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Abstract

In this paper we explore the impact of new levels of selection in models of early evolution.
We contrast two types of higher levels of selection. On the one hand we look at spatially explicit
models of replicators in which, by a process of self-organization, new levels of selection arise
as large scale spatial patterns with a dynamics of their own. Alternatively externally imposed
levels of selection above the basic replicators are created by enclosing the replicators in vesicles.
In this paper we first review some results on the impact of emerging higher levels of selection on
the evolutionary persistence of interacting co-evolving replicator systems. Moreover, we present
a vesicle model which can potentially integrate emerging and imposed levels of selection. We
use the models to examine the classical problem information integration in early evolution.

1 Introduction

Although there has been much discussion on what is the appropriate level on which Darwinian
selection operates, we now know that in many cases the interesting features arise through the
occurrence of multiple levels of selection which act in concordance and/or in conflict. Indeed
symbiogenesis of initially independently replicating entities underly major transitions in evolution
leading to complex life forms (Maynard Smith and Szathmary 1995). Not only it appears that the
formation of multiple levels of selection shaped living systems on this planet, models show that the
occurrence of new levels of selection is an inevitable property of eco-evolutionary processes when
interactions occur locally in space (e.g. Boerlijst and Hogeweg 1991, Hogeweg 2002).

Classical, single level, models of replicator dynamics have revealed a fundamental problem about
information accumulation through a process of mutation and Darwinian selection, the so called
information threshold (Eigen et al 1989). Selection can counterbalance only a limited mutation rate,
and therefore, assuming a certain rate of replication error per nucleotide, only a limited sequence
length can be evolutionary maintained. A certain amount of information (sequence length) should

1



be needed in order to improve copying fidelity, and therefore the information threshold could be a
major barrier in early evolution.

To overcome the information threshold two types of scenario’s have been proposed: cooperative
interactions and compartments. The hypercycle model is the classical example of the former and
the stochastic corrector model that of the latter. The hypercycle model proposes a cyclic interaction
structure of catalytic self-replicating molecules, and its dynamic properties have been extensively
studied. Apart from biochemical considerations, a major problem of hypercycles as a means to
overcome the information threshold is its sensitivity to so called ’parasites’ whose replication is
strongly catalyzed, but who do not catalyze the replication of any of the other molecules, and
thereby break the cycle. This vulnerability to parasites is less severe in spatial models, in which
multiple levels of selection operate and thus change the invasion dynamics of mutants dramatically.
Nevertheless, as we will review below, the evolutionary instability of this interaction structure makes
it an unattractive candidate for overcoming the information threshold. However, the emergence of
higher levels of selection in spatial models widen the class of potential interaction structures which
can persist enormously. We will review in section 3 the longterm eco-evolutionary stability of
several interaction structures, and show the potential feasibility in space for enhanced information
integration due to cooperative interactions.

The stochastic corrector model also invokes higher levels of selection to overcome the dynamic
trends of the lower level dynamics. However these higher levels of selection are imposed rather
than a result of the lower level dynamics. The evolving replicating molecules are assumed to be
enclosed in vesicles, which themselves are subject to a Darwinian regime. The ’negative mutations’
arise mainly from the dynamics of the molecules, the (relative) ’positive mutation’, which ’correct’
the evolutionary trends at the micro level, occur by stochastic fluctuations in the dynamics, and at
vesicle division, in which molecules are randomly partitioned between the daughter cells. Potential
problems of this scenario for overcoming the information threshold are that the ’stochastic corrector’
mechanism works mainly for small compartment sizes, with small populations of the molecules,
where stochastic effects are large, whereas the the information threshold shifts to lower mutation
rates at small population sizes, and at small diffusivity.

In this paper we present a model which combines the potential for the emergence of new levels of
selection through spatial pattern formation, with the inclusion of vesicles which constitute a new
level of selection above the molecular dynamics. We use the model to quantify the negative effects
of both spatial pattern formation and of small compartment size on the information threshold,
relative to the potential positive effects through compartmental dynamics. We show that also
relatively large vesicles can benefit from the stochastic corrector mechanism, be it to a more limited
extent than smaller vesicles in most regimes. However in all cases studied the positive effect of the
stochastic corrector mechanism is limited due to vesicle level dynamics.
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2 Models and Methods

2.1 replicator dynamics

We use replicator based, stochastic cellular automata models to describe the microscopic dynamics
of evolutionary systems. A uniform grid of patches represents the space. The state of each patch
represents the individual molecule which inhabits that part of the space. This molecule can inter-
act only with the molecules/space in its directs neighborhood, moves around locally, replicates and
dies. Each individual may be unique, and calculate its interactions with its neighbors (in that case
’systolic array’ is more accurate name than cellular automaton). The potential uniqueness of each
individual is of course useful in evolutionary context. Therefore this type of models is not ’a poor
mans choice’ but actually should be preferred above e.g. partial differential equation models. The
basic rules are:
(1) If a patch is empty neighboring individuals compete to put an offspring in it.
(2) This competition can be dependent on the interaction the neighbors have with their neighbors,
e.g. whether they are being catalyzed.
(3) Molecules decay with a certain probability.
(4) One or more diffusion steps occurs in between reaction steps.

2.2 vesicle dynamics

We use the cell model proposed by Glazier and Graner (1993) to introduce vesicles in a CA layer
on top of the spatial replicator dynamics defined above. This is a two scale CA model in which the
cells/vesicles comprise many grid-cells. The dynamics of the vesicles is governed by the following
energy minimization term:

H =
∑ Jij

2
+

∑

Jim +
∑

λ(v − V )2

where Jij and Jim denote surface energy in between vesicles and with respect to the medium
respectively (here they are both 5), V is the target volume of the vesicle (here 100 for all vesicles)
and v is its actual volume. In between each reaction step of the replicators, the vesicles adjust their
boundary so as to minimize H as follows:
(1) each grid cell of the CA is considered in random order; iff the corresponding grid point in the
replicator layer is empty (2) a neighboring grid point of the current point is randomly chosen; (3)
the state (i.e. vesicle identification number) of the neighboring grid is copied into the current grid
point with a probability of p=1 if ∆H < D otherwise p = exp−(∆H+D)/T ). ∆H is the change in
H if copying were to occur, D (=.8) is the dissipation constant and T(=4) defines the randomness.
In this way molecules remain in their own vesicles, and vesicles expand (contract) so as to attain
the target size, but this expansion is constraint by the availability of space.

Vesicle divide under influence of the molecules which inhabit it. We use a simple threshold function
on the number of (types of) molecules. Vesicle division is perpendicular to its longest axis, and
the daughter vesicles simply inherit the molecules which are present in their half. The daughter
vesicles try again to attain the target size. Expansion of the vesicles aids the replicator dynamics

3



by creating space. Note that unlike previous models there is a mutual influence of molecules on
vesicles and of vesicles on molecules. Note moreover that vesicles are localized in space, and pattern
formation among the vesicles potentially forms a next level of selection above the vesicle level in a
manner similar to that of pattern formation in the molecular dynamics. Fig 5 illustrates the model,
as well as this clumping effect.

We apply the model to study whether and how much the information threshold defined by the
molecular dynamics can be increased due to vesicle level selection 1. We study various selection
regimes on the vesicle level. All cases are such that the microscopic dynamics and the macroscopic
dynamics act in concordance, i.e. what is ’good’ for the molecules is ’good’ for the vesicles. The
regimes differ in whether and how the vesicles ’recognize’ the types of molecules which inhabit
them. We will show that only in the cases that the vesicles recognize the molecules and add extra
selective advantages, the mutation rate at which the information threshold occurs is shifted to
higher values.

3 Spatial pattern formation and the eco-evolutionary persistence

of catalyzed replication

In this section we review work on the impact of higher levels of selection which emerge automatically
in spatial models of interacting replicators. This impact is profound in many models, reversing
selection pressures, and enslaving the evolutionary fate of the micro level entities to the spatial-
temporal patterns they create. This was first demonstrated in the context of the hypercycle model
(Boerlijst and Hogeweg 1991a,b).

These early studies were done as invasion experiments, i.e. after a stable spatio temporal attractor
was reached the fate of an introduced mutant population was studied. Thus, a separation of time-
scales was imposed between ’ecological dynamics’ and ’evolutionary dynamics’. Indeed the original
studies on hypercycles (Eigen and Schuster, 1979) studied only the ecological dynamics notwith-
standing the fact that they were introduced as potential solution for the information threshold
problem which arises due to high mutation rates. Similarly the stochastic corrector model was also
studied in absence of mutations. In this paper we rectify this discrepancy by studying coupled
eco-evolutionary dynamics.

In contrast to mean field models, in space not only cyclic interaction architectures are stable in
ecological time, but also non-cyclic interaction structures, e.g. a self catalyzing replicator and
its parasites (see e.g. Boerlijst and Hogeweg 1991b, Hogeweg 1994,Couwenberg 1997, Czaran
and Szathmary 2000, McCaskill et al 2001, Fuchslin and McCaskill 2001). In this section we
compare several architectures with respect to their eco-evolutionary persistence. We study apart
from the hypercycle model and the above mentioned minimal model of catalytic replicators and
their parasites, a two membered hypercycle with its parasites, RNA- replicases , consisting of a
plus and a minus string, of which e.g. the minus string is catalytic and their parasites, and finally
duplex forming RNA’s in which the minus strings of two populations can ligate and the duplex
serves as replicase for these populations as well as other RNA’s not participating in the duplex

1“increase/decrease of the information threshold” is used as equivalent to “increase/decrease of the critical muta-
tion rate above which master sequences are not maintained in the system”
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formation. Note that in mean field situation all these interaction structures are unstable, and die
out very quickly. The CA rules are:
1. determine the catalysis each molecule gets. An interaction partner is chosen among the 8

neighbors proportional to the amount of catalysis they give; the received catalysis is stored
2. An empty position chooses one of its 8 neighbors proportional to the catalysis they get, and

receives its offspring; the offspring is either identical to the chosen neighbor (or in case of the
RNAmodels its complement), or undergoes mutation; i.e. a new state is created with interactions
to all other molecules slightly changed relative to those of the parent (in the RNA based model
it involves creation of both a plus and a minus molecule) Occupied patches have a probability
d=.15 of becoming empty;

3. one Margolus diffusion step (see Toffoli and Margolus 1987).
4. iterate
5. the default initial conditions are randomly distributed monotypic populations of the replicase(s)

and the parasite(s), all in equal numbers. Parasites are initiated with 1.5 times the catalysis of
the replicators. The CA has 200x200 cells, and zero boundary conditions.

6. mutation rates were varied from .0002 to .1024 in a geometric series
We first study the eco-evolutionary properties of these interaction architectures by assuming that
mutations only change the parameters of the interactions, but not the topology of the interaction
network. Mutants inherit interaction parameters to all existing species from their parents with
small perturbations, but do not create new interactions. We do however also study versions of the
model in which interaction can be lost, to study the influence of perpetual parasite creation. Note
that this ’interaction based’ representation assumes that a mutation can change the interaction with
many partners subtly and independently (e.g. by conformational changes). We checked the results
in models where changes to all interaction partners were coordinated; this does not qualitatively
change the results.

The observed eco-evolutionary stability of the various models is as follows:

• 6-membered Hypercycles are resistant to parasites in ecological time (i.e. the parasite is
expelled rapidly), but destabilize in evolutionary time (see fig.1a,b). This is because the
stability properties are based on competition between the self-organized spatial patterns,
here spirals. However, spiral cores are lost over evolutionary time (and only seldom recreated,
Boerlijst and Hogeweg 1995) and when only one spiral is left, this one becomes vulnerable ,
and eventually dies out either by parasite invasion into its core, or, more commonly due to
drift of the strength of catalysis of the various molecules, which causes instability of the spiral
core (see fig.1b).

• 2-membered hypercycle. In contrast to long hypercycles (> 5 members) which expulse par-
asites in ecological time, and intermediate hypercycles of 3-5 members which are quickly
destroyed, minimal hypercycles of two members, can coexist indefinitely with a strong para-
site on one of its members in abcence of mutations. The system forms chaotic waves, where
the parasites out-compete the hypercycle locally, but only the hypercycle can invade empty
space. However, when catalytic strength evolves, the parasite is expelled in evolutionary time
whatever the mutation rate is (see fig1c). This is because the hypercycle uses the following
’trick’: The molecule which gives catalysis to the parasite does not increase the catalysis it
gets itself, but the parasite and the other member of the hypercycle do increase the catal-
ysis they get. Thus the patches of the hypercycle become less invadable for the parasite,
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Evolutionary (In)stability of hypercycles
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0

20000
2-cycle with high rate of parasite creation

Figure 1: Left panel (a,b): (in)stability of multi-membered hypercycles Snapshots of the spatial distribution
of the replicators of the hypercycle are shown. The colors indicate different genotypes and are chosen
arbitrarily. White indicates empty space (i.e. local extinction). Upper panel (a) : the system is initially
able to expulse parasites in ecological time, although local extinction does occur. Lower panel (b): because
of loss of number of spirals over time, it will become extinct due to breakup of the last spiral core. The
breakup is caused by drift of catalysis strength (mutation rate = 0.0002)
Right panel: stability 2-membered hypercycle 2 membered hypercycles can stably coexist with a parasite
on one of the species over (long) ecological time, but the parasite in the end will be expelled due to the
evolutionary dynamics. c. Mutation rate= 0.0002; left panel: population size, color code: orange: parasite,
brown: species 2, black: species 1 (which gives catalysis to parasite). Parasite dies out at ca t=400000. right
panel upper lines increase of catalysis; lower lines population diversity (*3, for display purposes). color coding
as in population graph. d. evolutionary oscillations for continued influx of parasites on both members of the
hypercycle. population numbers and running averages are shown. Strong oscillations are of the parasites,
i.e. population averages in cyan and black. Mutation rate = .0512, parasite are created with 3 times more
increase in catalysis than ’normal’ mutants.

because they contain less catalysts for the parasite. Such patches out-compete other hyper-
cycle patches, hence the evolutionary ’restraint’ of the parasitised catalysts. The increase of
catalysis of the other member of the hypercycle is faster than that of the parasite, because,
unlike the parasite, it has no negative effects of getting more catalysis. Therefore, in the end
the hypercycles out-competes the parasite. However, when new parasites are created contin-
uously, and on both members of the hypercycle, this trick renders the system very vulnerable
to new parasites on the stronger member of the hypercycle and the system dies out in most
cases. An interesting long term coexistence of the 2 membered hypercycle with parasites on
both members can however occur when the continuously generated parasites are fairly mild,
and the mutation rate is high; in that case no strong asymmetry is formed, and the system
persists, showing long term oscillation of dominance of parasites on either member of the
hypercycle (see fig1d).

• replicase and parasites Like the parasitised 2-membered hypercycle, one replicase and para-
sites can persist in ecological time, forming wave patterns. However parasites can be only
moderately strong (runs were initialized with parasite only 1.3 times as much catalysis as the
replicase). In evolutionary time the outcome depends on mutation rate and chance (see fig
2): either the parasite is expelled, or the system dies out. The latter is most common at low
mutation rates, the former at higher mutation rates, but the two modes exist as alternate
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attractors over a wide parameter range. As seen in fig 2 the two modes are preceded by
slowing down of evolution toward higher catalysis in either the replicase (extinction) or the
parasite. The short run effect of doing so, paradoxically, increases the average population
size of the one ’giving up’. In the former case parasite waves get stronger and stronger, the
parasite almost kill themselves and their replicase, and the replicase fills up the entire field
before being attacked again. In the latter case parasites do not locally out-compete the repli-
cases completely, and the replicases then increase their diversity, and parasites cannot regain
large strength toward all variants, and are out-competed. Continuous creation of parasites
destroys the system.

• RNA replicase and parasites The models above ignore a defining feature of RNA replicators,
i.e. complementary replication. Here we examine a minimal RNA model with complementary
replication, in which one of the strings (e.g. the negative one) of one population is a repli-
case and the second pair of RNA strings represents the parasite. This model is much more
persistent than either of the previous models. The surrounding of the replicase by its com-
plementary RNA contributes much to this stability. This makes the replicase less accessible
to the parasites. For lower mutation rates replicases and parasites coexist in persistent wavy
patterns, which persist for a long time, but may lead in the long run (> 1 million time-steps)
to extinction of the system: catalysis of parasites increases somewhat faster than that of
replicases. At higher mutation rates the initial parasite population is expelled. Continuous
creation of parasites does not destroy the system, when we use up-to 1% of the mutations
leading to parasites with 5 times the maximum increase of catalysis of a normal mutant.
Such parasite influx fails to destroy the system, even under the unrealistic assumption that
both the plus and the minus string increase the received catalysis by that amount. In these
systems parasites typically are present in a large majority, whereas the minority replicases
sustain the system (compare Hogeweg 1994).

• RNA duplex replicase and parasites

In this model we assume that 2 replicators are needed to make a functional replicase. Note
that in this model, unlike the previous ones, coexistence of various classes of molecules is func-
tionally used within the system. We assume that the negative strands of two RNA molecules
ligate with a certain probability when they are neighbors. In ligated form they catalyze the
replication of all other RNA’s (including their own type and their complements and parasites)
but they themselves can not replicate. In this case our default initialization is not viable: par-
asites kill the system when started with a random mixture of molecules. However, when the
duplex forming species are allowed to self-organize in a banded configuration (see fig 2) before
the parasites are introduced, the system survives, and in fact is extremely resilient. Unlike all
previous systems parasites never gain a numerical advantage they are expelled in relatively
short time, and the system becomes non-invadable for continuously created parasites (of the
type tested in the single RNA system). The following points cause this resilience:
1. if ligation is not immediately lost when parasites are created as mutants of the replicase,

they very effectively destroy their own environment, and they can never invade. To study
the system further ligation was set artificially to zero in the newly created parasites.

2. the spatial configuration: parasites are prone to lose the interface between the two RNA
populations, and only there are duplex replicases formed; increase of catalysis of the par-
asite is therefore restricted.

3. inaccessibility to duplexes is enhanced when one of the RNA duplex forming populations
dominates the system; such dominance evolves.
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4. ligation probability evolves to minimal values to sustain the duplex forming species. This
minimal value cannot sustain parasites which are typically located less favorably

5. high diversity of replicases. Replicases most often replicate ’themselves’ and their comple-
ments, whereas the parasites have to rely on a variety of replicases. The evolved replicase
toward ’self’ is higher than to others, including parasites.

When the ligation probability is free to evolve the latter two mechanisms primarily cause
the extinction of the parasite population (see fig 2). If ligation probability of the replicase
subunits is fixed to a relatively high value, the other features are the primary cause of the
suppression (and periodic extinction) of the continuous invading parasites.

We should note however that the system, unlike all other systems tested cannot survive the
highest mutation rates (0.1024). This is because ligation probability is drifting to too low
values, i.e. the mutation rate is above the error threshold. If ligation probability is fixed at
.15 the system does survive with this high mutation rate, sustaining a continuous inflow of
strong parasites. Note that ligation is a strong ’altruistic’ trait (it prevents self-replication
and promotes replication of others). The indirect selection gives a relatively low selection
coefficient and therefore a lower information threshold.

Minimal Model: alternative attractors RNA Duplex formation
extinction of all. extinction of parasite resilience against parasites

0 1e+05 2e+05 3e+05
0

2000

4000

6000

8000

10000

Figure 2: Minimal model Mutation rate=.0032: left extinction, right parasite extinction, and catalysts
diversification. In both cases we show (1) space time plot, (colors indicate different genotypes), (2) population
numbers (black catalysts, red parasite, all genotypes summed) and (3) catalysis strength (color as in (2)).
Print interval 50 time steps.
Duplex formation Mutation rate=.0032, initial ligation probability=0.50. Snapshots of spatial patterns.
Color code: yellow and red, and blue and magenta are the plus and minus string of RNA-1 and RNA-2
respectively (genotypic variants within these categories not distinguished; white parasite plus and minus
string; black empty space. Upper left without parasite. Upper right with parasite (white): ligation=.30.
Lower left ligation probability fixed at 0.15. Lower right population sizes over time, mutation rate 0.004;
initial ligation probability 0.50. Parasites are expelled because ligation probability evolves to low values.
Black shaded area indicates maximum ligation strength in population (*200); minimum ligation evolves
to around 2. The bands which increase to a maximum (red,blue and yellow,brown) are the oscillating
populations of the RNA pairs forming the replicase. The 2 lower bands which initial increase and then die
out are the initial and mutant parasites. Notice that the latter die out when maximum ligation reaches its
equilibrium value, but the average ligation strength still decreases slightly. Later sporadic evasions (white
dots at the bottom) use locally occurring near above average ligating replicases.

Comparing the different interaction networks studied we note that the two recurring mechanisms
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over evolutionary time by which replicases can ’defend’ themselves against co-evolving parasites are:
(1) patch level selection causing one or more species to slow down the increase (or even decreasing)
the amount of catalysis which it gets, so that the patch it inhabits becomes less invadable, and
(2) population level diversity of the replicases, so that it becomes harder for the parasite to co-
evolve with all of them. Their availability and their usage depends on the system architecture and
other evolutionary constraints. Our experiments suggest that complementary replication by itself
protects the system from parasites, and that the more complex systems have more evolutionary
leeway to enhance persistence.

3.1 Conclusion: stable cooperation is space

The series of paradigm systems discussed above demonstrate again (like e.g. Boerlijst and Hogeweg
1991, Hogeweg 1994, McCaskill et al 2001, Czaran and Szathmary 2000) the lowered vulnerability
of cooperative interactions to parasites in spatially extended systems. We extended the previous
studies by examining long term evolution and comparing interaction architectures . This compari-
son shows that the complementary replication of RNA increases its eco-evolutionary potential. In
the case of duplex formation, the resulting spatial structure is particular effective in ’marginalizing’
parasites, once it is established.

McCaskill et al (2001) studied the ecological stability of the minimal model analytically, and demon-
strated its persistence in a infinite dimensional infinite size small patch model. They argued that
stochastic effects, rather than spatial pattern formation are responsible for the persistence. This
holds for the minimal model in ecological time. In evolutionary time ’who meets whom’ becomes
important, and therewith spatial separation, and the protective shield interaction partners may
create.

Our experiments highlight the importance of mutation rates. By studying prior defined functional
lineages, we can easily distinguish functional diversity and mutational diversity in the system. The
results show that increase in diversity of the catalytic specificity in the population eliminates in
evolutionary time parasitic lineages. The parasites have to cope with more diversity, and may be
unable to maintain high catalytic strength relative to enough encountered interaction partners.
This is an information threshold like phenomenon.

4 Vesicles and higher order selection

In contrast to the previous section, in which multiple levels of selection arose automatically due to
spatial pattern formation, in this section we examine what imposed new levels of selection can do
for information integration in early evolution. To this end we re-examine the stochastic corrector
model as first defined by Szathmary and Demeter (1987) and further studied by Grey et al 1995.
Our models differ from those studied earlier in this context and in the context of ’group selection’
(Wilson 1975) in the following ways:
• We study a spatial version of the model, both with respect to molecular dynamics and with

respect to vesicle dynamics
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• We include vesicle dynamics instead of assuming chemostat condition (Szathmary and Demeter
1987) or potential unlimited growth (Grey et al 1995)

• in the model there is a mutual dependence of vesicle dynamics and molecular dynamics
• we study the classical problem of the information threshold for non-catalytic self-replicating

molecules. (Note that the studies cited above studied catalytically interacting molecules).
Like many previous authors we simplify the molecular replicator model by distinguishing only
between the master sequence (x) and all the rest (y), assuming that master sequences mutate to the
rest group, but not vice versa. As elucidated by Altmeyer and McCaskill (2001), local interactions
in space lower the information threshold relative to that of a well mixed system, due to limited
diffusivity: the master sequence is more likely to compete with other master sequences for space due
to clustering. This lowers the effective selection coefficient and therewith the information threshold,
for our parameters, from an error rate of µ = .375 in the ODE mean field model 2 to µ = .33 in the
corresponding full spatial model without compartments. Note that in the discrete, finite, spatial
model with infinite diffusion applied in between reaction steps, the measured information threshold
is identical to the ODE mean field model. Thus, not the discreteness or the local competition but
the limited diffusion and pattern formation lowers the information threshold.

Moreover, it is well known that small population size lowers the information threshold as well.
The finite population effect is known as Müllers Ratchet3. For recent treatments see Campos
and Fontanari (1999) and van Nimwegen and Crutchfield (2000) Compartments lower both the
diffusivity and the population size. We study whether the stochastic corrector effect can over-
compensate these negative effects and increase the error rate at which the master sequence can be
maintained. We take the non-compartment spatial information threshold as reference.

4.1 Vesicle level selection

We fix the molecular level dynamics, using the following cellular automata rules:
• reaction step: if a patch is occupied it changes its state to empty with a probability d=.1; if

empty, it chooses one of 8 neighbors randomly; if the chosen patch is occupied the empty patch
is filled with its offspring with probability rx = .8 for master sequence and ry = .5 for mutant
sequence.

• diffusion: 1 step of Margolus diffusion (see Toffoli and Margolus 1987).
• vesicle levels dynamics as described below.
• iterate
We examine the following vesicle level selection protocols. Note that in all cases the fastest repli-
cating molecules favor the vesicles in which they live, i.e. there is no conflict between levels of
selection.

1. neutral model Vesicles act as ’passive compartments’, i.e. they do not ’recognize’ different types of
molecules. Vesicles division occurs when a certain molecular population size is reached. Because
of the faster replication rates of the master sequence, the compartments add a second level of

2x′ = rxqx(1− x− y)− dx; y′ = (ryy + rx(1− q)x(1− x− y)− dy with rx = .8ry = .5, d = .1
3Müller’s ratchet is traditionally considered in the context of the evolutionary fate of finite asexual populations

or non-recombining portions of the genome. However the ’meltdown’ of the population by too high mutation rates
relative to the population size is the same phenomenon as the information threshold for high mutation rates in infinite
population.
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positive selection to the master sequence. This model represents the best representation for the
question whether compartment alone can raise the information threshold. In other words, no
new ’function’ of the molecules is introduced alongside the introduction of the vesicles.

2. differential division model Division of vesicles depends on the population size of the master
sequence, rather than total population size. Decay of vesicles is independent of molecular content
(except when empty).

3. linear mortality model Decay rate of the vesicles depends linearly on the ratio of master sequence
and mutant sequence. Division depends on total population size.

4. step mortality model Only vesicles which have lost all master sequences decay. Division depends
on total population size.

A general mean field approximation of the vesicle dynamics, distinguishing between ’good vesicles’
X, which do contain master sequences (x > 0) and ’bad vesicles’ Y (in which x = 0) can be written
as:

X ′ = G(x , y)Q(x)XF (X,Y )−M(x)X −D(x , y)X

Y ′ = (gY + (1−Q(x))X)F (X,Y ) +M(x)Y − dY (1)

The maximal growth rate G(x , y) of the good vesicles depends on its composition, i.e. the number
of master and mutants it contains, whereas for the bad vesicles it is constant (g). The actual
growth rate of all vesicles is governed by a density dependent term (F (X,Y )), i.e. depends on
the available space. Transition rate from good vesicles to bad vesicles(maturation) depends on the
number of master sequences in the good vesicle (M(x)), as does ’vesicle mutation rate’ (1-Q(x)).
The decay term can be again a function of vesicle composition in the case of the good vesicles
(D(x, y)), whereas it is a constant for bad vesicles (d).

The selection regimes described above pose the the following parameter constraints: In all models
G(x , y) > g; In the differential division model g = 0; in the linear mortality model D(x , y) =
d− d ∗ x/(x+ y); in the step mortality model D(x , y) = 0; in all other cases D(x , y) = d.

Apart from the composition dependent functions instead of constants, this equation differs from
the standard simplified replicator equation in the fact that transition from X to Y occur during the
lifetime of the vesicle and not only at replication. We will refer to this process as ’maturation’.

4.2 Shifting the information threshold

An overview of the ability of the compartmentalization to shift the information threshold is given
fig 3 for each of the four selection regimes4

4caption of fig 3. Left column: Bifurcation diagrams on vesicle level parameters, DIVPOP, the molecular
population size required for vesicle division and vesicle death rate ( he indicated value is the death rate of the bad
vesicle, that of the good vesicles follows from the parameter constraints of the various models, as given in section 4.1).
Sequence level parameters are: replication rates rx = .8 and ry = .5; decay rate d = .1; and mutation rate µ = .33,
i.e. the mutation rate at the information threshold in the spatial model without vesicles. + indicates survival of the
master sequence, i.e. vesicle dynamics increases the information threshold; - indicates only mutant sequences survive
and * indicates extinction of all sequences (and vesicles).
Middle column: Frequency of master sequences in vesicles which do contain master sequences, against sequence
mutation rate µ. For each model we show two different values of vesicle size (DIVPOP) as indicated by D= in the
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4.2.1 compartments alone do not increase information threshold

The first column shows the parameter regions in which the information threshold of the vesicle
model exceeds that of the non-compartmentalized situation. We fix the molecular dynamics, and
use the mutation rate corresponding to the the information threshold in absence of vesicles (µ = .33)
and vary the two vesicle level parameters: the threshold molecular population size for vesicle division
(DIVPOP) and the vesicle mortality D; Note that changing these parameters has slightly different
meanings in the different models. DIVPOP refers to the total population (x+y) of sequences in a
vesicle in all models apart from the differential division model, where it refers to only the number of
master sequences x. Likewise in the step mortality model changing D affects only the bad vesicles,
whereas in the other cases it affects the good vesicles as well, in the linear mortality case in a
composition dependent fashion.

Parameter regions in which the master sequence persists (x > 0 and hence X > 0), only mutant
sequences persist (x = 0 ; y > 0 and hence X = 0 and Y > 0) and extinction of all sequences
(x , y , X, Y = 0) are indicated. All models in which the master sequence is recognized by the
vesicles have a parameter regime in which the master sequence persists, i.e. the vesicle level
dynamics increases the information threshold. However this is not the case for the neutral model,
which either maintains a population of bad vesicles or dies out.

We conclude that an extra function which ’comes for free’ is needed to make compartments a
feasible scenario for increasing the amount of information maintainable in the single molecules.
In other words an additional functional differentiation between the molecules is needed. This
functional differentiation increases the effective selection coefficient between the master sequence
and the mutants. In a certain sense the increase of the information threshold is therefore ’trivial’ as
the information threshold depends on the selection coefficient (compare Krakauer and Plotkin and
Krakauer and Sasaki (2002)). In the linear mortality model and the step mortality model this extra
selection is very direct as, together with the vesicles, mutant sequences are preferentially killed. If
in the non-compartment model, mutant sequences are killed off at a similar high rate, the resulting
error threshold is higher than that of the vesicle model.

4.2.2 vesicle extinction limits information threshold

The second column of fig 3 shows the traditional information threshold plots for the vesicle based
models, where we plot the ratio of master sequences maintained in the ’good vesicles’, against
mutation rate. We show the lines for three decay rates (low, medium, high, chosen so as to include
the maximum information threshold) and for two values of DIVPOP. We observe the following

figure near its maximum information threshold; For each DIVPOP we show three different death rates of the vesicles:
low (black) , middle (red) and high (green) , chosen so as to include the value for which the information threshold is
maximum. See right column for the decay values used. The dotted line denotes the frequency of master sequences in
the model without compartments. The X in the Neutral model indicates the information threshold in vesicles of size
80 without selection
Right column: Information threshold as function of vesicle death rate, for various values of vesicle size: Neutral
model DIVPOP=10,40,80; Differential division DIVPOP=5,10,15; Linear mortality model DIVPOP=10,20; and
Step mortality model DIVPOP=10,40,80. The vesicle death rates displayed in the middle column are indicated by L
(low), M (middle) and H (high).
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points:
1. In all cases there is an abrupt cutoff at a certain mutation rate. The cutoff corresponds to the

extinction of the good vesicles(see fig 6).
2. The number of master sequences in the good vesicle decreases with increased mutation rate but,

in particular in case of vesicles with low values of DIVPOP, this decrease is slower than in the
non-compartmentalized control.

3. At the cutoff point good vesicles are still quite good. Indeed extrapolating the lines beyond the
cutoff would yield a quite impressive improvement of the information threshold!.

4. The lines for different vesicle death rates are close to each other. In the step mortality model
they are strictly on top of each other, whereas in all other cases the lines are ordered according
to vesicle death rate. However, only in the linear mortality model do they diverge appreciably,
the highest death rates sustaining the most master sequences. In most other models the ordering
is the other way around and the differences are always very small.

5. However the information threshold, i.e. the mutation at which the cutoff occurs, clearly differs
depending on vesicle death rates, as is detailed in the rightmost column of the figure.

6. As expected, vesicles which contain larger molecular populations benefit less from the vesicle
dynamics, and the maximum information threshold is only slightly above the non-vesicle level.

4.2.3 maximum information threshold depends on rate of vesicle dynamics

In the rightmost column of fig 3 we plot the information threshold as a function of the death rate
of the vesicles. We observe:
1. a maximum information threshold occurs at intermediate death rates for all models except the

step mortality model, in which only vesicles without master sequences are killed.
2. at high vesicle death rates, the master sequences survive higher mutation rates in small vesicles

than in larger ones
3. however at low vesicle death rates the reverse is true: higher mutation rates are tolerated in the

larger vesicles; however the tolerated mutation rates are relatively low for those parameters.
The reversal (item 2,3 above) can be seen as the ’take-over’ of the vesicle dynamics, at higher vesicle
death rates, over the molecular dynamics with respect to the information threshold.

In the neutral model the maximum information threshold occurs in the ’molecular regime’, i.e.
larger vesicles are favored, and the information threshold remains below the non-compartmental
case. However also here vesicle level selection plays a role as the information threshold is higher
than without vesicle level selection: the X on the x axis represents the error threshold when vesicles
divide and die randomly, using a logistic density dependent division rate.

In all other models the maximum information threshold occurs in the ’vesicle regime’, and is higher
than in the model without vesicles. The shape of the curves can be explained largely in terms of
the vesicle level dynamics as discussed in the next section.

We conclude that the extend to which the information threshold can be shifted due to compart-
ments is very limited because of vesicle level dynamics. As mentioned above, in order to increase
the information threshold at all, the molecules with maximum replication rates, should in addi-
tion actively support the vesicle, either by increasing its survival (mortality models) or increasing
(here being required for) its division. Moreover, even if we accept such a lucky coincidence, the
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increase in mutation threshold is only slight (< 20%) except for the step mortality model with
a small within-vesicle population size. In the last case vesicle level selection can increase the se-
lection coefficient between the sequences very strongly by instantaneous death of the bad vesicles
and its entire molecular content. The vesicle death rates needed to allow a 50% increase in the
information threshold is equal to the molecular decay rates, which may be somewhat unreasonable
in natural conditions. Nevertheless, such a selection regime might be realizable in in vitro selection
experiments.

4.3 Interplay between molecular level and vesicle level dynamics

In this section we discuss the mechanisms and the dynamics which lead to the above described
behavior in more detail.

4.3.1 Vesicle level dynamics and the maximum maturation and information thresh-
old.

In order to get insight how vesicle level dynamics by itself can influence the information threshold,
we simplify equation (1) by assuming fixed parameters for growth rate, death rate and quality of
vesicle replication. In other words we assume that the composition of the vesicles does not change,
and/or does not influence their properties. Note that this is true by definition for the death rates
in all but the linear mortality model. Assuming moreover the most studied density dependent
dynamics (logistic growth)5 the equations can be written as:

X ′ = ggqX(1−X − Y )−mX − dgY

Y ′ = (gbY + (1− q)ggX)(1−X − Y ) +mX − dbY (2)

with gg, gb and dganddb the growth and death rates in good and bad vasicles, and q and m the
vesicle mutation and maturation rate. The parameter constraints for the different models are as
indicated above (neutral model gg > gb and dg = db ; differential division model gg > gb = 0 and
dg = db; step mortality model gg > gb and db > dg = 0; linear mortality modelg > gb anddb > dg)

In analogy with the information threshold in the standard replicator equation, we can solve these
equations for the maximum maturation rate (M) which can sustain good vesicles.

We plot this maximum tolerable maturation rate as a function of vesicle decay rate in fig 4. At
lower decay rates the maturation threshold depends primarily on the selection coefficient between
the two types of vesicles, whereas at high decay rates it simply depends on the growth minus
death rate. The overall shape of the curve is strikingly similar to that of the maximum observed
(tolerated) maturation rates as shown in the lower part of the figure. The simplified model nicely
predicts the occurrence and relative location of the maximum.

The limits on maturation rate in relation to growth and death rates also determines the limits on
the maximum tolerable mutation rate (information threshold) in the full model. The maturation

5in spatial models a parabolic dependence is more realistic but this does not influence the qualitative argument
we want to make

15



Maximum maturation rate as function of death rate

mean field approximation (ODE models)

full models

Neutral model Diff. div. model Lin. mort. model Step mort. model

Figure 4: Based on equation 2, and the parameter constraints for the various models the maximum tolerable
maturation rates can be computed, and are given by: Neutral model: M < (G(x, y)/g − 1) ∗ d; and M <
G(x, y) − d; Differential division model: M < G(x, y) ∗ (1 − X) ∗ d − d ∗ d)/(G(x, y) ∗ X + d); Linear
mortality model: M < (G(x, y)/g − 1) ∗ a ∗ d(x, y) and M < G(x, y) − d(x, y); Step mortality model
M < (G(x, y)/g) ∗ d and M < G(x, y). These functions are displayed using the following parameters:
G(x, y) = 0.1, g = 0.07, X = .001, a = 5. where dgoodvesicles = a ∗ dbadvesicles.
The lower panel plots observed maximal maturation rates as function of death rates for different values of
DIVPOP as in fig 3.

rate depends of course on both the mutation rate and the composition of the vesicles, which vary
in consort in the full model. Indeed the information threshold as function of vesicle death rate
has a similar shape, and in most cases the same location of the maximum, as the here depicted
maturation threshold (see fig 3).

However, unlike the simplified model the maximal growth rate of vesicles containing master se-
quences, depends on vesicle composition. When at higher vesicle death rates the maximum tolera-
ble maturation rate decreases, the maximum tolerable mutation rate (information threshold) does
so too. However, at lower mutation rate the vesicles contain more master sequences, which not only
decreases the maturation rate, but the better composition also changes the maximum growth rate
of the vesicles and therewith the allowable maturation rates. This explains the flatter peak in the
information threshold plot compared to the maturation threshold plot, i.e. the lower sensitivity of
the information threshold on vesicle decay rates.

For a quantitative treatment of the relation between population size, mutation rate and extinction
rates (but not growth rates) see Campos and Fontanari(1999). In the next section we detail
the dynamical interplay between the molecular level dynamics and the vesicles level dynamics in
response to mutation rates.
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Spatial pattern formation close to information threshold

Neutral model Diff. div. model Diff. div. model
at max. info.threshold at max. info. threshold high decay info threshold

Figure 5: Spatial configuration at sequence mutation rates .01 below the information threshold. White dots
represent master sequences, grey mutant sequences, darker gray vesicle walls. Left: Neutral model (d=.05;
µ = .17): the ’good’ vesicles (containing master sequences) are out-competed by ’bad’ vesicles (without
master sequences). Note the clumping of good vesicles. Middle: Differential division model (d=.02; µ = .41):
the good vesicles are surrounded by (non dividing) bad vesicle which they create through maturation. Thus,
despite much empty space net growth rate remains below maximum growth rate. Right: Differential division
model (d=.07; µ = .33): the high death rate produces a looser configuration in which vesicle competition
is lower, the vesicle size is large enough relative to the molecular population size and composition to realize
large net growth; the vesicles contain relatively many master sequences.

4.3.2 changes in vesicle dynamics due to mutation rate

The total population size of vesicles declines almost linearly with mutation rate. (fig 6). The decline
of the population size of good vesicles is steeper. The extinction of the good vesicles determines
the information threshold.

The molecular level dynamics percolate to the vesicle level through a change in the maximal growth
rate of the good vesicles, because of a change in their composition. At higher mutation rates the
the quality of good vesicles deteriorates in all models, although the ratio of master and mutant
molecules are kept above the non-vesicle average (see fig 3) In equilibrium, obviously the net growth
rate, the death rate and the maturation rate balance. The decrease in maximum growth rate is
compensated by decrease in vesicle population size. The decrease in vesicle population size entails
an increase in the size of the vesicles, which through competition are kept below the target size.
Expanding vesicles create empty space for the molecules, and therefore increase in net growth rate
of the molecules, and therewith increase the net growth rate of the vesicles, which depends on the
size of the molecular population which it contains.

Note that the decrease in vesicle population size thus does not create ’empty space’, but only
increases in vesicle size over a large range of mutation rates. We see that in this way net growth
rate, despite the deterioration of vesicle composition, increases to compensate for increased decay
rate (linear mortality model) and increased maturation rates and increased vesicle mutation rates,
which are caused by the deterioration of vesicle quality. Finally the process stops at the information
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threshold when the population of good vesicles dies out.

There are two different ’modes’ of extinction of the good vesicles: due to competition with bad
vesicles, or due to limitation of maximum growth rate. In the first case a population of bad vesicles
survive, in the latter case the system goes extinct because the maximum growth rate of bad vesicles
is always smaller than that of good vesicles. We discuss the neutral model and the differential divi-
sion model, both with small DIVPOP in detail to demonstrate how the various processes interrelate
in qualitatively similar, but quantitatively different manners in different circumstances. (see fig 6
and fig 5.).

Vesicle dynamics as function of mutation rate

Differential Division model Neutral model
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Figure 6: Various vesicle level properties are shown for the differential division model and the neutral model,
for the same parameters as plotted in fig 3, using the same color coding.
The upper left pictures show the decrease of the vesicle population as function of mutation rate: total
population, thin lines, and population of good vesicles, thick lines (if the lines are (almost) on top of each
other, dots are used). The upper right pictures show the accompanying increase in volume of the vesicles.
The lower right pictures show the (slight) increase in net growth rate of the vesicles as function of molecular
mutation rate, and the increase in maturation rate. The lower left pictures show the increase the stochastic
corrector effect at larger molecular mutation rates (and lower vesicle quality). The stochastic corrector
effect is expressed as: s = xd − xm (thick lines, main panel), s = xd − xa (thin lines, main panel) and
s = 1 − q, where xm denotes the faction of master sequences in the mother vesicle; xd the fraction is the
best daughter vesicle and xa the average fraction in the entire population. The vesicle level mutation rate is
G(x, y)(1−Q(x))F (X,Y ) (see eq.1) and denotes the rate of creation of a bad vesicle by the replication of a
good vesicle.

In the neutral model (DIVPOP=10) we note the following points:
• the maximal information threshold occurs for a vesicle death rate D=.05, for µ = 0.17, i.e. far

below the non-vesicle information threshold.
• We see in fig 6 that the increase in vesicle size is limited. This is due to crowding by bad vesicles,

(see fig 5).
• Therefore the deterioration of the good vesicles and the accompanying increased vesicle mutation
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and maturation rates, can be compensated only to a limited extent and the good vesicles die
out despite their still very good quality (see fig 3 and fig 5).

• In the latter figure we see moreover, that the competitive ability of the good vesicles is also
encumbered by a clustering of the good vesicles.

• At higher vesicle death rates (D=.16) much higher net vesicle growth rates can be accomplished
by (very) good vesicles, while bad vesicle go extinct. In that case volume increases steeply with
mutation rate.

• Because of the fast dynamics and high vesicle quality, maturation plays quantitatively no role
in this case.

• However vesicle level mutation occurs despite the high quality of the vesicles. This is because,
due to the fast dynamics, molecules are more uneven distributed within the vesicle.

In conclusion, increase in information threshold by vesicle dynamics is very limited due to weak
selection and spatial pattern formation.

In the differential division model with DIVPOP=5 (master sequences) we note the following points:

• The maximal information threshold occurs for a vesicle death rate D=.02, for µ = 0.41, i.e. well
above the non vesicle information threshold.

• Approaching the information threshold, the volume of the vesicles peaks sharply, (fig 6)
• Because the division criterion depends on the number of master sequences in the vesicle, this

number remains approximately constant for higher mutation rates, despite the decreasing ratio
of master sequences: the vesicles fill up with mutant sequences, i.e. the total population at
division increases with mutation rate (data not shown).

• At the maximum information threshold, despite the low total population of vesicles, and the large
amounts of empty space, the growth rates of the vesicles is still limited due to vesicle competition,
due to the clustering of bad vesicles around good ones which create them at relatively high rates
through both maturation and vesicle level mutation.(fig 5)

• At higher vesicle death rates, a looser configuration (fig 5) allows higher growth rates in vesicles
with on average the same number of master sequences, but less mutant sequences, so that the
molecules are packed less densely in vesicles of similar size, and can replicate faster.

• like in the neutral model, vesicle mutation rate peaks at fast vesicle dynamics because of uneven
molecule distribution (fig 6, fig 5)

The step mortality model resembles the differential division model in that bad vesicles cannot
survive at the maximum information threshold (indeed they die instantaneously), while the linear
mortality model resembles the neutral model in maintaining a mutant population.

In all models spatial pattern formation (clumping), both at the molecular level, and at the vesicle
level influences the dynamics appreciably. It decreases effective selection at both levels, and causes
high competition even at very low population levels. However, clumping of molecules also causes
the vesicle mutation rate to increase sharply close to the information threshold. Note that this
factor, although decreasing the survival of the good vesicles, contributes to the maintenance of
good vesicles by increasing the ratio of good molecules in its sister vesicle, i.e. contributes to the
’stochastic corrector mechanism’ which is the basis of all: without it, replication of good vesicles
to form good vesicles beyond the (vesicles size) information threshold would be impossible.

The role of the stochastic corrector mechanism in our models is discussed in the next section.
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4.3.3 Stochastic corrector dynamics and vesicle composition

The original stochastic corrector model as proposed by Szathmary and Demeter (1987) was based
on random allocation of molecules to the daughter vesicles. In our spatial model, the daughter
vesicles inherit the molecules in their ’half’ of the mother vesicle. Thus the amount of asymmetric
division depends not only on stochasticity but also on the spatial dynamics within the vesicles,
as mentioned above. We measured the degree of ’correction’, i.e. the increase of the frequency
of master sequences in the vesicles by unequal division, as (1) ’net stochastic correction’: the
difference of the frequency of the master sequence in the best daughter vesicle and in its mother
vesicle, averaged over all vesicle divisions and (2) ’average stochastic correction’: the difference of
the frequency of the master sequence in the best daughter vesicle and the average frequency thereof
in the population of vesicles, again averages over all vesicle division event. (3) the vesicle ’mutation
rate’, i.e. the frequency that a bad vesicle is created by vesicle division. They are depicted in fig 6,
lower left panels for the differential division and the neutral model.

For the differential division model we note the following points:
• The net stochastic correction and the vesicle mutation increase with increased replicator muta-

tion rate. This is to be expected because of smaller population sizes of the master sequences.
• These measures are higher for higher death rates at corresponding mutation rates This is caused

by unequal distribution of the master sequences in larger vesicles, and with faster dynamics.
• In contrast the average stochastic correction is lower for faster vesicle dynamics at corresponding

mutation rates, and starts to decrease close to the information threshold.
• Likewise the average quality of the good vesicles is slightly higher for slow vesicle dynamics than

for fast vesicle dynamics for the case discussed here (DIVPOP=5). This is however, not the case
for larger vesicle content (DIVPOP=15). (fig 3)

• In all cases these differences, although slight, are consistent over all death rates indicated in fig
3, right column.

This reversal of the influence of vesicle death rate on the average stochastic correction and vesicle
quality on the one hand and the net stochastic correction on the other hand, can be understood
by realizing that asymmetric division leads only to a better population average if followed up by a
faster growth of the better one and/or a faster decay of the other. This ’follow up’ is less for the
faster death rates because of the faster dynamics: a vesicles tends to die before it matures, and
growth is more dependent on opportunity (i.e. available space) than on vesicle quality. Both affect
average vesicle quality, and because maturation plays a more important role for small populations
of master sequences, this leads to the higher vesicle quality in the case of low values of DIVPOP,
but not for higher values of DIVPOP. Decrease of composition related differential growth due to
high death rates causes the reversal of the dependence on vesicle death rate of the net and the
average stochastic corrector as well as the decline of the average stochastic correction close to the
information threshold where net growth rate and volume effects peak.

In the other models similar effects occur: high death rates increase net stochastic correction and
vesicle mutation, but decreases selection because of decreased differential growth and maturation,
which affect average vesicle quality and average stochastic correction. Note, however that vesicle
growth is most closely coupled to vesicle quality in the differential division model. Therefore, in the
other models average stochastic correction is similar (Neutral model, fig 6) or below (differential
mortality models) net stochastic correction. Vesicle division of below average quality good vesicles
contributes relative much to net stochastic correction (as seen in the increase of net stochastic
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correction at higher mutation rates, cq lower vesicle quality), but can actually decrease average
stochastic correction.

We conclude that in general increased death rate has opposite effects on the asymmetric division
part and the follow up part of the stochastic corrector mechanism. The average vesicle quality
is therefore almost independent of the death rate. Nevertheless the information threshold does
depend on the vesicle death rate due to vesicle level dynamics as explained above.

4.4 discussion and conclusions

The main conclusions of this analysis are:
• Compartmentalization cannot counteract the negative effects of population size and diffusivity

unless the master sequence confers an essential benefit to the vesicles. (Note that in the original
formulation of the stochastic corrector model (Szathmary and Demeter 1987) obligatory mutu-
alistic interaction between the molecules, and therewith strong selection, were indeed assumed).

• The vesicle population dynamics largely limits the information threshold. This is not observable
when chemostat conditions (Szathmary and Demeter 1987), are assumed.

• It is interesting to note that whereas the rate of vesicle dynamics has an important influence
on the information threshold, it does not, or barely and in opposite direction, influence the
composition of the the vesicles at lower mutation rates.

• Benefits of larger molecule population size in the vesicles outweigh the reduced benefits from the
stochastic corrector mechanism at small rates of vesicle dynamics and/or when the vesicles confer
little or no additional selection benefit beyond what is directly inherited from the molecules.

• We find that because close to the information threshold the number of master sequences is
small anyhow, the stochastic corrector mechanism always does incur some benefit, also to larger
vesicles.

We should note that we choose the selection regimes as extreme cases, not because of their realism,
or their optimality. Indeed the performance of the model could be slightly improved by choosing
an optimal division regime, or an optimal death rate regime.

It is open to discussion (or taste), whether our results mean compartments ’work’ as a way to
overcome the information threshold, or mean that the constraints are too severe to make it an
attractive hypothesis. In particular the requirement of assuming ’function for free’ is rather un-
satisfactory, although multi-functionality is prevalent in biological systems. The answer depends
partly on the availability of alternative hypothesis. The eco-evolutionary stability of RNA replicase
based dynamics in space, discussed above provides such a potential alternative. In future work
we will examine RNA replicase based version of the vesicle model to compare the performance of
vesicles and large scale spatial pattern formation.

We should note that we used spatial dynamics throughout this paper. We think it is a more natural
choice than well mixed systems. However, as mentioned above, doing so the reference information
is lowered by ca 10%. Note that, compared to the information threshold in well mixed conditions,
the linear mortality model as studied here does not surpass it. Note also that, as described above,
spatial clumping of vesicles also has a negative effect on the extent that vesicle level selection can
increase the information threshold, because it limits the growth rate of the vesicles. The mixing
of the molecules within the vesicles has both positive effects by increasing the effective selection
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between master sequence and mutants, and better using available space, and negative effects, by
decreasing the unequal division, and therewith the stochastic corrector mechanism. In the few
experiments we performed the former outweigh the latter effects. Nevertheless, improvement of the
(internally, but not externally) mixed vesicle model relative to the mixed non vesicle model was
always less than the improvement of the spatial vesicle model relative to the spatial non vesicle
model.

The question of the effectives of the vesicle model in relation to the information threshold may
be asked also the other way around: when vesicles arise and out-compete free living molecules (as
they apparently did), do they limit the information threshold because of size and diffusivity effects?
For this question, our results show that this is not the case, provided that the selection coefficient
between faster replicator molecules and slower replicating molecules is enhanced at the vesicle level.

5 Discussion and Conclusions

In this paper we discussed spatial models of prebiotic evolution. We studied the fundamental ques-
tion of information accumulation through Darwinian selection. We have shown that incorporation
of higher levels of selection may alleviate Eigen’s paradox to a certain extend. Higher levels of
selection arise automatically in spatial models in the form of spatial pattern formation. This may
either help or hinder information accumulation. We have demonstrated that in particular in RNA
based models spatial pattern formation of replicases and their ’dependents’ can co-evolve indefinite,
without destruction of the replicase by being over exploited by parasites. This is in particular true
in the case of duplex formation, as we have seen.

The compartment model we introduced imposes new levels of selection (the compartments) rather
than generate them. The model we presented in this paper takes an intermediate position between
classical models studying the compartmental benefits for information accumulation, in which the
mutual interaction between the molecular level and the compartment level is limited and predefined,
and more recent models which study vesicle formation as a self-organizing process of interacting
replicating and hydrophobic and hydrophilic molecules (Ono and Ikegami, 2002, Breyer et al 1998).
This enables us to examine both a wide range of potential interactions of the levels, subject to
constraints intrinsic to the fact that the dynamics of the levels are tightly coupled, as explained
above. We have shown that the forces which determine inter-vesicle dynamics and intra-vesicle
dynamics are tightly interwoven. This leads to relative homestasis of some variables, e.g. the
composition of the vesicles despite changing vesicle death rates, through adjustments of other
variable, e.g. volume and population size of vesicles, and degree of ’stochastic correction’.

The vesicle model includes the spatial replicator model as one of its layers, and is therefore ideally
suitable to compare compartments to other mechanisms of multilevel selection. We should note
however, that in other aspects we have discussed evolution from quite different perspectives in the
two models we presented. By studying the classical formulation of the information threshold in the
vesicle model, we have assumed that there is a unique sequence which performs a certain function,
here replicate itself, best. We studied not whether such a sequence will be found through evolution,
but whether it can be maintained, once it has come about ’by accident’. All its mutants do perform
this function as well, but less efficiently.
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In the spatial pattern formation model we assumed likewise that all offspring of a certain population
could perform a similar function, but considered improvements of the function as well. Thus we
studied a phenotypic rather than a genotypic information threshold ( Huynen et al 1996). We
incorporated an unlimited number of different variants, instead of assuming an average population
of mutants. Indeed, the ensuing diversity of the populations proved a determining factor for the
eco-evolutionary stability of the interaction structures studied. In this context a process akin to the
information threshold gets an other image, as by limiting the efficiency of the parasite populations,
it can maintain a viable system.

In future work we will further study information accumulation in vesicle based models. We need to
look at interacting molecules - using similar interaction structures as those studied in non-vesicle
based systems in this paper, and indeed as those studied in the initial formulation of the stochastic
corrector model. The aim will be to look at information accumulation from a truly multilevel
perspective, the central question being how information/diversity at different levels interrelate.
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