Eco-evolutionary dynamics: multilevel evolution
Last time

Overcoming information threshold?

first failed attempt: Hypercycles

Switch to invasion dynamics

“Everything” different in CA vs ODE
increased resistance to parasites,
pos selection for giving catalysis
no once only selection

HOWEVER

Contrived initial conditions
(multiple species/ specific catalytic interactions

NOT resistant to ongoing mutations:
loss of spirals

BUT
Multilevel evolution

- CA Universe: (cf. Crutchfield, Wolfram)
 Micro \rightarrow Macro ($\ldots \rightarrow \ldots \rightarrow \ldots$ etc.)
 STATIC (simple) 'rockbottom'

- BUT: In evolving systems also Macro \rightarrow Micro:

 ![Diagram](image)

 Figure 1: Relation between local interactions and spatial pattern formation in eco evolutionary models

 lowest level
 does not make sense except in the light of higher level processes

 Emerging higher level Darwinian Entities (waves)
Ecosystem based information conservation beyond hypercycle model

Ongoing mutations instead of invasion dynamics

Non-cyclic interaction structure.
Evolution of Replicases (and parasites)

Evolve k_{ai}

well mixed: extinction

in space: minimization of k_{ai}

Role of parasites

evolve parasites in fixed replicase population

evolve replicases with different fixed parasitic population

coevolve replicases and parasites

Takeuchi & Hogeweg 2009; Colizzi & Hogeweg 2016
Evolving parasite strength
emerging higher level of "Darwinian entities"

Minimal replicator system
with parasitic L’s
replicated when unfolded
'functional' when folded

\[
\begin{align*}
\dot{R} &= -2k_R R^2 + [2(1-k_R) + 3\kappa \theta + 2d]C_R - k_L RL \\
&\quad + [(1-k_L) + \kappa \theta + d]C_L - dR, \\
\dot{L} &= -k_L(1-l)RL + [(1-k_L) + 2\kappa \theta + d]C_L - dL, \quad (2) \\
\dot{C}_R &= k_R R^2 - [(1-k_R) + \kappa \theta]C_R - 2dC_R, \\
\dot{C}_L &= k_L(1-l)RL - [(1-k_L) + \kappa \theta]C_L - 2dC_L,
\end{align*}
\]

Takeuchi & Hogeweg 2009
Classical problem

ODE model of RP system

evolutionary extinction (increase of k_L and decrease of l)

\[
\begin{align*}
\dot{R} &= -2k_R R^2 + [2(1 - k_R) + 3\kappa \theta + 2d] C_R - k_L R L \\
&\quad + [(1 - k_L) + \kappa \theta + d] C_L - d R, \\
\dot{L} &= -k_L (1 - l) R L + [(1 - k_L) + 2\kappa \theta + d] C_L - d L, \quad (2) \\
\dot{C}_R &= k_R R^2 - [(1 - k_R) + \kappa \theta] C_R - 2d C_R, \\
\dot{C}_L &= k_L (1 - l) R L - [(1 - k_L) + \kappa \theta] C_L - 2d C_L,
\end{align*}
\]

\[k_R = .6\]

intrinsic advantage of parasite (L)
CA model of RP system
evolutionary stable (long transient)

Asynchronous CA choose random patch and random NB
perform reaction or diffusion
reaction: (complex formation (coupling 2 gp),
replication and decay)
with prob. according to
individual (evolving) parameters
of parasites: K_l and l
long term evolution: towards smaller waves
Long term evolution (parameters)
emergent 'trade-off' k_L and l
Maximizing l: potential 'new' function

Why?
evolution of higher level entities
The waves of replicase and parasites are higher level “Darwinian” entities

Birth
Maturation
Death
Mutation
Selection
Competing

Maximizing birth rate

$K_L = 1$
Larger K_L and l increase birthrate of waves
analysis of transient in ODE (for evolved parameters)
evolutionary attractor
at “edge of chaos” (“border of order”)
2 levels of Darwinian selection

Wave level evolution

- Waves: long lived -
 (death not by parasites but by collision)
- Maximize Birthrate + growth rate of newborns
- Birthrate higher for high l ('escape')
- However higher birthrate → more (smaller) waves
- → increase collision! (= deathrate of waves))

Individual level evolution

- Within waves: parasites evolve towards 'nastiness' (low l)
- However viability maintained →
 "prudent" parasites
- because of higher level selection; which also
- 'frees' parasites to do other things (be folded)

through parasites

evolution of novel functionality
Evolution of replicases in RP system
Strong parasites lead to strong replicases

The model

\[
\begin{align*}
X_i + X_j & \xrightleftharpoons[k_{\text{diss}}]{k_{\alpha_i}} C_{X_jX_i} \xrightarrow[\rho,\theta]{\rho,\theta} 2X_j + X_i \\
X_i + P & \xrightleftharpoons[k_{\text{diss}}]{\beta \cdot k_{\alpha_i}} C_{P_0X} \xrightarrow[\rho,\theta]{\rho,\theta} 2P + X_i
\end{align*}
\]

Colizzi and Hogeweg Plos Comp Biol 2016
Phase transition and bistability
maximizing birth rate of waves OR
maximizing invasion rate of empty space
coevolution of replication \((k_i) \) and parasite strength \(\beta \)
for different time in complex
(a) Graph showing Parasites, β, and Replicators, k_a, against Δt_{repl}.

(b) Table and images showing changes in Δt_{repl}, with corresponding k_a, β, and visual representations.

- Δt_{repl}: 0, 1.5, 2.5, 4.5
- Repl. k_a: various values indicated
- Par. β: various visual representations

色度準拠カラーバー: 0 から 2 までのレベルを示しています。
coevolution of replication (k_i) and parasite strength β
for different time in complex : timeplots

Δt_{repl}

<table>
<thead>
<tr>
<th>0</th>
<th>1.5</th>
<th>2.5</th>
<th>4.5</th>
</tr>
</thead>
</table>

κ_β

Pop. size

Time [AUT]*10^5
$\Delta T_{repl} = 0$

“Ghost” attractor (bistability)
Speciation: From replicases only to replicases and parasites
Disruptions or cost (duration) of replication
Because of wave-level selection
Parasites enhance replication potential

Bistability:
maximizing birth rate of waves vs maximizing wave stability
minimizing 'altruism' vs maximizing invasion rate

BUT:

limited diffusion
Emerging higher level Darwinian Entities (waves)

in minimal eco-evolutionary replicator RP model:
 waves emerge because of parasites
waves as evolving entities (birth, death, mutation, selection)
 emergent trade-off
bistability; parasitism induces more catalysis
, potential of novel function
parasites emerge in disturbed environments
and when giving catalysis is costly enough