivity-related attributes (5). These re-
sults suggest a reexamination of why many networks found in
nature have scale-free architectures. In this article we address
directly the question of what properties determine the effective-
ness of networked systems by analyzing the response of such
systems to environmental change.

We argue here that the functional characteristics of some
complex systems and their network topologies are better under-
stood in terms of the system’s need to respond sensitively to
external change by switching from one mode of behavior to
another. This requirement is apparent in the case of biochemical
signaling and metabolic networks, whose role is to facilitate the
response of cellular systems to external stimuli or to changes in
the availability of resources. It is also present in the context of
social systems, where communication plays an essential role in
the response of groups to new information about changing
conditions in the environment (including actions of other social
groups). Responsiveness implies an ability to adjust, perhaps
dramatically, even to small environmental changes. Comple-
menting the importance of effective response to environmental
change when appropriate is the need for robustness to many
other possible alterations. Robustness entails a lack of sensitivity
to environmental variation, retaining the same behavior even
when subject to large stimuli. Both properties are necessary for
effective reaction and adaptation to environmental changes. The
response of a system can be understood to be propagated
through the network of connections, where the initial stimulus
affects one or more nodes. Thus, the topology provides direct
information about the nature of the response. It is natural in this
context to characterize the size of a stimulus by the number of
nodes that it initially affects and the response by the number that
subsequently changes state. Indeed, there is ultimately no reason
to expect that the size of the response should be determined
solely or even primarily by the size of the stimulus rather than by
its specific relationship to the network topology.

Depending on the nature of the system, the nodes in the
network may correspond in different ways to the system com-
ponents. In some cases, such as neural networks or social
networks, the nodes may be identified with individual ‘‘ele-
ments’’ (neurons or people). In other cases, they may correspond
to collections of similar or identical entities (e.g., molecules of a
biochemical species), whose number or concentration may differ
significantly between different nodes. In either case, the number
of nodes that respond to a stimulus may vary widely, even for
stimuli that affect a single node. The complementary importance
of robustness and sensitivity suggests that we reexamine previous
analyses, which showed, with respect to removal of nodes from
the network, that scale-free network topologies are robust to
failure and sensitive to attack (6–11). Assuming, as is often done,
that the former is an advantage, whereas the latter is a disad-
vantage, may be misleading in some contexts, because both
characteristics can be advantageous if the sensitivity enables the
system to respond effectively to environmental changes. The
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prior studies of robustness and sensitivity were concerned,
however, with the impact of node removal on connectivity. For
us to consider the role of network topology in the response of a
system to the environment, we must first introduce a model of
network dynamics and response.

In the next sections we consider a specific model of network
dynamic response and characterize its behavior for different
network topologies by using simulations and analysis. We first
compare scale-free and random network topologies and show an
increased sensitivity of the scale-free network to stimuli as
compared with the random network. Still, simulations and
analysis reveal that the increase in sensitivity is not as great as
might be expected (or indeed might be needed by nature) for
values of the scaling exponent (� � 3) given by the standard
theoretical model of scale-free networks. In particular, although
the system can respond to smaller stimuli, the sensitivity is only
increased by a factor of 2. Extending our analysis, we find that
reducing the scaling exponent can increase the sensitivity. The
sensitivity is almost unchanged down to an exponent of 2.5.
However, within the range of 2.1 to 2.4, the sensitivity of the
network increases dramatically. A review of the literature reveals
that this domain corresponds to the phenomenological range of
values observed in many natural networks.

A Dynamic Network Model
A concrete model of the behavior of a system in response to its
environment assumes that the state of each node is influenced
by the states of the other nodes to which it is linked. Such
influence networks have been usefully modeled by Ising-type
binary variables (12, 13), especially in the context of neural
network models, to study the properties of multiple network
states as attractors of the dynamics, i.e., states of the system to
which other network states evolve by virtue of the interactions
between the nodes and which are stable to subthreshold pertur-
bations. We can readily identify a particular self-consistent
pattern of behavior of the network (an attractor) with a func-
tional state of the system. The impact of external stimuli can then
be understood through the robustness of these attractors to
perturbation and the response as a process of switching between
such attractors. This understanding suggests that we consider
how the architecture of different network topologies affects the
properties of robustness and response of the network to pertur-
bations of the state of some of the nodes of the system. Using this
motivation, we contrast the response of a random (exponential)
(14) and a scale-free network to changes in the nodes, specifically
considering the size and shape of the basins of attraction, i.e., the
regions in the space of network states that evolve to a given
attractor, as a measure of the effect of environmental changes.

We choose a conventional model of attractor networks (15,
16), where the node states si � �1, i � {1, . . . , N} are binary,
and the dynamical equations are si(t � 1) � sign(¥j Jij sj(t)) with
symmetric influence matrix Jij, which can be related to an
Ising-type energy, E[s] � �1

2
¥ Jijsisj. To impose a specific network

topology we consider all the pairwise influences given by Jij to be
zero, except for those that correspond to the set of links. To set
the values of these influences, we start by randomly choosing two
states of the network {si

�}� � 1,2 to represent functional states of
the system. The pairwise influences between nodes Jij are set so
that these are stable states of the network dynamics (attractors).
The desired attractors can be constructed by using the Hebbian
imprinting rule Jij � ¥�si

�sj
�. For sufficiently many links and for

a broad range of network topologies, this form of the non-zero
links will make the preselected functional states into stable
attractors of the network dynamics. This outcome is confirmed
by measuring the size of the basin of attraction in each case in
the simulations discussed below. A nonempty basin of attraction
implies an attractor is stable to perturbation and can thus
represent a functional state of the system. The size of the basin

of attraction indicates the degree of stability of the system with
respect to noise. External stimuli are modeled by changing the
signs of (flipping) a specified set of nodes. The system responds
either by evolving back to its initial state or by switching to
another attractor. Incorporating more than two patterns into the
analysis is straightforward but does not lead to additional insights
into the issues considered here. The statistical behavior of
randomly diluted (exponential) attractor networks has been
studied (17).

Results
We measured the average size of the basin of attraction for
random stimuli, i.e., the number of randomly chosen nodes
whose states can be changed before the dynamics of the network
fails to bring the system back to its original state, for the
exponential and scale-free network topologies. We then carried
out the same calculation for directed stimuli by flipping sequen-
tially the nodes of greatest connectivity, which should corre-
spond to the highest sensitivity path to pattern switching.

Numerical Simulations. The results are shown as histograms for
1,000-node networks with an average of 20 links per node in Fig.
1. Similar results were obtained for networks containing from
200 to 20,000 nodes. For random stimuli, the basin of attraction
is �50% of the nodes in each case. The difference between the
networks is apparent, however, when the changes are made to
the most highly connected nodes. In this case, the random
network basin shrinks by just a small amount, whereas the
scale-free network requires only about 1�4 of the nodes to be
affected to switch the system from one attractor to another. In
Fig. 2 we show how the size of the stimulus needed to induce a
transition varies with the number of links per node and with the
size of the network.

Analytic Results. An analytic treatment confirms the significant
difference between the responses of exponential and scale-free
networks to directed stimuli. We assume that the ith node has
connectivity ki and that the probability distribution for the
connectivity, P(k), is Poissonian for the random network and is
given by the power law Ak�� for the scale-free network.

To determine the size of the stimulus that will lead to a
transition out of a particular attractor, we can consider a node
that was not directly affected and ask whether the stimulus is
sufficient to cause it to change its state as a result of the influence

Fig. 1. Histograms of the number of changed nodes (basin of attraction, B)
needed to change the state of a network with two randomly selected func-
tional states in a network of 1,000 nodes; 1,000 simulations were performed
for each histogram. With directed stimuli, random selection was made be-
tween nodes of equal connectivity.
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of the flipped nodes. Alternatively, we can consider one of the
nodes that was affected and consider whether the initially
unaffected nodes have a sufficient influence to restore it to its
original state. For Hebbian imprinting, where each link has an
additive contribution from the imprint of the functional pattern,
both of these questions are determined by the magnitude of
the total connectivity of the set of nodes that are affected by the
stimulus. Therefore, we assume that a change in the state of
the system, i.e., a transition between attractors, will occur if a
stimulus flips a set of nodes the sum of whose connectivities
exceeds a threshold. The existence of a well defined threshold is
consistent with the observation of a characteristic size of the
basin of attraction in Fig. 1. This situation can be expected as
long as there are enough links for each node so that averages are
well behaved. The numerical simulations provide support for this
hypothesis.

For random stimuli acting on either network, we label the
nodes that are flipped for convenience of notation to be the first
Br nodes. Because we are choosing nodes to flip at random, the
average connectivity of a node in the set of flipped nodes is the
same as the average connectivity of a node of the entire network,
�k�. We obtain:

�
i�1

Br

ki � �k�Br. [1]

In the case of maximal influence (directed stimulus) for the
exponential network, if Bm is the basin size and km represents the
connectivity of the last node to be flipped before the system
switches, we have:

�
i�1

Bm

ki � N�
km

� k�k�ke��k�

k!
� N�k��1 �

	
km � 1, �k��
	
km � 1�

� [2]

bm � �
km

�

P�k� � �
km

� �k�ke��k�

k!
� �1 �

	
km, �k��
	
km�

� , [3]

where bm � Bm�N, and similarly, br � Br�N. Since the influence
required to switch between patterns should be independent of
the path taken, we can equate the sums in the random influence
(Eq. 1) and maximal influence (Eq. 2) cases to obtain an implicit
relationship between the two basins of attraction in the form of
an expression for br in terms of km:

br � �1 �
	
km � 1, �k��

	
km � 1�
�. [4]

Combining Eqs. 3 and 4 yield a useful expression for the
difference:

br � bm � �k�km�1e��k��	
km�, [5]

which can be bounded for a given value �k� by finding the
maximum over km. This maximum is given approximately by
setting km � �k� � 1⁄2. The result turns out to agree very well with
the simulations for large enough �k�, indicating that in this case
the upper bound is a good approximation of the value itself
(Fig. 3A).

For the scale-free network the effect of random stimuli is
again given by Eq. 1, but for the maximal inf luence case we
have:

�
i�1

Bm

ki � N�
km

�

kP
k�dk �
1

� � 2
NAkm

2�� [6]

with the ancillary condition:

Bm � N�
km

�

P
k�dk �
1

� � 1
NAkm

1��. [7]

Normalizing the probability distribution, assuming a sharp cutoff
of the distribution at low k, yields:

A �

� � 2�
��1�


� � 1�
��2� �k�
��1� [8]

giving

�
i�1

Bm

ki � N

� � 2�
��2��k���1


� � 1�
��2�km
��2 � Nbm


��2��
��1��k�. [9]

Equating Eqs. 9 and 1 gives

bm � br

��1��
��2�. [10]

For � � 3, the value generated by standard algorithms (8) for
producing scale-free networks, like the one used thus far, we
have bm � br

2, and if the size of the random basin were 1�2, we
would have bm � 1�4. The actual size, however, is not exactly 1�2.
Fig. 3B shows the value of bm

1/2�br, which is within 1% of unity,
consistent with the analytic results, for networks with a suffi-

Fig. 2. Size of basin of attraction (fraction of total nodes, b) as a function of
the average number of links per node, l, for random and directed stimuli for
the two model networks: exponential (A) and scale-free (B). Each family of
curves includes simulations from n � 200 to 1,000 in increments of 100,
showing the weak variation with network size.
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ciently large number of links per node. For sparser networks, a
crossover to a regime that depends on �k� occurs close to the
point where the network becomes unable to retain two inde-
pendent functional states (17).

Natural scale-free networks have been found to be charac-
terized by various values of the exponent �, with most docu-
mented functional biological, social, and engineering networks
having values in the range 2.1–2.5 (18). Eq. 10 suggests that
such networks have significantly larger sensitivities to small
directed stimuli than random ones. Algorithms (19) for gen-
erating networks within this range of � values and �k� only
asymptotically follow scale-free behavior. Nevertheless, we
have found that the relationship in Eq. 10 is reasonably well
satisfied, as shown in Fig. 4. Networks can be formed that
switch states with only one or a few node f lips, whereas random
stimuli require f lipping 30% or more of the nodes. For
example, at � � 2, a directed stimulus that f lips the four most
connected nodes is sufficient to change the state of the
network, whereas a random stimulus typically requires �380
f lips to induce a transition.

Conclusion
We have explored here, with a simplified model of the dynamics
and an attractor network model that describes switching between
functional states of a system, the characterization of the re-
sponses of random (exponential) and scale-free networks to

external stimuli. Prior analyses that emphasize the tradeoff
between sensitivity to attack and robustness to failure in the face
of node removal are viewed here in a different light. Both
robustness and sensitivity are necessary for complex systems to
function effectively in the context of changing environments.

Our key finding is that scale-free networks can respond to
selected stimuli in a much more sensitive fashion than random
networks, but only for values of the scaling exponent � that
approach 2 (from above). At an exponent of 2 a singularity occurs,
since the distribution of connectivities must explicitly account for
the large connectivity cutoff and its dependence on network size, as
can be inferred from Eq. 6. Values of � slightly greater than 2 are
just the values of the scaling exponent that have been found in
empirical analyses of functional scale-free networks. The high
sensitivity we find near the critical point is reminiscent of the high
susceptibility of materials near their phase transitions, but here the
enhanced sensitivity arises directly from the high connectivity of
specific nodes, i.e., it is not a global property of the system sensitivity
but rather depends on sensitivity to specific stimuli that affect
specific high-connectivity nodes. The desirability of being near a
dynamic-phase boundary is also reminiscent of, but is not equiva-
lent to, the ‘‘edge-of-chaos’’ notion (20, 21).

This work may have particular relevance to the analysis, in
terms of changes of functional states, of cellular switches that
cause differentiation in multicellular organisms (22). Multiple
sequential state transitions that are robust to noise are necessary
to ensure reliability of development. Whether actual networks
have evolved to make use of the heightened sensitivity demon-
strated here is a subject for further research, but it is known that
experimentally observed values of � in many scale-free networks
(18) fall in the range in which the sensitivity becomes signifi-
cantly higher. In particular, the World Wide Web and the
Internet, and biomolecular and many social networks, are found
in this domain. Exceptions are citation, word statistics, sexual
contact, and ecological networks, which, it can be argued, are not
designed for functional responses.

We have focused here on fixed-point attractors in networks
with symmetric connections. A logical extension for future work
on the dynamic response of networks is to address the effects of
asymmetric interactions and the behavior of time-dependent,
e.g., periodic or chaotic, attractor states.

We thank Hiroki Sayama and Michael Thompson for critical readings of
the manuscript. This work was supported in part by National Science
Foundation Grant 0083885 and by a grant from the Packard Foundation
Interdisciplinary Science Program.

Fig. 3. Comparisons of simulations with analytic results. Different curves
are for different network sizes, as in Fig. 2. (A) Plot of the difference br �
bm for exponential networks as a function of the number of links per node.
The upper bound obtained in the text is shown as a thick line. (B) Plot of the
ratio bm

1/ 2�br for scale-free networks as a function of the number of links per
node.

Fig. 4. Size B of the basin of attraction for random and directed stimuli for
scale-free networks as a function of � for n � 1,000 node networks and l � 10.
The line representing the analytic relationship is Eq. 10.
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14. Erdös, P. & Rényi, A. (1960) Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61.
15. Hopfield, J. J. (1982) Proc. Natl. Acad. Sci. USA 79, 2554–2588.
16. Amit, D. J., Gutfreund H. & Sompolinsky, H. (1985) Phys. Rev. Lett. 55,

1530–1533.
17. Derrida, B., Gardner, E. & Zippelius, A. (1987) Europhys. Lett. 4, 167–173.
18. Albert, R. & Barabási, A.-L. (2002) Rev. Mod. Phys. 74, 47–97.
19. Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. (2000) Phys. Rev. Lett.

85, 4633–4636.
20. Langton, C. G. (1990) Physica D 42, 12–37.
21. Kauffman, S. A. & Johnsen, S. (1992) in Artificial Life II, eds. Langton, C. G.,

Farmer, J. D., Rasmussen, S. & Taylor, C. (Addison–Wesley, Reading, MA),
pp. 325–369.

22. Thomas, R. (1998) Int. J. Dev. Biol. 42, 479–485.

Bar-Yam and Epstein PNAS � March 30, 2004 � vol. 101 � no. 13 � 4345

A
PP

LI
ED

M
A

TH
EM

A
TI

CS


