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Chapter 1

Introduction

About this reader
Welcome to the Computational Biology course. This course focuses on modeling biological systems as
the information processing systems that they are. The subject matter is intriguing, exhilarating, and
confounding all at the same time.

The purpose of this reader is to bundle the core subject matter of the course, so that you may test or
supplement your understanding of the subject matter covered in the course. The lectures are information-
dense, so repetition of some subjects might come in handy. To help you, this reader roughly follows the
course outline (it might even be a bit more elaborate on certain details). Be advised that the field of
computational biology is in flux, and new additions to the lectures may not (yet) be in the reader. The
sheets are available for study on the course website, and if concepts or examples are unclear, please do
not hesitate to ask: chances are that others are just as befuddled as you are.

Lastly, please make no mistake: this reader is not a replacement of the lectures and practicals, but
can be used as a complementary source of information, allowing you to reiterate the subjects at hand.
Together, the lectures, the practicals, and this written work by Dieter Stoker, should provide you with
plenty opportunity for the deepest solace: understanding.

This reader is not perfect. If you find any mistakes, please notify one of the teaching assistants (missing figure
legends, typo’s, etc. Anything is welcome!)
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Course introduction
Organisms are information networks. Living systems are complex information processing systems. There-
fore, their behaviour will often be counter-intuitive and strange. By using computational modeling, the
tangled mass of complexity can be unraveled and made partially understandable.

In this course, we therefore focus on dynamic bioinformatics. Bioinformatics is defined as the study
of information processes in biotic systems (Hesper and Hogeweg, 1970). There are two types, which can
be subdivided by their approach:

1. static bioinformatics: real data from life can contain patterns. In static bioinformatics, one
tries to reveal these patterns through data analyses, and by studying these patterns, one infers
and/or hypothesises about the biological mechanisms which might have generated the data. Think
of large-scale phylogenetic studies, or GWAS studies to pinpoint disease-causing genes.

2. dynamic bioinformatics: biological processes generate patterns. In dynamic bioinformatics, one
constructs a formal model in which basic biological assumptions (derived from observations) are
represented by some processes, and one can then study what patterns or results emerge from these
assumptions.

Thus, the two approaches of bioinformatics represent the two opposite orientations between patterns and
processes: static bioinformatics is to discover patterns and infer processes, while dynamic bioinformatics
is to generate patterns from assumed processes. Obviously, the two approaches are complementary
in bioinformatics, and thus for understanding information processes in biotic systems. Phylogenetic
bioinformatics work on extant species has shown the prevalence of whole-genome duplications (Edger and
Pires, 2009; Eric Schranz et al., 2012), and dynamical evolutionary modeling can investigate why these
are so prevalent(Cuypers and Hogeweg, 2012, 2014; Cuypers et al., 2017). Nevertheless, in the following,
we focus on the dynamic approach of bioinformatics because the static approach of bioinformatics is
taught in many other courses.

The main aim of the course is to answer the following two questions:

1. What is modeling, and how can we use modeling to gain insight into complex biotic
systems?

2. What exciting biological insights (theory) have been obtained from models?

Two central ideas in the course will be models++ and results++. models++ is when certain be-
haviours of a system happen in many different modeling frameworks. For example, you will be intro-
duced to models with emergent and with imposed higher levels of selection (do not fret, these concepts
will become clear in time), and we will see how these concepts are independent of the modeling formal-
ism. Results ++ is somewhat harder to define. The gist is that throughout the course, we often work
with minimal assumptions and see what happens in a model, with the intent of explaining a certain
phenomenon. Surprisingly, however, we often find much more interesting phenomena in the model than
we initially set out to achieve, and these findings often match or explain real-world phenomena. This is
results ++: when a model shows surprising, broadly applicable, or deeper unforeseen results that turn
out to be very relevant to the modeled system, but which are most often not preconceived. Perhaps, at
the moment, these concepts will not mean much to you. Bear them in mind throughout the course, and
when concepts and the models supporting them are discussed, ask yourself whether they hold in different
model frameworks (models ++) and what the unexpected, exciting deeper findings were (results ++).

To appreciate the power of modeling, and the strengths and weaknesses of different modeling approaches,
we will start the course by going over various modeling formalisms: archetypal systems that can be
used to model biotic processes. These topics are abstract, but before we can meaningfully describe
biological systems, we need to know what modeling choices we have, and how they compare to each
other. Thereafter, we will use these modeling systems to investigate diverse biological systems and
processes, from the origin and first steps of life to animal behaviour and ecosystem dynamics.

The intuitive work flow in biology is as follows: observation of an interesting phenomenon → formulation
of a hypothesis → testing of this hypothesis. In most of the work discussed in this course, we take a
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different approach: we build a model with minimal assumptions, and see whether these assumptions are
sufficient to generate the behaviour. If not, we investigate what parameters/assumptions could. This
allows for a process of ’debugging’ of assumptions. If we see an interesting pattern in nature, for
example that a specific plant species only occurs at a specific locations, we intuitively hypothesise that
there must be a reason for this. Perhaps it is better at retaining moisture or gathering key nutrients
in such an environment. In a model, conversely, we might discover that if we initialise several plant
species with equal fitness, and allow growth and random dispersal in space, plant species will dominate
in specific areas solely due to this random dispersal and following growth: where the traditional approach
immediately seeks to explain a pattern, modeling allows one to discover that no explanation is necessary.

What is biology about?
What is the defining characteristic of biology? That is its multi-level nature or emergence: structures,
patterns, and/or behaviours arise which are not predefined, persist for some time, and operate at different
space-/time-scales. In models, we will often refer to these phenomena as mesoscale patterns, having
their own dynamics and needing new words and concepts to describe them.

Biology encompasses many levels. It starts from the level of nucleotides and goes up to genes, proteins,
protein complexes, gene regulatory networks, metabolic networks, cells, tissues, organs, organisms, and
ecosystems. An organism is highly complex, and the impact of a change in a lower level (a mutation
on the DNA) is highly non-linear (one mutation can completely alter an organism’s phenotype, or do
nothing at all!). Additionally, the system itself and all its regulation is evolved. Evolution has made and
optimised the mapping from the DNA, to the phenotype, to the organism. This is not easily incorporated
into models, but this multi-level operation is a core concept in biology. A question that arises and we
must aim to answer is: how is it that, despite this extreme upscaling of effects, this extreme sensitivity,
there is still enough robustness in biological systems such that they generally function quite well?

We thus study biological systems as multi-level systems and see what happens in the interactions between
multiple levels. We will happen upon some unexpected effects that we would not have seen or understood
if it were not for this (multi-level) modeling. We focus on information and its patterns:

1. information processing

2. information storage

3. information transmission

4. information accumulation

All this over multiple levels of organisation (from genomes to cells to organisms to ecosystems) and over
multiple timescales. Think of the information processing from DNA to RNA to proteins, and up to the
whole organism. Or think of how the DNA of an extant organism is an accumulation of information of
a huge amount of past selection pressures on that organism and its forebears. We will ask the following
questions in our (multi-level) modeling:

1. Given known (or assumed) interactions at the micro level, what are the (counterin-
tuitive) consequences?

2. Given simple local interactions, what complex behaviour does this generate in the
system?

Other names for these types of approaches are systems biology, biocomplexity studies, and theoretical
biology. We will focus on specific biological examples, and gain general insight into multi-level processes
from them. We will see several examples during the course where researchers seeking general insights
from the get-go, who therefore investigated very general models, actually reached wrong conclusions.

After introducing modeling formalisms and concepts that these generate such as mesoscale patterns,
we will study how space and population dynamics generate multi-level evolutionary processes. In
the process, we will study the information threshold, spatial pattern formation and (resultant)
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new levels of selection, genotype-phenotype mapping, evolutionary dynamics, neutrality
and robustness, long-term information integration, and evolution of evolvability. After all is
said and done, we will discuss some special examples that show the (explanative) power of multi-level
modeling and/or how failing to account for multiple levels occludes correct conclusions on the workings
of biotic systems.
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Chapter 2

Modeling formalisms

What is a model: finite-state machines (FSM)
Models are caricatures

Given the complexity of biotic systems, drastic simplification for modeling purposes is needed and de-
sirable. However, it is important to know what can and cannot be learned from models with their
limitations and simplifications.

To truly understand a process, one needs multiple points of view. Different model types (caricatures) can
be combined to arrive at a more holistic understanding of the underlying biological process. If certain
emergent behaviours pop up in different model formalisms, that is a large clue that this is a true and
important behaviour. Modeling is thinking in the most interesting simplification(s) (Manjarrez, 2011).

What you should take away from the sections below is -besides an understanding of the different model
formalisms- that every type of model makes some assumptions to make modeling feasible. The best
model of the world is the world, but we model to gain understanding about specific parts of it, with
simplifying assumptions. Hence, every type of model is but a caricature of reality, and one should use
different approaches to see whether the results are not just a consequence of the particular caricature
you are looking at and/or reason carefully about which simplifying assumptions are justified or not for
your use case.

A finite state machine: a prototype model

A finite state machine (FSM) is a model that has a set of inputs (I), a set of states (which is everything
that is necessary to generate the next state from the inputs) (S), a set of outputs (think of behaviours
or signals based on inputs and internal feelings/motivation) (O), a next state function (given that you
are in a certain state, and have certain inputs, what is your next state? The next state function defines
this) (NSF), and a next output function (if you are fed, food input should give no output. If you are
hungry, food input should give feeding behaviour as an output) (NOF).

We denote such an FSM by <I,S,O,NSF,NOF>. As the name suggests, the number of states N must
be a finite number. The state of the system is defined as all internal information of the system that we
need to uniquely determine the next state and the next output. The NSF specifies how a set of inputs
and current state leads to the next state. A NSF can be defined by a transition table which specifies
the next state for all possible combinations of inputs and states. If an NSF is defined, the NSF should
uniquely determine which state an FSM takes in the ”next time” given the current state and input of the
FSM. Thus, an FSM is deterministic, and has a unique next state function: given a current state,
and inputs, there is always one and only one next state to go to. Similarly, a NOF specifies the next
output for all possible sets of input and state. This is also defined by a table, and therewith, one can
infer which output an FSM emits in the next time given the current state and input of the FSM.
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Not all FSMs have all five variables. input-output systems have only <I, O, NOF>. Thus, no internal
state comes in to play, but rather, the system is only dependent on inputs for it output. FSMs can also
be composed of <I, S, O, NOF>, which are input-output systems with memory. Let us model a
pendulum system as a FSM to see how the components an FSM needs to have vary according to the
system under inspection.

A pendulum is normally at rest (0). At that point, nothing happens. We call this state the attractor:
a state or set of states that the system eventually goes to and from which it does not leave (without
external input). If we swing the pendulum outwards by a certain amount initially (1) and then measure
the deviation as a response to this input after a set time (2), we can use a simple input-output system. We
don’t need internal states, because the input leads (via a next-state function that invokes basic physics) to
the output. (Figure 2.1, left). We can also think of a variation: we could deviate the pendulum outwards
by a certain amount (1), wait a set time, then take that time point as the input (2), and calculate the
output (3). Now, a simple input-output system does not suffice: we need the angular momentum of the
pendulum at T = 0 together with the input to calculate the output. (Figure 2.1, right). Alternatively,
you could think of deviating the pendulum and giving it a small push. You would then need to know
both the deviation and the force of the initial push (input and state). Thus, the components an FSM
needs are not intrinsic characteristics of the system under concern, but depend on what the experimental
set-up is. Interestingly, most behavioural and learning experiments are set up as input-output systems in
an attempt to control for variation between individuals, i.e. the role of the state (memory) is minimised.

Figure 2.1: A pendulum illustrates an input-output system without (left) and with (right) memory.
The internal state (angular momentum) is necessary to accurately model the movement of a pendulum,
thus a plain input-output system does not suffice.

Autonomous FSM

Let us now look at an autonomous system: a system whose next-state function is solely dependent on
its own state. Given that FSMs require unique next states, we can visualise this as a graph (Figure 2.2).
In it, nodes are connected by arrows. In this scheme, each state has only one outgoing edge (remember,
this is what it means to have a UNSF), but can have multiple incoming edges (multiple states can lead
to the same state).

When we consider this simple visual representation of an autonomous system, we can derive several
concepts that are important in modeling:

1. attractors, which we already defined as a subset of states that the system eventually goes to and
from which it does not leave.

2. multiple attractors: there can be several subsets of states that the system can go to and not
leave. (with a UNSF the system can converge, but not diverge)

3. Garden of Eden states: states in which the system can start, but to which it can never return.
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Figure 2.2: States of a system, visualised by nodes connected with arrows.

4. domains of attraction: the set of all states that eventually end up in a certain attractor.

FSMs must be fully specified: you must know for all possible combinations of states, inputs, and
outputs what the next state function and next output function are. Otherwise you cannot compute the
following time step. We use only such fully specified models in this course. In a complex system,
which most biological systems are, assigning all possible transitions (called the transition table) is time-
consuming and practically impossible. Just imagine making a huge table specifying for every combination
of protein levels, mRNA levels, chromatin state of the DNA, somatic mutations in the DNA, protein
phosphorylation levels, metabolite concentrations, etc. etc. what will happen. You would quickly need
to define more combinations than there are atoms in the universe: it just isn’t possible! Therefore, most
models take short-cuts with respect to fully specifying a unique next state function so that modeling
becomes a feasible endeavour. We will discuss some important short-cuts in the next section.

FSM short-cuts
Most or certainly many modeling in biology is done in terms of ODEs or MAPs. We assume some
familiarity with the subject. Here follows a short overview of ODEs and MAPs (a possible shortcut to
FSMs) to compare these classes of models to other model formalisms.

Ordered states (ODE, MAPs)
A possible shortcut to simplify the process of making a transition table for a FSM, is to use ordered
states. Real numbers or integers can be ordered from small to large. These states can represent population
densities, for example. Given these ordered states, one can define a next state function that maps numeric
input to numeric output: a mathematical function. This function takes a variable, which is substituted
by a state of the system, and must be valid for all numbers the model can take.

This is a huge short-cut. The transition table of a FSM is replaced by a (set of) numeric function(s).
This short-cut imposes a lot of restrictions on what the model can do (we will see this later), and the
number of variables is minimised. However, the short-cut allows us to relax the restriction that the
number of states needs to be finite: the next-state function (an arithmetic function) can be valid for an
infinite number of (real) values.

Two examples of this simplification are MAPs or difference equations and ordinary differential equa-
tions (ODEs). Both these simplifications are frequently used to model e.g. population sizes of animals.
They have a lot of assumptions in common. Both in MAPs and ODEs, the variables are all in terms
of the total population: we look at the change in the population. Both the model input and the model
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output are in terms of this population size. This assumes that all individuals in the population are
identical, and that they all have exactly the same environment, where they interact with everyone and
everything. Another way of saying this is that the system is well-mixed. These are rather important
assumptions, and we shall see later on that they have major effects on model outcomes. ODEs and
MAPs differ in their assumption on time. MAPs have discrete time steps, whereas ODEs use continuous
time. One might reasonably wonder what kind of behaviour these discrete time steps might cause, and
we will discuss this in the following section.

MAPs are of the form Xt+1 = f(Xt). As an example, consider yearly population growth of rabbits (N):

Nnextyear = r ·Nthisyear · (1−Nthisyear) (2.1)

Here, r is the so-called intrinsic growth rate, and the population of rabbits is prevented from growing
ad infinitum by having a negative effect on itself (e.g. resources are finite). As mentioned, this MAP has
discrete time, which in this case, is in steps of one year. If we observe this system, how many rabbits
do we find after sufficient time? For equation 2.1, depending on the value of r, the population of rabbits
never reach a stable steady-state, and continuously over- and undershoots the equilibrium (Figure 2.4).
In fact, for very high values of r, the system depicts deterministic chaos, and never visits the same
state twice! In other words: the system is highly sensitive to initial conditions.

Figure 2.3: Bifurcation diagram for the steady state population size in the logic MAP. For increasing
values of r, we first observe period doubling, followed by more period doubling, followed by deterministic
chaos.

ODEs use continuous time, which can either be solved analytically or are numerically approximated.
Consider again the population growth of rabbits:

dN

dt
= r ·N · (1−N) (2.2)

If you are unfamiliar with modeling ODEs for bi-
ological systems, we strongly recommend taking
a look at the Systems Biology course reader (ten
Tusscher, 2016), which introduces ODE analysis.

Do these ODEs, using the same equations as equation
2.1, also display deterministic chaos? The short answer
is: no. By using continuous rather than discrete time,
the system cannot “overshoot” the equilibrium without
first visiting all the states in between. Since the system
has a UNSF, there is no way to pass these in-between
states and do something else the second time. In other
words: trajectories cannot cross in ODEs. This argument extends if we add another variable (a 2D ODE
like the one given below), since also in a 2D plane there is no way for trajectories to keep “missing” one
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another. In 3D ODEs we can find deterministic chaos where trajectories follow non-periodic patterns,
such that a small change of state at a certain time leads to an arbitrarily large deviation after some
amount of time (see for example the Lorenz attractor).

Figure 2.4: The Lorenz system has a beautiful butterfly shaped attractor in which, after some time,
the two nearly identical initial conditions start to lead to very different outcomes. Also see animation
on YouTube.)

Let us now briefly discuss 2-dimensional ODE systems. These are systems in which 2 variables interact.
For example, consider a system of predators (N) and prey (R):

dR

dt
= R · a · (1− R

K
)−N ·R · b (2.3)

dN

dt
= N ·R · b−N · d (2.4)

In this system, the prey are born according to a growth rate (a), and die according to the number of
predators and the predator growth rate (b). It is assumed that predators grow equal to the amount of
prey they eat. The predator population grows due to hunting prey, and predators die with a certain
death rate (d) per individual. Lastly, K is the prey population size where prey birth rate is zero. In
analysing this sytem, we can look at the phase space or state space: a 2-d projection where we can see,
for every combination of R and N, what the system will do. In such a system one can draw nullclines:
sets of states where the change in (time derivative of) either variable is 0. For example, if the amount of
prey is equal to 0, the change in the amount of prey will always be 0. This is intuitive: both terms in the
prey ODE above have the term R in them, so without prey, there is no change in the amount of prey.
We often call these nullclines “trivial”, as they are not very informative on the dynamics of the system
we are interested in. When two of the non-trivial nullclines intersect, we might find more interesting
behaviour, as they could describe a point in the system where both prey and predator no longer change.
How do we go about determining this?

For every point on the phase space, we can look at the eigenvalues of the matrix of partial derivatives
at equilibrium (the Jacobian) to find out where the system will move for the next state. The Systems
Biology reader contains information on using a graphical representation of the Jacobian. Using this
information, we can draw a vector field: this field gives the direction of change at selected states
(Figure 2.5, left). We can also draw a trajectory: the set of states visited from a specific initial
condition. Attractors, in this case, are states or sets of states visited after enough time. These can be
either fixed points or limit cycles, where the system never reaches a stable point but cycles through the
same set of states ad infinitum. You can see from Figure 2.5 (right) that the trajectories all converge to
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Figure 2.5: Phase space of a simple ODE system (Lotka-Volterra). On the left, the vector field is
displayed, and on the right four trajectories are drawn towards the stable equilibrium.

the same attractor, independent of where they began. This is, in other words, a fixed attrator. Moreover,
there is a clear spiraling into the attractor, which is why this specific attractor is called a stable spiral.

A general overview of all ODE attractor types is given below (Figure 2.6). The following are stable
equilibria: stable node (3), stable spiral (6). Unstable equilibria also exist: unstable node (1), unstable
spiral (4), saddle point (2). By calculating two special values of the 2-dimensional matrix of the Jacobian
(the “trace” and the “determinant”), we can know a lot about the system.

Figure 2.6: Different types of attractors in ODEs

MAPs and ODEs summarised

MAPs and ODEs both deal with the complexity of a FSM by making the states ordered, and changing the
next state function into an arithmetic function. This also relaxes the need for finite states: in principle,
the function can be valid for any real number (which means there is also output for biologically nonsensical
states!). The difference between MAPs and ODEs is that MAPs have discrete time steps, whereas ODEs
use continuous time. This results in the possibility of 1-dimensional chaos for MAPs, whereas ODEs only
know chaos for 3 (or more) dimensions. The population is the primary variable (we saw a population
of prey and predators). There is a fixed set of variables: you define populations as the model entities,
and also observe what happens to these populations. All entities of such a population are therefore the
same, and all are assumed to have the same interactions and environment. These are big assumptions,
as we shall see presently.
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Cellular automata
The basics

We will now focus on an important type of short-cut to FMSs used in this course: Cellular Automata
(CAs) (historical background references: (Burks, 1970; Von Neumann et al., 1966; Guy and Conway,
1982). Remember, as discussed in section 2.1, we use short-cuts in modeling because the transition tables
for complex (biological) systems are near impossible to define. Here, the short-cut is in the decomposition
of the single large FSM into smaller sub-FSMs whose transition tables are easier to define. Intuitively,
you could think of a string of bits of length 50. Bits can be either 0 or 1. In that case, the possible states
of the system are 250 (Figure 2.7). Defining a transition rule for each of these states is a daunting task.
However, what if you instead focus on local interactions: make a rule that says that if either of your
neighbouring bits is 1, and you are 0, you also become 1. If you are 1, you become 0 if both neighbouring
bits are 0. If neither of these is the case: stay what you are. By considering only a subsystem (a bit
and its direct neighbour(s)), suddenly these rules are enough to define a simple behaviour for the whole
system!

Figure 2.7: Decomposition of a FSM into local units whose transition rules are much easier to define.
Made by Dieter Stoker.

We have now made a small FSM out of each bit in the bit string: every bit takes as its input the
states of the two neighbouring bits, and we have defined transition rules for the full string. Because
the smaller FSMs are connected, the result is a single large FSM. Thus, we have fully designed a FSM
without explicitly stating all rules in the transition table. Note that this is a significant short-cut: we
assume that local interactions are enough to define the behaviour of the system as a whole. If we think
of biological systems, however, this short-cut might well hold: rabbits in one location might not be
particularly affected by rabbits in a location 100 km away, but rather be affected mostly by their close
neighbours.

The example above describes a 1D CA, where each cell has a neighbour to its right and to its left. Next,
let us consider a 2D CA, a grid where all cells are influenced by the cells adjacent to them. We could
take different local neighbourhoods in this case, and two often-used ones are displayed in Figure ??: the
von Neumann neigbourhood (the 4 horizontally and vertically neighbouring grid points) and the
Moore neighbourhood (all 8 surrounding grid points). For the von Neumann neighbourhood in a
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binary CA (cells can be 0 or 1), the following holds: in one cell of the CA (one FSM) there are 25 = 32
possible transition rules (because you can define a specific rule for every combination of FSM state and
neighbouring state, there are 5 grid points under consideration (yourself and 4 neighbours) and every
FSM can be either 1 or 0). There are thus 225 possible transition tables (for every combination of states,
you can have the next state function return either 1 or 0). Contrast that with a field of 1000 by 1000
grid points where you would directly specify the transition table for the whole FSM: there would be 210

6

rules, which is a number much greater by far than the number of atoms in the universe!

Figure 2.8: Commonly used neighbourhoods for 2D CAs.

Thus, the assumption that the transition rules are the same for all grid points drastically lowers the
number of rules needed. Note that each grid point (FSM) requires input and is therefore non-autonomous.
However, when the whole grid is updated (next state function applied) synchronously (all grid points
updated at once) the full grid is an autonomous FSM (there are no inputs to the large-scale FSM). In
this shift from global rules to local rules, we introduce localness or the speed of light: specifying the
system based on local interactions ensures that perturbations need time to percolate through the field. A
perturbance in the upper right corner of a grid will not immediately be reflected in the lower left corner
of a grid. Why? Because interactions are only local, if an organism starts on the upper right of a field,
it can only reproduce in adjacent squares. Thus, for the organism to reach the lower left corner requires
some or many state updates, depending on the size of the field. There is therefore a maximum speed at
which change can happen. In our own universe, that is the speed of light.

Note that a CA thus works by having each grid point take input from its direct neighbourhood, and
on that basis going to a certain next state. In practice, this means that if you wish to define a system
with reproducing organisms, empty squares take their neighbourhood, see whether there are organisms
in that neighbourhood, and with a certain probability (growth rate of organisms) copy their neighbour’s
state. Thus, you always reason from the view of the grid point and how it itself changes, not how a
grid point changes its neighbouring grid point. This might not make much sense intuitively, but you will
practice this in the exercises.

We will now focus on three well-known examples of cellular automata. They have very simple local rules,
but exhibit complex behaviour.

Modulo Prime CA

The rules of Modulo Prime can be defined for any prime number p. The state of each grid point is one
of the numbers {0,1,2,...,(p-1)}. The CA is binary if p = 2, as it is for the following example. The next
state function (NSF) of a cell is defined as follows:

1. Compute the sum of all neighbours in the von Neumann (4-cell) neighbourhood

2. The next state is this sum modulo (%) p (modulo is what is left over after the maximum amount
of full divisions of a number by another, e.g. 10%4 = 2)
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When this simple rule is implemented, and one starts with a specific initial state of the field (for example,
in the shape of a dog like in Figure 2.9), after a given amount of time steps, the initial pattern is repeated
and replicated at other positions in the field. This is a strange, funny behaviour, but drives home a very
important point. This behaviour is not observable at the macro-scale (the level of the whole field): if you
would plot the population of 1s and the population of 0s over time, there would be no indication that this
happens. It is also not defined at the micro-scale: any random initial pattern you put in is replicated, all
through a simple sum and the modulo. This behaviour occurs, but we can only see it when we look at
the mesoscale: the scale between the micro- and the macro-scale. Only on this intermediate scale, that
was not predefined in the model, something special happens and the pattern is visible. This mesoscale
pattern (local configuration of cells) is not an attractor, but can be seen regularly on this non-predefined
scale. Hence there is a clear predictability, but again, only on this mesoscale.

Said another way: you probably didn’t guess that this pattern would emerge from these micro-scale local
rules. If you look at what one grid point does over time, its sequence of states might be something like
[0,0,0,0,0,0,0,1,0,1,0,0,0,1] etc. That is, it’s zero for a long time, then the pattern passes over it, it gets
activated a bit as the pattern is spreading in the vicinity, then it’s zero again, etc. But if you would just
draw a graph of any one cell’s state over time, you really wouldn’t know what’s going on. The same
holds for the macro scale: a graph counting 1 and 0 over time would be quite uninformative. However
our evolved visual processing capabilities immediately pinpoint that some very special behaviour indeed
is going on, an emergent pattern that we can see and describe in language other than how we defined
our rules and counts of ones and zeros: repeated copying of an initial pattern.

Figure 2.9: Modulo prime (p=2) produces a replicating doggy.

Game of Life CA

The rules for the Game of Life were originally defined by John Conway and first published in 1970. They
are as follows:

1. A cell remains 1 when it has 2 or 3 neighbours (1s)

2. A cell becomes 1 when it has 3 neighbours (1s)

3. Otherwise, a cell becomes 0

This fully deterministic (arbitrary) rule, however, leads to completely unpredictable behaviour: the final
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outcome of simulations starting with different initial conditions cannot be predicted. There is, to this
day, no procedure that can predict whether ’life’ will persevere or not for all possible initial conditions.

Many mesoscale entities are formed, each with different dynamical properties in time and space (blinker,
glider, pulsar). Furthermore, this system displays long-range interactions that occur between traveling
signals (e.g. the traveling gliders). Therefore, although the system is fully locally specified with simple
rules, new levels of information processing emerge: signals from different locations can interact and form
novel patterns. Even when all mesoscale patterns are defined, including their interactions, the system
is still unpredictable. Nonetheless, those mesoscale patterns which have explanatory value are worth
identifying, because they can have relevance to the behaviour of the system as a whole. In sum, we see
here how very simple local rules generate (maximally) complex behaviour through the mesoscale patterns
they generate. Note also that the speed of light is again very important here: signals can move about in
the system, but they can only propagate with a certain maximum speed.

This example illustrates one very fundamental point: that fully deterministic systems at a local level can
generate unpredictable behaviour at a global level through emergence of novel entities at an intermediate
level. This means that in order to find out the particular behaviour of the system for a particular initial
condition we can only ”let life live its life”. We cannot predict what will happen, so we need to let the
simulation play out. While the rules of Game of Life are extremely simple, through its locality, it is as
complex as can be, and no algorithm can predict what the outcome of all different initial conditions will
be.

Voting rule or majority rule CA

This CA has a very simple rule set:

1. Choose the Moore neighbourhood (9 neighbouring grid points)

2. If <= 4 neighbours in state 1: next state = 0.

3. Else next state = 1.

This system is used as a model for many processes, perhaps even too many. It has applications in physics,
social science, voting behaviour, and biology. Interestingly, this simple model can also give a profound
insight. If you compare the two outcomes in Figure 2.10, which one would you call more ordered? Which
one is more random?

Figure 2.10: Vote produces spotty patterns, where introducing randomness of a wobble in the rules
makes the pattern less like noise!

Chances are that you picked the left figure as the most random one, whereas the right one seems more
ordered. This is not wrong, but what created them was the exact opposite: the left figure is a classical
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voting rule CA, randomly initialised, but following the deterministic rules defined above. The right
figure, conversely, is a voting rule CA with a 50% chance of the opposite behaviour from what is defined
in the rules happening. Thus, adding randomness can increase the pattern or order in a system.

So what does this mean?

These are toy examples, no doubt about it. We don’t contend that Game of Life models biology, say,
or that modulo prime is secretly something that happens in bacteria. Instead, these three eye-catching
examples immediately show that even with the simplifying assumption of only local interactions, you can
get wildly unexpected behaviours and emergent patterns. So unpredictable in fact that for Game of Life
there is no algorithm to predict the outcome for all initial states: you have to simulate and see. Fancy
that for a system with 3 simple local rules and 2 states. As an aside, Game of Life is Turing-complete
(although Microsoft Powerpoint and a host of other things are too). In practice, this means you can
build a computer in Game of Life. People did that, and they were successful. Look it up! The voting
rule quickly shows another counterintuitive result: add randomness, gain more pattern. We are trained
to think order comes from specific causal factors. Here, in an exceedingly simple system with local rules,
you see the opposite. Now imagine how infinitely more complex real biological systems are. Imagine what
strange emergent patterns are hiding in them. Hopefully, you appreciate that to get a grip on what’s
happening we can’t just go around hypothesising based on what we see, because we are hard-pressed to
think about emergent behaviours of complex systems. Rather, we could take a step back with simple
(local) models and see what happens when we turn the model’s knobs.

Modeling biology with CAs

Cellular automata have been used to make models in various areas of expertise:

1. Experimental mathematics (Beyer et al., 1985; Burks, 1970)

2. Artificial life (Von Neumann et al., 1966; Braitenberg and Langton, 1988)

3. New physics (Wolfram, 2002; Margolus and Toffoli, 1987)

4. Local interactions in biology (Hogeweg, 1988)

In all cases the main defining point is the discrete nature of the formalism in combination with local
interactions and complexity arising from the emergence of mesoscale patterns. For instance, Toffoli used
a CA to explore the implications of discrete particles (particle concept) and contrast that to field theory
(continuous variables) (Margolus and Toffoli, 1987). Wolfram even went so far as to consider the entire
universe as a 3D CA in which one only had to find the transition table in order to gain full understanding
(Wolfram, 2002).

The “attofox” problem:
The attofox problem is named after the term
atto, which indicates a number of 10(−18) in the
metric system, and the fox. Models were made
for fox population dynamics surrounding the con-
struction of the tunnel across the canal to Great
Britain. A concern was that foxes with rabies
might traverse it to Britain, and start an epi-
demic. There were some worrisome models that
predicted that epidemics of such foxes would rage
across Great Britain for years to come, starting
anew every time from the same point of origin,
and killing huge numbers of foxes. It turned out
that the continuous waves of rabies depended on
populations of affected foxes with rabies in the
attorange surviving and starting the new spreads
(Mollison, 1991). 10(−18)th of a fox is hardly
likely to survive, much less start epidemics that
sweeps the nation. Therefore, the term attofox
problem is an evocative term to warn against
some of the dangers of the ODE modeling for-
malism.

PDEs (partial differential equations) are similar to
ODEs, but on top of describing rates of change over
time, they also describe rates of change in space, using
differential equations. They thus have have continuous
space as opposed to discrete grid points in CAs. If a
droplet of water is added in the middle of a PDE, and
we integrate over a small amount of time, there is im-
mediately an infinitesimally small amount of water in
all other grid points. In other words, PDEs are not
subject to the aforementioned concept of the speed
of light which CAs (and this universe!) have. PDEs
are sometimes hailed as better CAs, but in the context
of biological systems, 0.000000001 rabbits do not ex-
ist. If PDEs are bounded to contain true 0 values if
the real values become too low, they behave much like
CAs as far as spatial pattern formation is concerned.
Oftentimes, CA are seen as a worse version of PDEs.
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However, that does not do cellular automata justice.
Instead, CA allow us to focus on discrete entities (such
as cells) and focus on local interactions that, together,
can form complex patterns.

To illustrate this point, we will focus on a model of B-cell nodule formation in lymph nodes. In lymph
nodes, the B cells are clumped within a mass of T cells, forming B cell nodules. Both cell types enter
the lymph node randomly. Two questions thus arise:

1. How are these nodules formed?

2. Why did the system evolve this pattern?

To answer these questions, Hogeweg constructed a CA model (Hogeweg, 1989). The 2D grid represents
a cross-section of the lymph node. The state of each grid point represents the absence/presence of a
T cell or a B cell. The next state function for a grid point is defined in terms of birth/death, and
influx/efflux of cells. T cells and B cells continuously move through the lymph node. Therefore, there
is influx and efflux on the cross-section. The model assumes random influx of T and B cells. T cells
proliferate independently, whereas B cells only proliferate with local help of T cells (they need T helper
cells for this, (Nutt et al., 2015)).

Figure 2.11: When implementing simple rules of T and B cell behaviour, the T and B cells segregate
into the pattern observed in reality. I.o.w.: the pattern is the default, and might not need any further
explanation.

This simple model leads to a striking observation: B cell nodules form, including a higher density of B
cells at the edge of nodules (where they are stimulated to divide by T helper cells). This is similar to
observations in real lymph nodes. This demonstrates an important point: patterns need not be the result
of an active process or mechanism and do not (always) require a functional explanation. No such process
was included in the model, and no benefit or function for the system was posited. In fact, in this case,
this arrangement is detrimental to the system. Patterns with clumped B cells tend to slow the B cell-T
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cell interactions needed for proliferation. Hence, proliferation would be optimised if the system would
be well-mixed. It is, however, very hard to remain well-mixed when proliferation happens locally!

The example thus illustrates an important point: patterns need not be products of optimisation or come
about by a specific mechanism. Patterns should, instead, be our default expectation: in biology and CA
models, non-homogeneity due to local interactions is the norm.

Cellular automata thus provide a powerful modeling formalism to study the effects of local interactions
in discrete entities, while allowing mesoscale patterns to arise and add to the dynamics in the system.
As such they have been used as paradigm systems. Important is that such models can offer us baseline
expectations for a given system: what happens given only the minimal rules needed for the system to
work.

Generic behaviour of CA systems

We have seen what cellular automata are, how they work, and what we can do with them. For ODEs
and MAPs, we can classify the behaviours into three large classes:

1. Fixed points (equilibria)

2. Limit cycles

3. Chaos (deterministic)

What behaviours might we expect from CA systems? What does an arbitrary CA do for arbitrary initial
conditions? Wolfram studied this question in 1D CA systems using random transition rule tables with
varying neighbourhood sizes and found different classes of CA behaviour:

1. Class I: move to a uniform state (either all 1 or all 0)

2. Class IIa: localised domain (limit cycle)

3. Class IIb: non-localised domains (limit cycles)

4. Class III: non-periodic, non-localised (high dimensional chaos)

5. Class IV: long transient, unpredictable (universal computation)

These classes were defined according to the effect that perturbations have on the behaviour of the system,
i.e. what happens to disturbances? Do they percolate through the system, or do they have no effect? In
Figure 2.12, we see slices of a 1D CA over time. The upper part is the initialisation with one disturbance,
and the next slices show what happens to the 1D CA states over time. In Class I, the system returns
to the fixed point. In Class II one can change from one attractor to another but the disturbance is
limited to the attractor one is in. In Class III disturbances have a non-local impact and percolate
throughout the field. This class shows high-dimensional chaos, but its statistical properties have a short
transient. In Class IV disturbances can spread or not, die out or not, can be non-local and have a long
transient. In other words they are highly unpredictable. Moreover, new entities with their own behaviour
and interactions arise which lead to a new level of description and dynamics. Such entities have been
suggested to have the capability of universal computation. This means that everything that can be
calculated can be calculated in such a system. At the same time, this means that there is no algorithm
that can perfectly predict, from all initial conditions, what the outcome is. Thus, though the system is
simple to define, the behaviours CAs support in these systems are as complex as possible, i.e. all possible
calculations can theoretically be done in them, and they are unpredictable.

To summarise: we are trying to see in a general way what can happen in 1D CA models, given different
transition rules (example: If I am 0, and my neighbours are both 0, I become 1) and neighbourhood
sizes (do you only look at direct neighbours? Or those beyond them as well?). You can try out all these
systems and visualise what happens over time, as in the figure. So what kinds of things do you find?
Well, some rules either all become 0, or all become 1. If you flip the state of one initial grid from 0 to 1 or
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Figure 2.12: Wolfram’s Classifications of CAs

1 to 0 that doesn’t change anything. In class II you see that the system keeps a certain state (attractor).
You can imagine that if you flip one bit in the beginning, this attractor might look slightly different. Say
3 cells on the left are green, rather than 2. But that’s it. In class III you see the states are continuously
changing and all over the place. For these rules, if you change one bit this effect will spread out over
time and affect the whole thing. At the same time: the whole thing already is completely chaotic., and
you do see that the number of 1s and 0s is relatively constant over time. Class IV is very unpredictable,
patterns flare up locally and then die down again, or not. Here, the only way to know what happens if
you change one bit is to watch and see.

In a strict sense, it is impossible to predict from the rules in which class a CA will fall. However, for
almost all cases, we can predict the class by using Langton’s ordering parameter lambda (λ): the number
of rules which lead to the quiescent state (which is one of the CA states) (Langton, 1991; Seifter and
Reggia, 2014). In a 1D CA, 0 is the quiescent (inactive) state, whereas 1 is the active state. He defined

λ = (KN − Nq)/KN , where K is the number of states, N is the number of neighbours and Nq is the
number of rules leading to the quiescent state (i.e. the number of times the quiescent state is found
in the transition vector: the vector of all possible outcomes of the next state function). The ordering
parameter λ varies between 0 and (1 - 1/K). Hence, for binary CA the maximal value of lambda is 0.5.

Using this ordering parameter it becomes clear that as lambda increases one transverses from Class I
– IIa – IIb- IV - III. Class IV is between the periodic and chaotic phase and occurs in a vanishingly

22



small parameter region (i.e. a vanishingly small region of lambda-values). This parameter regime clearly
shows very interesting and unpredictable behaviour, but if it is so rare, is it important to consider? The
answer is yes, because as we will see during the course, evolutionary/living systems tend to move towards
behaviours that fall in this category, they go to the border of order or edge of chaos. These concepts will
be treated more fully later on. Additionally, though this regime of Class IV almost never occurs, the
fact that it can occur is already interesting. Most local rule sets give unsurprising or static behaviour,
but unpredictability is possible. In that sense, it is an existence proof : it shows that with very simple
rules, maximal complexity and unpredictability can result, which is an interesting finding in and of itself.
This might sound like gibberish. Think of it like this: we define 1D CAs, basically as simple a model
as you can get. We exhaustively look through all possible transition rules. We find that most resultant
behaviours are boring: all 0 or all 1 pretty quickly, or simple limit cycles. Predictable. Then some look
like madness (class III) and for a very few we really can’t predict what happens next and changing 1
bit can change the behaviour of the system completely. That’s pretty amazing. As we start using this
model formalism to model biology we should keep this in mind.

Let us look at some examples to see what we can do with λ. In Modulo Prime (with p = 2),K = 2, N = 4
and Nq = 8 (since half of the 16 possible combinations of the four neighbour states will lead to a next
state of 0 (quiescent state), λ = (16 − 8)/16 = 0.5. Hence, according to the ordering, Modulo Prime is
class III, and is therefore highly disordered and chaotic. This is true, and can be illustrated by tracking
the percolation of a single pixel change in a given random initial condition. If such a change is tracked
in time it displays a fractal pattern which spreads throughout the field (Figure 2.13). On the left are
two CA fields. One has only 1 state different than the other. On the right there are snapshots over time
of the difference in the two fields, and on the far right, there is a space-time plot (i.e. how the change
percolates through the surface over time). The figure is from unpublished work by Paulien.

The Voting rule also has λ = 0.5, again because half of the possible neighbour combinations will lead to
a next state of 0. However, this case is not chaotic, although it is maximally disordered. It is therefore
Class II. Hence, this is one example of a CA which is an exception to the classification by the ordering
parameter λ.

An important point shown here is that generalisations, or model outcomes, are based on almost all cases
(i.e. there are exceptions to the rule).

Mean field approximation/assumption (MFA)

One analytical drawback of CA models is their unpredictability and therefore the need to let them
live their lives (i.e. run the simulation and observe the outcome). This can be very time-consuming.
Moreover, each simulation is a specific case (parameter condition) because it is necessary to fully specify
the model. In order to do parameter sweeps one must therefore do many simulations. This can be
quite cumbersome which has led to attempts to obtain mean field approximations (MFA): equations
that strive to capture CA dynamics in an ODE format.

Mean field approximations are done by short-cutting on localness and therefore assuming well-mixed
and continuous variables. Implicitly one therefore assumes that the local pattern do not matter and
that stochasticity and discreteness are also irrelevant. Given what we have seen of the behaviour of CA
models, this might not be wise. Nevertheless, let us construct an example model and see what happens.

We construct the MFA of a simple birth-death CA: Consider a binary CA where the state of a grid point
represents the absence/presence of an individual. If a grid point is empty, it draws a random neighbour,
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Figure 2.13: Disturbances in modulo prime take time to propagate. When a single pixel is
changed in the middle, and the difference between prime with and without the disturbance is depicted,
we can see how the distubrance propagates slowly over the entire CA.

and if this neighbour is an individual, it reproduces into the empty square with probability (”birth rate”)
b. Furthermore, filled grid points ”die” with probability d. Let N be the total population size. Birth
events take place if an empty square ”meets” an individual. Hence, the MFA is given by:

dN
dt = b ∗N ∗ E

T − d ∗N

Here, E is the number of empty patches, and T is the total number of patches in the grid. If we scale
T = 1 and let N be the population density, the MFA simplifies to:

dN/dt = b ∗N ∗ (1−N)− d ∗N =

(b− d)N − b ∗N2

This is the standard logistic growth formula.

One obvious question is whether the behaviour of such an approximation is similar to the original CA.
The short answer is no, and why this is the case will be handled in-depth during the exercises. In ODE
approximations of a CA, all individuals are assumed to see the same, ”average” neighbourhood, while

24



in a CA, individuals vary in the neighbourhoods they are surrounded by. In order to compensate for
this shortcoming MFAs have been constructed which try to incorporate some information from the local
neighbourhood. These are called pseudo-spatial models (for example, models by Tilman (Tilman, 1994)).
Such models are sometimes erroneously referred to as spatial models, but they only incorporate the first
order effects of local neighbourhoods. This means they still ignore pattern formation and growth at
edges which is often crucial in determining dynamics. Even higher-order approximations (that include
more of the ”local” neighbourhood) do not help to alleviate this problem since they still only at best
incorporate local neighbourhood effects.

Simply put, the importance of local interactions that are at the core of the CA formalism cannot be
fully translated into ODEs. However, one can instead use ODEs as a mean field assumption. In
that case, we do not try to approximate the CA by means of a MFA, but instead ask: What happens
in the extreme well-mixed case, in contrast to the local case (the actual CA)?. In this way, one uses
both formalisms as paradigm systems and can learn more about the system under consideration. How
important is locality to the observed behaviour? What would happen if the system is assumed to be
well-mixed? Using different model formalisms to study extreme cases can be very useful. Expressing the
dynamics of one model formalism in another, however, cannot work perfectly.

Using ODEs as MFAs will therefore never be a good replacement of CA models. The mean field
assumption is however a good tool to discover what happens to a system if it is assumed to be well-
mixed and can serve to inform your baseline expectations.

Emergent mesoscale patterns

CAs vs IBMs
We can contrast the CA with individual-based
models (IBMs). There, the focus is on individ-
uals, who can be moving around in space, and
exhibit certain behaviours (move towards food,
feed, reproduce). In a CA, the basal unit is a
discrete grid point (space) that can be occupied
by an individual. Space-based models, like the
CA, need a predetermined number of states and
variables to be a dynamic system. In IBMs
there can be a changing number of states (more
individuals can be born, which influence the be-
haviour, and add extra possible states to the sys-
tem on the go) and space is often continuous,
therefore this is an undefined system in terms of
dynamic systems. Just to be clear: what charac-
terises a dynamic system is that it is a descrip-
tion of pre-defined entities (variables, which can
be individuals or concentrations of molecules),
whose interactions over time are defined (either
via rates of change or finite next state functions).
A CA has a predefined number of spaces that in-
teract in defined ways. In an individual-based
model, the number of individuals can vary, and
hence the interactions vary, so this is not what we
call a dynamic system. If this is all specific mod-
eling mumbo jumbo to you, that is fine, just make
sure you know that CAs and IBMs work from dif-
ferent assumptions, and that there might there-
for also be fundamentally different behaviour in
both.

So far we have looked at how CA models allow for
mesoscale patterns in the sense that simple local in-
teractions lead to complex patterns. The main points
that we made were:

1. Patterns are often the default expectation

2. Large-scale patterns form from local interactions
(or disturbances)

3. Unpredictability arises despite deterministic
rules. Thus, the simulation has to ’live its life’
before one knows what will happen.

We have discussed how mean field approximations can
be seen as a descriptor of a system. It is important to
note that unique next state functions (UNSF) depend
on the level of description of a system. A CA has an
unique next state function. However, when we use a
MFA to describe what the population of entitities in a
CA does, there is no unique next state function. That is
because the local environments and mesoscale patterns
matter, and the population can thus change in multiple
ways depending on those patterns. You will practice
this in the exercises. On the level of the variable “pop-
ulation size” (which is used in ODEs and MAPs), a CA
does not have a unique next state function.

Crutchfield and Mitchell conducted a groundbreaking
study on mesoscale patterns in 1D binary CA by us-
ing filtering techniques to discover complex behaviour
in seemingly undynamic CA models (Das et al., 1995;
Crutchfield and Mitchell, 1995; Hanson and Crutch-
field, 1997). A typical example is the study of Elementary CA 54. This 1D CA is named after the
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binary code for its next state function. Every point only considered its two neighbours (e.g. if the CA
was 10111, the middle bit’s state is 1, and its neighbours are 0 on the left and 1 on the right). The rule
set was:

1. if local state one of (111; 110; 011; 000) → become 0

2. if local state one of (101; 100; 010; 001) → become 1
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In its space-time plot, rule 54 shows a seemingly uninteresting triangle pattern, with a predominant
pattern interspersed with larger triangles (see Figure 2.14). Note that this is a 1D CA, so the figure
is different time points of the system stacked on top of one another, with time moving from the top to
the bottom of this figure. The dynamics of this system were studied by filtering out the predominant
background pattern of small triangles, and instead showing the deviations of the pattern and marking
them in black. What results is the emergence of a non-regular pattern showing mesoscale patterns
that travel through space and time (see right figure, this is reminiscent of Class IV behaviour). This is
interesting, but how does it help us understand the behaviour of the system?

Figure 2.14: Interactions between mesoscale patterns in Crutchfield and Mitchell’s CA 54. Left: space
time plot of Rule 54. The right panel is the same, but the predominant patterns have been filtered out
so we mostly see everything that is NOT a part if this typical pattern. It is a bit blurry, but notice how
the changes in the left panel are propagated through the diagonal interactions in the right panel.

Figure 2.15: Mesoscale patterns in the work of Crutchfield and Mitchell are 4 types of “particles” with
very particular rules.

We know the micro-scale rules of the system (transition rules). But can we classify the behaviour of the
mesoscale patterns? It turns out that we can. In this case, we can classify the mesoscale patterns as 4
types of ”particles” (α, β, γ + andγ−) which interact in particular ways.

We can then derive a description of the system at this higher level using ODEs to describe the particle
”concentrations”, which is not much different to what is done in chemistry (using mass-action terms to
describe reactions). Note, however, that in these reactions within the CA system, there is no conservation
of mass (mesoscale patterns can obliterate each other fully). Moreover, in time one can track particles
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and observe what happens: first, there are remnants of the initial conditions, which die out quickly, after
which particles continue in time. At another higher level one can plot the particles themselves (a further
abstraction) and view the CA as particle interactions over time.

Such analyses have been done for all 256 elementary CA, i.e. all 1D CA with random transition tables.
Although it may not be biologically relevant, it is conceptually important. This demonstrates that given
a fully defined deterministic universe, there can be mesoscale entities with behaviour of their own which
are best described beyond the ”full description” modeling framework. In this case, the particles can be
described in a reaction framework. We can now look at the system in this different way. While this does
not help predictability given random initial conditions, it can yield deeper insight into the mesoscale
patterns and how they interact to form the overall behaviour of the system.

Thus, mesoscale patterns can arise (though they may at first be difficult to recognise) that can be
classified into different subsets (particles above). By studying these subsets, we can get a better idea of
what is happening within the system, and even contrast it with what we might expect given well-mixed
conditions (the ODE framework used here)

Predefined multiple levels (mesoscale entities): the CPM

In some cases, models are formulated with predefined multi-level properties in order to study the impact
of such multiple scales or levels. In that case, the emergence of higher level entities is assumed and it
is not the point of study to determine how they arise. Instead, the question is what impact they have
given that they are there. In terms of CA this means that local rules are defined to be dependent on
predefined higher level entities, such as cells.

The most famous multi-scale CA model is the Cellular-Potts Model (Graner and Glazier, 1992). In this
model, single biological cells are defined in terms of a local group of grid points (lattice sites) with the
same state (representing that they are a certain cell, see Figure 2.16). Such an individual cell can be
given properties that make it act like specific (existing) cell types.

Figure 2.16: The Cellular Pots Model is a CA in which groups of grid points with the same state share
a over-arching state (e.g. volume) that determines their behaviour.

In the model, biological cells are defined in terms of a volume (V ) and a cell type. The cells are assumed
to conserve their volume (actual volume) relative to some ideal volume (target volume, v). The cell
membrane is assumed to bind to other cells (Jij) or the medium (Jim) according to energy bonds. The
ingenious part of the model is therefore how the local rules depend on the mesoscale properties of volume
and surface energy minimalisation.

How is the behaviour of the local scale made dependant on the mesoscale? The free energy is minimised
with volume conservation. This is done by considering the change in energy in the system for every
change at the edges of cells in terms of changes of bonds and changes in cell volume. The free energy
formula that is minimised is:

H =
∑ Jij

2 +
∑

Jim + λ(v − V )2

28



Here, the first term describes the free energy at borders between CA grid points of different types (i.e.
between cells). It is divided by two because this is done for all cell types, and you would otherwise count
borders double (once from cell a to cell b, once from cell b to cell a). The second term describes the free
energy of all borders with the medium. The last term is a penalty for the deviation of the actual volume
v from the target volume V . Without this term, given that you strive for energy minimalisation, having
no cells would be a viable proposition (no cells = no cell borders = total energy minimisation). That is
not what the model should do.

To determine whether a cell should expand into a neighbouring grid point, the following equation is used:

P (i → j) = 1 if∆H < −β; P (i → j) = e−(∆H+β)/M if∆H >= −β

In words, this does the following: if a certain change in cell type from i to j has a certain negative
free energy (more than threshold β), it happens. If it does not have that, it can still happen with a
certain probability, dependent on how much it goes against minimisation of free energy (∆H), and on the
parameter M . This is known as ’temperature’ and can be interpreted as the propensity to do something
that is contra to minimalisation of free energy.

In this way, the free energy for the whole system is minimised, but it is implemented on a local level. The
higher level entity wants to have a certain target volume, and its type affects interactions of individual
CA grid points. Note that for this model, to add anything to normal CA dynamics, the higher level
cells need to be large enough: if a cell is only 3 grid points in size, local behaviours dominate over the
larger scale. If this is not immediately clear to you, do not fret: you will work with these models in the
exercises.

Let’s apply the model to cell sorting. If one presses a sea cucumber through a gauze, the cells will
apparently reaggregate. The question: is such reorganisation much different from oil and water separating
after being mixed? In other words: perhaps certain cells just like to clump together and this is no magic
effect.

In the Cellular Potts model it is possible for cells to squeeze past each other. Using different settings for
differential cell adhesion, various forms of cell sorting can be represented in the model (Figure 2.17).

Note that, here, Jij describes the free energy for a bond between cells of type i and j (e.g. Jii < Jij means
that bonding to type i is favoured over bonding to type j, since the free energy should be minimised).

This two-scale formalism is interesting because it can capture these sorting behaviours of cells. It
is appropriate to study such sorting behaviours, but is not formulated to be informative about the
emergence of higher-level entities like cells.

Moving against the flow in a CPM

Käfer et al. described cell movement caused by a gradient in a tissue with two different cell types, that
sort through differential cell adhesion (see Figure 2.18). All cells are chemotactically attracted to the
source of the gradient (which is on the right). Hence, we would expect all cells to move in the direction
of the gradient. However, we observe that some cells move against the flow, in the direction of the red
arrows. This movement is caused by these cells being pushed away by other cells. This can happen if
this cell type is larger, has different adhesion settings, or is in the minority to start with. In this sequence
of images, you see that the black cells first make their way to the front of the gradient, but then once
they reach a large enough blob, they get pushed back. This happens because the pressure is large at the
front: all cells want to expand towards this gradient, so the Hamiltonian is quite positive. The black
cells want to adhere to each other more than the white cells. Hence, relatively, as long as black cells are
still stuck together this is good for their Hamiltonian, while white cells have less of this positive bonus
of sticking together. At the front, then, black cells get less of a penalty for expanding to the back (to
regain some of their target volume as they are crushed by the pressure of all the other cells who want to
be there) as they are still touching other black cells. This happens at the front, but then the cells just
behind that lack some volume, and they also relatively more easily expand to the back than white cells.
This causes the whole mass to move backwards.
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Figure 2.17: The Cellular Pots Model and cell sorting depending on differential cell adhesion (Graner
and Glazier, 1992)

Movement and chemotaxis in a lymph node

We now revisit the lymph node, and consider the movement of T cells using the new model formalism. In
experimental cell tracking studies, it was shown that T cells in lymph nodes move according to ”stop-and-
go” patterns, where cells move in a certain direction for a short amount of time, stop, change direction,
move for a short amount of time, and repeat (Miller et al., 2003). The experimental set-up was such
that, in a crowded lymph node, only a subset of cells was made fluorescent and their movement recorded.

One question that arises is whether this is an internal mechanism, or if it arises due to the spatial
environment in the system: the crowded lymph node. To study this particular moving mechanism,
Beltman et al. used a simple 3D CPM in which one extra feature was implemented: cells had a persistence
of motion, i.e. a preference to keep moving in the same direction (see Figure 2.19). Biologically, you could
translate this as the make-up of the cytoskeleton being optimised to move in a certain direction (with
actin filaments pushing the cell membrane outwards there: this would take some time to change). An
explicit stop-and-go mechanism was not implemented. Movement was entirely determined by interactions
with the environment. The visualisation was the same as in the experimental study: a small subset of
cells was coloured and followed over time. Despite not coding for it explicitly, the stop-and-go behaviour
emerged.

Why did it emerge? The leftmost figure shows the time-course of movement of a single cell in a 3D
system. Darker colours are later time points. No stop-and-go motion is evident: movement is continuous
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Figure 2.18: Cells can “move against the flow” in CPMs (Käfer et al., 2006)

Figure 2.19: 3D CPM to study T-cell migration gives a stop-and-go mechanism, for free! Possibly,
there is no further explanation needed. (Beltman et al., 2007)

and smooth. If you now put in many lymphocytes, and colour a subset of cells, the two rightmost pictures
emerge: there is early disorder (left) and later ordering of movement in a single direction (right).

If cells bump into each other, they still wish to go in the same direction, but they need to go in a slightly
different direction because they can not go through one another. They will try again, bump again, and
turn a tiny bit. This repeats. This is the stop-and-go component. Eventually, a sort of alignment
between the movement directions of cells becomes evident. In real lymph nodes, small groups of cells
align their paths, bump into obstacles and stop, and then move in a somewhat different direction. Here,
there are no other obstacles than deformable cells than can be squeezed past, and thus, all cells can align.
In the real lymph node, there are obstacles, so no global alignment occurs, but groups of cells do align,
and the stop-and-go phenomenon is simply explained by bumping into each other and trying again with
a slight rotation.

Thus, no intrinsic stop-and-go programming of the cells caused this behaviour. Instead, if cells want to
go in a certain direction, bump into something, and turn a tiny bit away while still striving to move
in their original direction this behaviour manifests. Interactions then align themselves by moving in a
particular direction. Again we find that out default expectation sometimes needs to be adjusted, because
we have observed that certain behaviour arises from our models for free!

We can also include chemotaxis in the model, for instance to attract T cells to antigen-presenting dendritic
cells (DCs). We might expect chemotaxis to improve the scanning of DCs by T cells, because the T
cells can more easily find the DCs. However, when Riggs et al. made a CA-like model of this process,
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they found that a random search strategy is optimal, and that chemotaxis actually hinders the scanning
process(Riggs et al., 2008).

Why does this happen? If T cells are attracted to DCs, after a short period of time clumps of T cells
form around the DCs, that hinder the movement of new T cells towards these DCs. However, this turned
out to be an artifact of the T cells being modeled as fixed, non-deformable blocks. In reality, a T cell
is deformable, and cells can squeeze past one another. Vroomans et al. later showed that if T cells
are modeled as the deformable objects that they are (i.e. by using CPM in stead of a CA-like model),
the ”old” T cells are pushed away by the new ones, and chemotaxis actually enhances the scanning
process(Vroomans et al., 2012). This example warns us to beware of modeling artifacts, and illustrates
the importance of using different modeling formalisms. Here, the CPM is more appropriate, because T
cells don’t truly block other T cells that wish to move past them: cells are deformable and can push and
squeeze.

In conclusion, cells are deformable, highly viscous objects that can wiggle past each other, and modeling
them as such actually makes a difference. Furthermore, cells usually live in a cramped environment, with
many other cells. The examples show the importance of including these cell characteristics (using CPM)
if we want to understand cell movement.

Timing regimes in CA

So far we have considered CAs where updating over the field each time step is done synchronously:
synchronous updating. The rules we instated were checked simultaneously for each grid point, and
the whole field was then updated at the same time. However, this is a particular choice of the timing
regime. Everything updates at once. An alternative would be asynchronous updating. Synchronicity
was chosen for simplicity, but it can be considered an unfair short cut relative to finding out about how
local rules lead to higher order complexity. It introduces a universal tick of time that governs when local
interactions take place. At that point, all local interactions happen at once, so they are not independent.
One might call this a special case and it could be considered artificial.

As an example, take a cell that has 8 empty spaces next to it and a chance of 1 to divide. In a
synchronously updated CA without randomness, it can grow into all 8 neighbouring spaces within one
time step. That might not be what you intend, but if everything is updated simultaneously, there is
no way of knowing that the cell has already divided. This might seem esoteric, but the simple message
is this: the very fact that you update your CA synchronously introduces an assumption that there is
a universal time tick and that you can model things well in this way. As we have seen with the ODE
framework and its (implicit) assumptions of well-mixedness and infinite population size, strange things
can happen due to assumptions.

Asynchronous updating is different: rather than the universal tick of time for all locations, you can
update the grid points one at a time. However, which pixel updates first? The upper left one? This
would of course give rise to unintended behaviour, so we should either randomly pick a pixel to update,
or randomize the update order of every pixel so that every pixel at least gets updated once. The latter
is common practice, and is also implemented in the CA software (Cash2.1) you will use in the practicals.
Note that by doing so, the unique next state function is gone: which CA grid point updates first, second,
third, ..., will determine what the next state of the whole field becomes. Since that is determined
randomly, there is no unique next state function. The example of the dividing pixel (like above) would
play out differently: if 2 empty grid points update while the other cell still has a probability of 1 to divide,
but thereafter it updates and does not have that probability anymore, the result is different. Besides
randomised order of updating, asynchronicity can also be introduced by using reaction rates such that
reactions at the fastest time step happen first (i.e. certain states have more chance of being updated, so
this introduces more timescales).

It is important to get a feel for the timescales of certain processes, and how these might interact. In
a synchronous CA, time works differently than in an asynchronously updated CA, and this might be
important. Another avenue of influencing the timing of events relative to another which can be used in
CA models is that of claim mechanics. You will practice using them in the exercises, but an introduction
follows below.
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Claim mechanics versus random neighbour in a CA

Claim mechanics refer to the fact that whether or not an organism colonises a spot is probably not solely
dependent on spot availability. If we wish to model a forest with oak, pine, and yew trees, we could
take a 2D CA, where state 0 is an empty spot, and 1, 2, and 3 are the tree types. In the exercises of
the course, we often model reproduction by choosing a random neighbour, and if this is empty nothing
happens, while if there is a tree there, it replicates into the empty space. That works, but it assumes
that other neighbours have no influence on the process. In other words, this might correspond to looking
on a day-to-day basis: chances of trees replicating are very small, and in time steps of a day, the fact
that there are other trees growing nearby probably do not affect matters much.

If we take a step back, we should consider that tree saplings take at the very least a year to grow. We
might thus wish to model the growth of the forest in years. In this case, time steps are large relative to
the modeled system. During a year, trees make and disperse seeds, which grow. If two trees are next
to the same grid point in a CA, it is not fair to have that empty grid point pick a random tree from
its Moore neighbourhood and have that tree replicate. In truth, both trees would probably deposit seed
in the same empty spot, and the saplings would compete during the year. Thus, there is an interaction
time scale within a neighbourhood and a time scale over which multi-interactions are integrated: the
local competition of saplings over the course of a year, versus the larger time scale where the victors
of local competition can spread new seeds. In a CA, such an extra time scale can be incorporated by
using a claim-mechanic. In that case, a square chooses, for example, two random neighbours, and they
compete for the space (by weighing their probability of reproduction against each other).

In that way, you account for the effect that two seeds are dropped in a spot over the year, and one
will eventually grow. However, this still gives a lot of noise in the system: if you choose two empty
squares nothing happens, and if you choose an empty square and a yew, for example, the yew will always
colonise, even if there are 5 pines also surrounding the square. If yews have reproductive advantage
over pines, selecting only two random neighbours dilutes the strength of this effect. However, if you test
the reproductive propensity of all 8 neighbours of a square against each other, then you give greater
importance to competition during the time step of a year: all nearby squares (trees) compete for space.

Thus, it is all a matter of timescales. If you are modeling a bacterial population where there is a
cheater that does not produce a common good and therefore has a reproductive advantage, it matters
greatly whether you use random neighbour mechanics, or total claim mechanics with “all-against-all’
-competition, or something in between. If you compete all vs all, the cheater is locally at full strength:
it will win out over all non-cheaters, and since everyone is sampled, it will almost always colonise empty
squares and take over the population. However, if you use just two random neighbours, and compete
those, there is a larger chance of not randomly selecting a cheater, or selecting a cheater and a non-helper,
thereby lessening the cheater’s advantage and allowing non-cheaters to better survive. You will practice
this during the exercises and/or a mini-project. The important thing is to think about how you set up
competition, and how “fast” this competition is compared the other updates of the CA (e.g. mixing,
diffusion, random events). Assumptions, assumptions, assumptions.

Diffusion in a CA

Interestingly, timing regime issues play a role in modeling diffusion: synchronicity generates a problem
with respect to modeling particle conservation. Why does this happen? Diffusion is a random walk
process, but in a CA particles are modeled by turning non-particles into particles without the option
to simultaneously remove the particle (neighbour) that was the source of the new particle. Grid points
only update their states based on their neighbours, they cannot affect what happens in neighbouring
cells. Moreover, there is a conflict problem in the synchronous case when there are several particles
as neighbours: which particle gets to diffuse to a certain spot? Attempts to solve this problem are as
follows:

1. Using approximations. Here the average number of particles is maintained. This, however, leads
to a clumped pattern of diffusion which is non-local (Figure 2.20)

2. Margolus diffusion. Here, alternate 4-square tile contra-rotation is used. This means the field is
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divided up into squares of 4 particles, which are then rotated around. The next time step, different
squares are selected, and the particles there are rotated. In this way particles are conserved and
can pass each other(Margolus and Toffoli, 1987) (Figure 2.20).

3. Hexagonal diffusion. A 6-layered hexagonal grid is used where each layer is a direction which
determines a next step position (REF). In the vertical axis, particles can react (bounce etc). For
this model it is possible to show that the analytical limit quite well approaches continuous diffusion
algorithms.

Figure 2.20: Left: psuedo-diffusion by “copying” from a random neighbour. Right: diffusion with the
Margolus Diffusion algorithm. (Margolus and Toffoli, 1987)

The figure above shows a side-by-side comparison of clumped diffusion (using the approximation) and
Margolus diffusion. Clearly, Margolus diffusion much better approximates actual diffusion. Interestingly,
however, gene invasions are often conceptualized as diffusion. Since the invasion of a gene in a population
is dependent on birth-death processes, this is in fact much better conceptualized as a clumped pattern,
as one can see on the left (with clumps of individuals that have a gene and it thereby spreading locally,
not as a free diffusion process).

The role of timing regimes in particle conservation makes an important point of how choosing a modeling
formalism can push conceptualisation in certain directions. In synchronous updating, diffusion becomes
a problem. We also discovered an interesting difference between particle conservation (as in actual
diffusion) and birth-death diffusion (useful to model gene invasion/spread).

Of course conventionally diffusion is modelled in lattice maps or partial differential equations (PDEs)
where lattice maps are the discrete approximations of PDEs and space and variables are considered to
be continuous.

Boolean networks
We will now discuss another type of model formalism: Boolean networks. Kauffman conducted studies on
random Boolean networks as a paradigm for gene regulation. Unlike a CA, that has a fixed connectivity
(every pixel has 4 or 8 neighbours), every node in a network can have a different number of inputs, thus
its own transition rule. A node (which can represent a gene for example) can be either on (1) or off
(0). Each node can have inputs and connect to various other nodes, and there is no notion of “locality”.
Every node then integrates signals with its next state function, deciding whether to become 1 or 0 based
on its inputs. Thus, Boolean networks have:

1. a specific network structure

2. specific interactions (not local like a CA)

3. specific transition rules per node (a Boolean function with k inputs)

A very simple Boolean network of three nodes is shown below (Figure REF).
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What do Boolean networks do? They consist of nodes (for us biologists, these can be genes, proteins, or
transcripts, for instance) which can be either on or off. This means that dosage effects for an individual
gene do not exist, it is either there, or it isn’t. They can model, for example, the cell cycle. Often, there
are checkpoints, and certain genes that need to be produced before the cell cycle is allowed to go to
the next stage. As a simplification, these systems can often be modeled surprisingly well using Boolean
networks with on-off states. Nodes depend on the inputs of other nodes to determine their state.

As you can imagine, much larger gene networks can also be modeled in this way. Sometimes, such a
Boolean gene network can be directly mapped to a spatial CA. This is the case if the nodes can be
structured such that they need only input from direct neighbours. One example is a 10-position 1D CA
with a rule layer and a state layer, with different rules for specific positions. If a cell in a 1D CA takes
2 inputs, there are 24 = 16 different possible rules. As an example:

1. if input 1 = 0, input 2 = 0 → 1

2. if input 1 = 1, input 2 = 0 → 0

3. if input 1 = 0, input 2 = 1 → 0

4. if input 1 = 1, input 2 = 1 → 1

As you can see, two inputs yields 4 combinations of inputs, which can be mapped to outputs in 4 different
ways, thus leading to 16 possible rules. There are 210=1024 initial configurations (ten nodes that can be
either 1 or 0). Depending on the initial configuration, there are four attractors in this system. Half of
initial configurations go to a specific attractor, so the attractors have different domains of attraction.
(Figure ??)

This is not trivial so let’s explain this more deeply. Figure ?? shows two separate things. These are
actually 2 1D CAs that interact. There is a rule layer that specifies, for each CA cell on the top layer
what transition rule it will use. That is to say, 12 could stand for ’if your neighbours are 1, become 1,
otherwise stay what you are’. Thus, on the 1D CA below, every grid point uses different transition rules.
This is different from a normal CA: there, the transition rules are the same for every space (though what
happens does, of course, depend on the state). By using this rule layer that determines the interactions
and taking different initial conditions, network behaviours can be translated into a CA.

Thus, in the lower part of a figure, you see what a trajectory and attractor look like in a CA. These
are all examples of cyclic attractors that can arise, and the CA visualisation of network dynamics allows
you to see the different trajectories. Read on to find out the specifics about network trajectories and
attractors.

Properties of networks

Boolean networks are very useful with respect to understanding the gene regulation networks that we
are uncovering from data. For instance, we now know the full (or think we know the full) transcription
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Figure 2.21: A boolean network represented in a CA. An extra “rule”-layer defines for every grid point
which of the many possible transition rules it uses. Then, a space-time-plot can depict the trajectory
towards the different attractors (bottom).

network of yeast. It is a complex and messy network when visualised. Moreover, this represents a very
specific case, possibly with specific properties, that raises several questions:

1. How does this system behave?

2. How special is this system, and in what way is it special?

3. How did this system evolve to be the way it is?

In order to make some sense of this we can compare the observed specific network to a whole class of
random networks, of which the behaviour has been characterised. Kauffman’s approach to studying
properties of gene regulation networks was based on studying the properties of random networks. This
is somewhat similar to the transition rules in CAs: all 256 possible 1D CAs were tested to see their
behaviour, and that is how the different classes of behaviour came about. He looked at many random
Boolean gene networks, with differing amounts of inputs, connectedness, and transition rules, and derived
several rules or common behaviours. He thereby had a baseline for such systems and could derive how
that depended on parameters. These systems were tested with both synchronous and asynchronous
timing regimes (remember, in CAs we saw it is important to test these different ways of updating), and
they held in both cases (though patterns were stronger in the synchronous than asynchronous regime).
Very generally, his findings were the following:

1. Multiple attractors: There are multiple domains of attraction, all leading to a different attractor.
You could think of these attractors as different cell types that have different gene expression
patterns.

2. Multiple causes: There are multiple ways to get to the same attractor. There is no one cause for
a certain state of the gene network: there can be many with the same result. One example of this
in neutrophils is presented below.

3. Robustness: A small change in the network (e.g. the deletion of a node, similar to a knockout)
does not significantly alter the behaviour of the network.
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Figure 2.22: Modeling cell fate using boolean networks. (Huang and Ingber, 2000)

This means that random networks often harbour multiple attractors, each fed by domains of attraction.
Moreover, the same signal can lead to different outcomes dependent on the state of the network, and
several pathways can lead to the same attractor (cell state). In Huang and Ingberg the role of gene
expression and the resulting signals is studied with respect to outcomes of cell states. By assigning
boolean functions to a simple system of just four genes, different pathways leading to different cell states
are modeled (Figure ??). This paper really brought attention to the potential of Boolean networks in
the biological community. In another example, Huang et al. show two alternative routes of neutrophil
differentiation in a high-dimensional state space(Huang et al., 2005) (Figure ??). This space consisted of
2773 dimensions (nodes), for 2773 proteins that could be involved. This meant n2773 different possible
network states! This example shows that there are two completely different transients (regarding gene
expression patterns) that lead to the same attractor: a differentiated neutrophil. This means that
different signals can lead to the same eventual state. Importantly, it also means that a cell differentiating
along one of the paths can respond much differently to a signal than a cell that is differentiating along the
other path: these are very different cells in the transient period. This all goes some way towards guiding
our intuitions. Since we know the generic properties of Boolean networks, we can have an expectation to
find different attractors and domains of attraction, i.e. that different signals can lead to the same result.

We will now focus on forcing structures: Boolean functions that propagate an ’on-state’ through the
network. Some types of Boolean functions are insensitive to multiple inputs: if even one of the inputs is
1, the output is 1, regardless of the other inputs. Such functions are thus forcing: a single input forces
the node to produce an output. The OR function is one such function. If only one of the inputs is 1,
the output will be 1. Because such functions are insensitive to several inputs, these structures lead to
redundancy and robustness: not all input information is needed for the output, and deletions (i.e.
losing an input node) might not change the final result.

Interestingly, nearly 80% of yeast genes can be knocked out without any observable effects and even double
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Figure 2.23: Neutrophils differentiation shows multiple trajectories to the same attrator

knock-outs can be invisible. Does this mean that yeast gene networks contain many forcing functions
which are insensitive to changes via knock-outs? Hogeweg showed that in random Boolean networks only
a small fraction of nodes tends to be functional, i.e. the network can be highly reduced(Hogeweg, 2000).
This reduced subset is dominated by forcing functions. Such results are augmented by gene interaction
studies which seem to find many false positives which are not actually functional. Given the role of
forcing functions we should expect that most functional links are in fact non-functional with respect to
the behaviour of the network as a whole. Moreover, research on the domain of attraction of the cell cycle
shows that 85% of states goes to one mega-attractor(Li et al., 2004).

Kauffman’s approach to Boolean networks was powerful in the sense that it revealed properties of a
whole ensemble of cases. He was general. He did this by looking at changes in rules (similar to parameter
sweeps in ODE systems) by generating networks with random connections where all nodes have the same
connectivity or number of incoming connections (N = number of nodes, K = in-degree: the number of
incoming connections for each node). In general, he found that random Boolean networks have many
different attractors with a very long cycle length. Furthermore, these networks have a low homeostatic
stability: small disturbances in the initial conditions can easily lead to convergence to a different attractor,
and a high reachability: different attractors are easily reached by a small disturbance from a given
attractor. However, his analysis also showed that the number of attractors depends on the connectivity,
the least being found for K = 2. Moreover, cycle length, stability and reachability between domains also
vary with connectivity, with shortest cycle lengths, lowest reachability and highest stability also being
found for K = 2. The properties found for K = 2 most resemble what we would expect from biological
networks. For this reason, Kauffman concluded that was the most likely number of incoming connections
per node in biological networks.

Is it true that, as Kauffman thought, connectivity is the main determinant in these properties? In fact,
Kauffman made special choices with respect to network types and finding K = 2 for this optimum is an
artifact of his sampling. For binary Boolean functions, K=2 leads to the highest proportion of forcing
functions in all possible functions. For K=2, the only two possible functions that are non-forcing are
of the form ‘exclusive or’ or XOR, namely XOR→0 and XOR→1, which in turn leads to the results on
robustness. With more connections a higher proportion of functions becomes non-forcing. What can
XOR mean biologically? This means for example that A activates something, B activates something,
but A and B together do not activate something. An analogue would be monomers that activate a gene,
while dimers inhibit it. Because of the higher proportion of non-forcing functions like XOR, we find more
domains of attractions and less stability. In fact Hogeweg (REF) studied the effect of the proportion of
non-forcing (XOR) functions for K = 2 and showed that if all function are non-forcing this results in
chaotic behaviour or long state cycles. If there were only forcing functions, however, one obtains single
strong attractors. Stability is therefore not a result of a connectivity of 2 (K = 2), but the proportion
of forcing structures, and such reasoning can be extended to biological systems.

This is an example of studying behaviour in a general system gone awry: Kauffman wanted to know
general behaviour of Boolean networks, so he kept his networks as general as possible. However, his sam-
pling inadvertently introduced a bias. Further on in the course, most models will be specific paradigm
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Figure 2.24: Backwards engineering a regulatory network on the basis of gene expression data.

systems, with general ground truths extrapolated from them.

Reconstructing a gene network

We have now studied what to expect from Boolean networks. With the influx of data in biology, we might
wonder how to construct a network from data. As it turns out, translating gene expression data into a
Boolean regulation network is not trivial. As an example: for 141 kinases and 38 phosphatases in yeast,
the effects on gene expression of single and double knock-outs were measured (Wageningen et al., 2011).
60% of the single knock-outs did not lead to a different phenotype (a different phenotype was classified
as >= 8 genes changing expression because of the mutation). Even in the double knock-outs, many
buffering effects were found. These results show that there is a high level of redundancy (as we would
expect) and that there are many epistatic interactions. Based on the knock-out data, the researchers
tried to reconstruct the underlying regulatory network. However, even for small subsets of the data
they found that there are several networks that can explain the same expression patterns (Figure 2.24).
Hence, backward engineering of networks is non-unique! It is highly unlikely that you could reconstruct
the ”true” underlying regulatory network from a single set of gene expression data.

Conclusions (gene regulatory) networks

Taken together, we expect the following of gene regulatory networks:

1. Even simple networks have multiple attractors

2. There are alternative trajectories to the same attractor: there can be multiple causes for the same
end point.

3. Domains of attraction: important for state-change robustness, i.e. how many states go to one
attractor, and whether a change in state will change the final attractor. Different sets of nodes can
lead to different attractors, it depends how you start.

4. Forcing functions are important for robustness in a different sense, namely node removal ro-
bustness. The more forcing functions, the less deletions impact a network’s behaviour.

5. They are difficult to extrapolate from data: many different models can fit specific data.

Event-based models (Gillespie algorithm)
Until now, FSMs have taken center-stage, and we have shown how other modeling formalisms can be
derived from them using short-cuts on conventions used in FMSs. We will now introduce event-based
models and compare them to ODEs. As an example to see how they compare we use the logistic growth
equation:

dN
dt = aN − bN2

Or, alternatively, if we do not go by real population numbers but rather by a carrying capacity (see ODE
introduction):
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dN
dt = rN(1− N

K )

These equations result, just like in ODEs and MAPs, in simple logistic growth, where growth is fast until
competition starts to dominate, and then levels off until it stops completely. We now consider the history
of the interpretation of the terms of this classic equation. For instance the N2 term can be interpreted as
representing competition. Alternatively in the case of dN/dt = rN(1-N/K), K is the carrying capacity,
which is a concept which was derived from the population concept. These interpretations were in fact
derived later, while the original interpretation was much more arbitrary and stems from a conference
called by king Leopold I of Belgium (the nice man who was personally responsible for slaughtering
half of the Congo’s inhabitants between 1885 and 1908(Twain, 1905)) to discuss the implications of
Malthus’ prediction about the human overpopulation (population doubling every 30 years!) as derived
from British parish records and North American population growth numbers(Malthus, 1888). At the
conference, Verhulst, a physicist, put forward a simple solution to the problem and was so able to calm
the poor king’s fears. Verhulst used the argument that any function (including a growth function) can
be approximated by a Taylor expansion , and with a little reasoning a reasonable human population
growth function can be derived from dN

dt = a + bN + cN2 + ... + nNy. The first term can obviously
be dropped because there is no external influx into the human population. Moreover there should be
at least one additional term other than aN and it should be negative, otherwise the population would
grow to infinity, which is obviously a physical impossiblity. And so, obviously there was no reason to fear
for infinite overpopulation! Notwithstanding this reasoning, it still depends on the coefficients whether
overpopulation is alarming or not! The main point here however, is that the interpretations of model
terms can be very minimalistic indeed.

We can model a stochastic birth/death process using a stochastic ODE:

dN
dt = aN − bN2 + noise

In the ODE-formalism, the variables change continuously, i.e. something is happening at every time
point. However, we can also assume that things only happen at certain times, as events. In this event-
based formalism, each event is modeled using probabilities which determine which event occurs when in
continuous time. This is called the Gillespie algorithm(Gillespie, 1977). Since we use probabilities for
the events, this automatically gives a stochastic description of the system.

In this formalism, each term needs to be explicitly interpreted:

1. aN = birth + death

2. bN2 = extra death + reduced birth due to competition

Now, assume that a1 is the per capita birth rate, a2 the per capita death rate, b1 the reduction in births
due to competition, and b2 the extra deaths due to competition (hence a = a1 + a2, and b = b1 + b2).
There are two possible events that can take place: birth events and death events. Then, the frequency
of all events (birth and death) is:

E0 = (a1 + a2)N − b1N2 + b2N2

The time until the next event is stochastically determined as:

τ = 1/E0 ∗ ln(1/rand1)

where rand1 is a random number between 0 and 1. Hence, on average there is a waiting time of 1/E0,
but this varies stochastically. Lastly, we have to determine whether the next event at time T + τ is a
birth or a death:

1. N → N +1 (birth) if (a1N − b1N2) < rand2∗E0 where rand2 is another random number between
0 and 1.

2. N → N − 1 (death) otherwise.
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The behaviour in this model allows for stochasticity which is comparable to the chaotic regime in MAPs
(in ODEs such behaviour never occurs). However in the MAP the direction of change in the chaotic
regime is always to the other side of the equilibrium (there is an overshoot to the other side every time).
In the event-based formalism the direction is not necessarily relative to the equilibrium. This type of
noise can be considered to be more realistic for stochastic simulations where once in a while something
happens.

This all might sound complex and -who knows- even interesting at times, but how can we use this?
Why would we use such a stochastic model? The Gillespie algorithm was used to investigate what
the rate-limiting step in yeast protein translation is(Shah et al., 2013). The question was whether
protein production was initiation- or elongation-limited in exponentially growing yeast populations. To
investigate this question, all the known data was brought to bear upon the issue: the fasta file containing
all yeast mRNAs and the number of RNA molecules per cell, the number of yeast tRNAs in the cell and
their wobble behaviour, the number of ribosomes, the initiation probabilities of all mRNA types, the
sizes of ribosomes and tRNA’s, the diffusion constant of ribosomes and tRNAs (called the characteristic
time), etc.

The states in the model were manifold: the free numbers of ribosomes and tRNAs of every type and
the position of bound ribosomes and tRNAs on the individual mRNAs. The events in the model were
inititation (binding of a ribosome at the 5’ end of mRNA) and elongation (change position of the ribosome
if the next one was free, bind a new tRNA).

In pseudocode, the algorithm worked as follows, for each time step:

1. calculate the fraction of initiatable mRNA (no ribosome attached to first 10 codons)

2. calculate the number of elongatable ribosomes waiting at position j (RB(j)): ribosomes on the
mRNA where the next 10 codons were not bound by another ribosome.

3. Rates of all possible events:

(a) total initiation rate, normalised to the diffusion rate

(b) total elongation rate: keeping the wobble behaviour and a sort of proofreading in mind,
normalised to the diffusion rate

4. calculate the probability of each possible event

5. select an event based on its probability of occurence

6. update the changes in the state of the cell

7. increment time until the next event

8. update the number of free ribosomes

9. update the number of free tRNAs

The experimental observation was that there were more ribosomes at the 5’ end of mRNAs. Apparently,
the ribosomes could not progress, so initiation seemed easy, whereas elongation must be difficult. In the
model, the same observation was made, but it was clear that this was not due to elongation (Figure
REF). Why? If they randomised the mRNA initiation probability they lost the signature of elongation
dependence. However, it was initiation probability that they altered, so what gives? If the nucleotide
code of all mRNAs was randomised, the signature was still there. As it turned out, the curve from
experimental data that led researchers to believe it was elongation-limited was averaged over all mRNAs.
If many ribosomes are on short mRNAs, then you will see them often at the 5’ end, because they have
relatively more of it. Short mRNAs are also less likely to fold in on themselves, and are therefore more
easily accessible (though this is not so by default, and might have been selected for). Thus, the model
debugged the assumption that protein production was elongation-limited.
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Thus, this event-based modeling technique is an interesting addition to the model family. You only
deal with time points at which events actually happen, lowering computational load and making such
a data-intensive example as the above possible. There are no problems with infinitely small or large
populations (discrete variables). However, there are fixed conditions, a fixed number of molecules, and,
most importantly: there is space, but no spatial structure. Space is implemented by diffusion and
molecule concentrations, but everything experiences an ’average’ space. This is problematic, as we shall
see further on.

Conclusion and overview of modeling formalisms
We have now spent quite some time talking about modeling frameworks, using the FSM as an archety-
pal model and branching out from there. We have considered many different combinations of dis-
crete/continuous time, space, and variables (see table 2.1). Let us finalize by zooming in on the be-
haviours, properties, and peculiarities we have seen.

Table 2.1: Modeling formalisms and their assumptions on space, time, and the modeled variable(s)

Formalism Space Time Variable
ODEs - continuous continuous
MAPs - discreet continuous
CAs d discrete discrete
PDEs c continuous continuous
Map lattices d discrete continous
Meta-pop models d continous continuous
IBMs either continuous discrete
Event-based either continuous discrete

FSMs, CA models, mesoscale entities, and timescales

We have looked at FSMs as a prototype modeling system. They need fully defined inputs, outputs, and
a unique next state function for every possible combination of states. We have seen various short-cuts
to this completely defined formalism. ODEs solve the problem of completely defining all interactions
by making the next state function a mathematical function, and defining continuous populations and
continuous time. The need for a unique next state function is relaxed, because the function is valid for
all real numbers. MAPs are similar, but use discrete time.

The CA solves the arduous task of defining a full transition table by restricting itself to FSMs that
can be modeled by local interactions, a situation that is often valid for biological systems. Small FSMs
that take into account only the states of their direct neighbour and themselves have the same next state
function, but outcomes differ due to different local states. Non-predefined mesoscale patterns can arise
that have behaviours that can only be described in terms other than those used to define the model and
those that describe the macroscale. They have a dynamics of their own, and are often important to the
behaviour of the system. Cataloging the different types of mesoscale patterns can give greater insight,
as with the CA with rule 54 and the particles observed.

We have seen that pattern is not unexpected, but rather is the expectation: it is hard to be well-mixed
(think of the lymph node)! We have also seen that randomness or noise can lead to clearer patterns
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(majority vote). Additionally, simple rules can lead to very intricate patterns and completely unexpected
(modulo prime) and/or unpredictable (game of life) results.

Besides naturally emerging higher levels, a higher level can also be explicitly defined. This does not give
insight into how a system could produce the higher level, but does shed light on what happens once it is
in place. The Cellular Potts CA model works by defining a higher level cell entity that occupies multiple
(sufficient) grid points. It works by free energy minimisation, and different cell types having different
interaction energies and target volumes. In this formalism, cells can squeeze past one another, and cell
sorting behaviours can be modeled. The importance of cell grouping in moving towards chemotactic
gradients, and the effect of space and crowdedness on T cell movement was discussed in relation to this
formalism.

The relative timescales of events in a CA are of great importance, and should be thought about when
modeling. If the time step modeled is small, picking random neighbours and having the neighbour picked
move into a spot is fine. If, however, the time steps are larger, one might wish to use a claim mechanic,
whereby all local neighbours compete each time a grid point is updated. This more accurately models,
for example, what might happen in a forest, where saplings in an open area all compete, and over a few
years, a tree grows. One can also introduce the chance of nothing at all happening. If species A has twice
the fitness of species B, but there is a chance of nothing happening, the theoretical benefit of species
A over B is diminished: if something always happened it could exert its fitness advantage 100% of the
time. Scaling of the timing in a CA is thus very important, and there are many implicit assumptions in
what mechanisms you use for the next state functions. It is important to consider this.

Boolean networks, event-based modeling

Besides the FSM formalism, we have looked at Boolean networks. We have learnt to expect that networks,
even simple ones, have multiple attractors, with differing domains of attraction. We also know that, due
to forcing functions, networks are often resistant to knock-outs, because not all inputs are needed to
get to certain attractors. Often, there are different paths to reach a certain attractor. There is no easy
one-to-one cause-effect relation. Multiple network topologies can explain the same experimental data, so
reconstructing a network from data is difficult.

In event-based modeling, we considered a probabilistic framework, where we only model events that
actually happen. One categorises all possible events, relative chances of them happening, and then
advances time until an event happens. There is thus discrete time. Taken together, this makes whole-cell
modeling feasible. As we have seen, space can be included, but only average space, not locality.

What are models?

In the previous sections, we have discussed various modeling formalisms. So, what is a “good” model?
A good is a model of B, when by studying A we can (or hope to) learn something about B.

What does this mean? Firstly, to make a model of B, one needs a mapping of features of B into
variables/states in A, such that it satisfies (or partly satisfies, given short-cuts) the unique next state
function one needs to define in a dynamical system. Different model formalisms can play different roles:
CA have patches of space that can be filled with individuals. MAPs and ODEs have a fixed set of
continuous variables and populations (concentrations) of organisms (molecules).

Furthermore, in this course, we use the following requirements for or characteristics of a good model:

1. A model should not be as general as possible. Ashby wrote a book on cybernetics, in which he
asked the question: ’To what degree is the Rock of Gibraltar a model of the brain?’(Ashby, 1999).
The answer might come as a let-down: ’It persists, so does the brain; they are isomorphic at the
lowest level’. The crux is, of course, that the Rock of Gibraltar is not a good model for the brain
at all, though in an extremely general sense it is.

2. A model should not be as similar as possible. In that case, A would be the best model for
A. We build models to gain insights into core/partial workings of a system, or to debug certain
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(experimental) inferences. The lymph node model that investigated B-cell clumping does not
purport to accurately model the complexity of a real lymph node, yet it showed us that clumping
is suboptimal and the natural/simple state (see CA as a paradigm system).

3. A good model considers first: what needs to be modeled? What are the patterns that need
explaining? For that, two important questions are how generic or special the patterns are. You can
investigate whether something is a special case by checking its robustness, and seeing whether it
pops up in other modeling formalisms. If a behaviour shows up in different modeling formalisms and
is robust to changes in timing, tweaks to spatial scales, or (as in networks) deletions or knockouts
it might be very important. Generic properties can be characterised by checking behaviour under
many different parameter regimes and then classifying these behaviours. The order parameter (λ)
is an example of this.
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Chapter 3

Behaviour and doing what there is
TODO

Introduction
Herbert Simon, the founding father of artificial intelligence said (Simon, 1969):

”An ant as a behavioural system is quite simple. The apparent complexity of its behaviour is a reflection
of the environment in which it finds itself.”

which we can paraphrase to:

”A human as a behavioural system is quite simple. The apparent complexity of its behaviour is a
reflection of the environment in which it finds itself.”

The basic idea here is that given enough individual-based diversity, individual versatility becomes ex-
pressed when individuals meet different circumstances. Thus while an ant may want to walk straight
to get back to its anthill, its actual meandering route home is a reflection of the obstacles it encounters
in the environment. In this light it is also interesting to consider apes that grow up in environments
with people where they can do all sorts of human-like things, but if you go into the field one observes
them mainly sleeping and eating. This suggests that apes have excess capacity that is not used often in
their natural environment. How should we understand this in an evolutionary sense? On the one hand,
finding food may be harder than we think. On the other hand, doing easy things well may allow you to
do hard things a bit. In any case, the environmental structuring plays an important role.

The themes we address in this section are:

1. Self-organisation

2. How simple rules can generate complex behaviour

So far, we have looked mainly at a CAs, which have space as their core entity. We now take a look at
full individual-based models.

Individual-based models
Individual-based models (IBMs) are based on individuals in space, rather than space with individuals as
in the CA. Their properties are as follows:

1. Individuals are simple (in)finite state machines

2. Individuals are located in space. This space is not necessarily discretised like in a CA: space can
also be a continuous variable.

45



3. Individuals interact with their (possibly complex) environment, and with other individuals in the
environment.

4. Individuals, in principle, keep the same behavioural rules. However, they can change their envi-
ronment, and thus the input they experience.

The TODO principle
Inspired by Herbet Simons’ ”reflection of the environment”, Hogeweg and Hesper conceptualised the
TODO-principle (?Hogeweg and Hesper, 1991). Herein, they placed the focus on:

1. ”Do what there is to do!”: this principle emphasises that behaviour is steered by local information:
only when food is observed will food-gathering behaviour actually be triggered.

2. ”Do based on what is done!”: the local information the organism perceives (its environment) is
shaped by its doings. Food that is eaten is no longer there, prompting a halt to feeding be-
haviour and return to foraging/roaming. There is thus external memory for behaviour, which
is the environment that is created by that behaviour (collective memory for all individuals in a
shared environment). Changes in the environment brought about by organisms will inform their
behaviour: they do based on what is done.

Using this framework, we can observe that flexible behaviour arises from rigid rules. Furthermore, we
might expect to see automatic adaptation: behaviour will not be adapted to something that is not
there, i.e. no nonsense behaviours will arise due to this if-then coding of behaviour. This stands in con-
trast with common assumptions in behavioural models about optimal behaviour where the environment
is often not taken into account. This can lead to rather ridiculous analyses since assumptions are made
that individuals do things without cues from the environment.

Rodney Brooks’ robots

A first example of opportunity- vs optimality-based behaviour are the robots of Rodney Brooks. Rodney
Brooks designed state of the art robots which were clever and could make plans. Such robots would think
a long time to make a plan for an optimal path through a room. However, the robots would take so long
that, in the mean time, the room might have changed, in which case the robot would have to rethink
everything. In other words, if one needs the best model (i.e. to plan a path), the best model is the world
itself. In that case, it is better to generalise and solve problems on the way (i.e. start walking and change
direction if you bump into something). Thus using continuous feedback from the environment is a good
planning tool. This is what he used in later work, producing robots that could efficiently navigate office
environments(Brooks, 1991). In this way we can see TODO as an alternative explanation for behavioural
patterns which are normally explained in terms of evolutionary optimisation. The outside world directly
informs what is good behaviour.

Self-organisation in moving groups
An often-used example of how simple individual rules can lead to complex behaviour is self-organisation
in groups of animals. Much studied prototypes include the flocking of birds (e.g. Boids, (Reynolds,
1987)), schooling fish (e.g. (Hemelrijk and Hildenbrandt, 2012)) and migrating herds (Couzin et al.,
2005). These models usually consider a simple inert (unchangeable) environment, in which at most the
physics of the environment are included.

Boids (bird-like objects)

The Boids are a classical example of individuals with simple grouping rules in a simple (initially empty)
environment(Reynolds, 1987). The Boids follow three behavioural rules, which are depicted below:

1. Repulsion: If other individuals are too close to you (within repulsion zone), you move away from
them.

2. Alignment: Adjust your direction to match the average of your neighbours (within alignment zone).
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Figure 3.1: Three simple rules cause flocking very similar to e.g. flocking of sparrows

Figure 3.2: Couzin et al. (2005)

3. Attraction: Move towards other individuals, as long as they are not too close (within attraction
zone).

These three simple rules cause a flock in an empty environment to all move in a certain direction (see
Figure ??). Moreover, if obstacles are added to the environment, the flock can change direction and
break up and reform. Hence, these simple rules can cause quite complex behaviour when combined with
a non-trivial environment.

Decision making in flocks and schools

Couzin et al. also use the rules of Boids to describe flocks of animals (Couzin et al., 2005). They then
study how well these flocks can move to a certain target, e.g. a food source, if only a small amount
of the individuals knows where to find this target. These informed individuals have directed movement
towards the target, while the other individuals just follow the regular Boids rules. Surprisingly, they find
that you only need a very low fraction of informed individuals to accurately find the target (Figure ??).
Moreover, the larger the group, the lower the fraction that you need. Hence, especially in large groups,
you only need a small amount of information to find a target.

Lastly, they studied the effect of two groups of informed individuals that have different targets (e.g. half
of the informed individuals preferentially moves to the left, the other half to the right). Depending on
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the parameter conditions, this leads to one of two outcomes:

1. Averaging: The flock ends up somewhere half-way between the two targets. This happens if the
directional movement of the informed individuals is relatively weak, and/or if the two targets are
sufficiently close to each other.

2. Winner takes all: The flock ends up in either one of the targets, i.e. one group of informed
individuals wins. This happens if the informed individuals have strong directional movement,
and/or if the two targets are far apart.

Flocking with physics of the environment

In the example above, the individuals are basically assumed to float in space, without forces acting on
them. However, animals are subjected to many physical forces that constrain their movement possibilities.
For instance, flying birds have to maintain a certain speed to avoid falling from the air because of
gravity, and animals moving at speed in a certain direction cannot immediately turn around because of
their inertia. Hemelrijk and Hildebrandt developed a model of flocking starlings that incorporates these
constraints(Hemelrijk and Hildenbrandt, 2012). However, other than these physical constraints they only
implemented Boids-like simple grouping rules. The behaviour of the starling flocks in their model closely
resembles observations of real flocks of starlings, again illustrating that a simple set of rules and obvious
physical constraints can explain behaviours thar are perceived to be (very) complex. Furthermore,
Hemelrijk and Hildebrandt have used their model to test the influence and relative importance of model
parameters such as locality of the interactions and speed variability, ”experiments” that could never be
done in nature. The latter is an obvious example of the utility of models.

Subconclusion

All these models deliver a wow-factor upon first impression. They show the power of what simple
behavioural rules can do, given a relatively simple environment. Next, we will study what happens when
we combine simple rules and complex environments, which can be changed by individuals.

Social structure and grouping in simulated chimpanzee-like
entities
Here we take a look at social structure. In particular we will look at primates (chimpanzees), in which
the following things have been observed by Harcourt (Harcourt et al., 1992):

1. There are all-male groups, but (almost) no all-female groups.

2. Females live solitarily much more often than males.

3. Males travel further than females.

We will look at a model to study this social structure. However, we will not pre-specify that chimps want
these types of behaviours. Instead, we ask whether the patterns we observe could be side-effects of things
that individuals have to do anyway. Thus, our modeling strategy is one where we do not implement the
behaviour we are interested in, but rather a minimal structure of the system that we are interested in,
and then observe which behaviour emerges.

To this end, Boekhorst and Hogeweg made a model of CHIMPs(Boekhorst and Hogeweg, 1994), where
individuals:

1. Go to the nearest fruit tree and eat until they are satisfied or food has been exhausted.

2. May take other CHIMPs into account when looking for food.

3. Want to mate: males check for receptive females.

4. If they are female, need more protein (for reproduction), so they eat protein-food that is not eaten
by males
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All this takes place in an environment with FRUITs and PROTs: estimates were made on how much
fruit and protein is available in real habitats, and in which chunks the food is available (in terms of
chimpanzee-hours: the amount of time a single chimpanzee could feed on it) (Figure ??).

So, what were the results? They were striking:

1. There were random paths of movement and individuals ate the nearest food.

2. Various groups formed with interesting compositions.

3. There were clearly more lone females than lone males.

4. There were more all-male groups than all-female groups.

These observations are very similar to the observations in real chimpanzees!

Originally, the occurrence of all-male groups had been explained by the idea that males band together
to defend their territory and engage in warfare with neighbouring groups. This was thought to be
both functional and adaptive, and and advanced feature (i.e. closer to humans than to other animals).
However, we see the same in the simple CHIMP model, with even more exaggerated male grouping
(Figure ??).

However, we can now see that chimpanzees need not want to be in groups (males) or solitary (females).
Rather, the social structure is an epiphenomenon: this phenomenon arises as a side-effect from other
rules. In terms of speculation about the purpose of grouping, it is nonsensical to think that this structure
is advantageous and should give a higher fitness; it just happens. Note that once it arises such an
epiphenomenon might be further exploited by evolutionary forces: maybe in real chimps there are extra
factors involved, but we don’t require it to see the same behaviours arise in CHIMPs.

Why does this epiphenomenon happen? Well, the food occurs in clumps and individuals move towards
the nearest food source, which can generate grouping. Moreover, males want to check for receptive
females, and may move to the same female, which enhances male grouping. Females, on the other hand,
need PROTs that are more easily depleted: they thus split up more easily in search of protein food
sources (similar groupings occur in orangutans for much the same reason, see the article).
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So far, we have shown one matching pattern (model observable) between simulations and real life, but
that is of course quite minimal. However, several other observables also show a good correspondence
between the model and real chimpanzees, making a much stronger case:

1. In terms of walking distances, males walk much further than females in the model. This is because
males are more often in groups, which deplete food sources faster, and move on faster.

2. In real chimps, males walk about 4km/day while females on average 2.7 km/day(Goodall, 1986).

The model is actually able to quantitatively reproduce these results. The moral of the story is not that
chimpanzees are stupid and only act based on simple programming. However, some observables are so
basic that one cannot infer from them that chimpanzees are not stupid. Given that you perform certain
very basic behaviours (eat, follow mates), other behaviours will emerge as side-effects or epiphenomena.
In that light, taking an observed feature and then trying to find out how it might be optimally evolved is
misleading: it might just be a side-effect. In this example, taking the observed grouping of chimpanzes
and trying to explain why this is great for them wasn’t necessary. We can use models to study how
different behaviours are related to each other, and how some may emerge as side-effects of others.

Subconclusion
1. We have seen that the TODO formalism means that behaviour is determined by local information

(opportunities) and that behavioural patterns can arise as side effects

2. We have seen a contrast between opportunity-based and optimality-based approaches. The latter
largely ignores the opportunities, whereas many behaviours could be explained as side-effects, i.e.
they are a consequence. In that sense, there is automatic adaptation (there is no need for an
adaptive process to not eat what is not there!)

Now, we will look at TODO in combination with internal change within individuals (memory/learning).

DODOM interactions in bumble bees
In social insects, there is a clear division of labour between the queen and the workers. Looking at the
differentiation of labour in honey bee colonies, Whitfield et al. found the following by studying genome
data(Whitfield et al., 2006):
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1. Gene expression is age-dependent

2. Variance in expression is already seen at low dimensions (as found in a Principle Component
Analysis (PCA is explained in the Glossary section in the back of this reader))

3. Only the 3rd PC showed differentiation between species (i.o.w. differences in gene expression
between species were smaller than those within species!)

4. There were similar patterns across species

5. The newborns differ the most from the other individuals

6. There is differentiation, but some bees become foragers sooner than others: could this be TODO
dependent?

7. There is no clear one-to-one mapping of gene expression, age and behavioural patterns

This example illustrates that there are many factors - both internal and external - involved in differ-
entiation and division of labour. Thus, even if we can explain things with TODO mechanims, there is
probably a lot of feedback from what is done: reinforcement of the behaviour. In the next example we
study the effects of reinforcement on behaviour.

Intro and experimental work
Here, we look at a model of bumble bees and their social interactions, made to study the life-cycle of
bumble bee colonies. Some remarkable features of this life cycle are:

1. Bumble bees are not truly eusocial, in the sense that the queen can and under some circumstances
does still leave the nest to forage herself.

2. Only the queen survives the winter and starts a new nest on her own early in spring.

3. The first brood gives rise to workers.

4. When there are enough workers, the queen stays in the nest and only lays eggs.

5. At the end of the season, the queen lays special eggs that when fertilised produce queens, while
unfertilised eggs produce drones (males).

6. Shortly after, the workers rebel and expel or kill the queen.

7. After this rebellion, some workers lay eggs (the so-called elite workers).

8. These eggs are unfertilised and produce drones.

9. New queens and drones mate to start the cycle again.

This cycle of course raises many questions, for instance: who are these elite workers which lay eggs? It
would seem that if this were a heritable trait, all workers should lay eggs! To study these issues van Honk
and Hogeweg, and Hogeweg and Hesper, studied the social interactions patterns in real (in the lab!) and
artificial (see next section) bumble bee nests(van Honk and Hogeweg, 1981; Hogeweg and Hesper, 1983,
1985). In the nest, bumble bees have pair-wise interactions. When 2 bumble bees meet, they antennate
(make contact via their antennae). After the interaction, one goes straight (dominant) and one gives
way (subordinate). The queen always goes straight. Hence, there is some assessment of other bumble
bees through a dominance interaction. But how to study how this works exactly? This is difficult, since
the interaction matrix of all bumble bees will only be sparsely filled after experimental observation: not
all bumble bees will interact with all others many times, so that clear patterns are visible. Also, the
question was whether these interactions would change over time.

As a solution, van Honk and Hogeweg used a cluster analysis in order to reveal the underlying social
structure. They obtained a matrix of interactions containing how an individual behaved towards all
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others: how often it won in total, and how often it lost in total. The reasoning was that the elite would
probably behave differently towards most others. They considered two bumble bees to be similar if they
interacted with all other bumble bees in a similar way. Furthermore, they subdivided their experimental
data set into periods (while the composition of the nest stayed more or less similar).

The results of this meticulous experimental work on bumble bee interactions were as follows (Figure ??):

1. In the early period, the colony is populated by the queen and some workers.

2. In the middle time frame, a group of elite workers has emerged, that becomes more accentuated
over time:

(a) Once an individual is in the elite cluster, it remains there.

(b) These are not simply the oldest workers: being elite is not age-dependent.

(c) Individuals can join the elite quite late in life.

When the queen is killed: a pseudo-queen emerges (highest in dominance among all elite workers)
which, together with other elites, starts to lay eggs.

Thus, we see a social distinction in bumble bees: there is a distinct group of elite workers that cluster with
the queen (red rectangle). Furthermore, it is this elite which lays eggs at the end of the season. However,
a weak point of the study was that it relied on data of only one (lab) nest. When this experiment was
repeated in Germany, the division between elite and common workers was less clear and less consistent
over time(van Doorn and Heringa, 1986). These nests also grew faster and became bigger. We could
repeat the experiment in vivo, but we can also use simulations to study how this social structure can
arise.

DODOM in bumble bees: model
Hogeweg and Hesper formulated a BUMBLE model to study how the social structure in the bumble
bees can arise (Hogeweg and Hesper, 1983). They modeled the interactions between BUMBLEs via the
hypothesised DODOM rule:

• There is a winner-loser effect in interactions between bumble bees: once an individual wins an
encounter this increases its propensity to win following encounters.

• This works via a damped positive feedback (once you are winning a lot, your propensity to win
will rise less quickly than when you first start winning), which maintains sensitivity to external
conditions.

• Individuals have an internal dominance parameterD. When two BUMBLEs meet, they can observe
the value of the other’s D parameter.

• They then have a dominance interaction (Do Dominance; DODOM) where the probability to win
is: p_win = D_me/(D_me+D_you)

• If you win an encounter (randomnumber < p_win) then K = 1, else K = 0

• Your updated dominance parameter is then: D_menew = Dme+a(K−D_me/(D_me+D_you))

• Thus the update depends on the difference in dominance (like chess rating or ELO you might know
from online games): you get a high boost from an unlikely win, while only a small boost if you
were likely to win. This is a damped positive feedback loop.

The other assumptions of the model were as follows:

1. The population dynamics of bumble bees was taken as a given.

2. All workers were created equal with no propensity to become elite.
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Figure 3.3: Cluster analysis of bumble bee dominance hierarchy
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3. The TODO was as follows: feeding, foraging, egg-laying on nest.

4. The environment was given by the nest: it had a center and a periphery, including a food pot (Note
that there was no real space in the model, but only compartments).

5. The model was event-based and actions took time.

6. Social interaction between random bees within compartments via DODOM (queen versus workers,
and workers versus workers).

7. Initial dominance:

(a) Queen initially gets D = 7.5

(b) Workers initially get D = 1

(c) The D parameter determines the location and activity of the BUMBLE (periphery vs center).

(d) The queen is killed when she looses a number of dominance interactions in a row.

(e) The model was then observed in the same way as the real nests.

An important point from above was that the main analysis was carried out exactly as in the real nests:
counting the number of won interactions against all BUMBLEs, and clustering over time. The results
were interesting (Figure ??. Elite workers arise in the model, and are relatively constant in time. All
workers try to lay eggs. The queen is expelled at a certain moment, and the timing of this event is the
same in all replicate simulations. Hence, our first conclusion should be that a heritable predisposition to
become an elite worker is not necessary to explain the social structure in bumble bees. Rather, we observe
emergent division of labour: labour division arises out of simple behaviours. That still leaves the
confounding results from the study of a nest in Germany mentioned earlier. There, the division between
elite and common workers was less clear over time. It seems that the consistency of the elites is thus
dependent on group (nest) size. In the model, we can study nests with different size by varying the egg
laying speed. This yields the following results:

1. For differently sized nests the queen is still killed on about the same day!

2. Slow small nests have more differentiated D parameters (and thus a clearer division between elites
and normal workers), fast nests have less differentiated D values. To understand this: in larger
nests, there are more workers with low/average D values. If a to-be elite worker consistently
meets workers with low/average D values, its highly likely win only allows it to gain a slight bit of
dominance. In small nests, the difference quickly becomes more pronounced.

3. This result depends on how workers develop dominance.

4. This self-stabilises on nests of a certain age.
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Figure 3.4: Cluster analysis of BUMBLEs (modeled bumble bees) dominance hierarchy. Differentiation
into elite and common working as observed in the data.

Next to explaining why the results were less clear in the bigger nests in Germany(van Doorn and Heringa,
1986), this also gives us insight into another question: how does a bumble bee nests tune itself relative
to the season? In terms of producing generative offspring (queens and drones) it shouldn’t be too soon
or too late. Do they use an external cue for this? Probably not, because the same process occurs in
artificial labs without cues. How then to tune the timing of killing the queen? Even queen age is unlikely
to be used as a cue, because old queens can still be successfully introduced into a young nest. The results
of the BUMBLE model suggest that there could be a socially regulated clock. Nests that grow slowly
switch (kill queen) soon in the model and in vivo! This also explains the bumble bee nests in Germany,
where there is fast growth, and less social differentiation due to influx of new individuals which disrupt
the system, which keeps it “out of balance”.

DODOM, TODO, and side-effects
What we observe in the BUMBLE model is social differentiation. This is dependent on nest structure
and growth rate (without the periphery for inactive bees to settle the results are not obtained). Thus, we
obtain elite workers that lay eggs, but these properties are not heritable: all start equally. The problem
of the elites and their reproduction is a pseudo-problem. Instead we see that they play an integral part
in a socially regulated clock, which is needed for the life-cycle of bumble bee colonies. Something that
seemed puzzling from an evolutionary optimisation standpoint (why don’t all workers lay eggs?) is logical
and explained by an opportunity-based standpoint (TODO behaviour).

Finally, we note that there were some extra observations in the BUMBLE model in terms of adaptability,
namely compensatory feeding. This was observed in vivo in nests where, if workers were taken away, the
remaining workers would spend more time feeding. In the model, this happens simply through TODO,
because there is more feeding to do! Because workers are taken away, other workers are more likely
to come across unfed larvae and then initiate feeding. This is an example of automatic adaptation:
behaviours that emerge simply because external input changes.

Learning what to eat
We will now look at the combination of TODO behaviour and learning with culture and diet within
groups.
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Figure 3.5: Behavioural rules for individuals from (van der Post and Hogeweg, 2004)

TODO and learning: Grouping makes diet and diet makes grouping

In this example we combine TODO and learning. In most ecological models predators (or foragers) are
assumed to know what to eat, but in reality that is not clearly predefined. Rather, we could expect
the diet to depend on the availability of food in the environment. Furthermore, we can expect that
you can learn what to eat. The most basic form of learning is probably trial-and-error. On the other
hand individuals could mimick conspecifics (social learning). Here we will consider the impact of the
environment on these processes and contrast opportunity and optimality. Moreover, we will look at how
diet cultures can arise.

Van der Post and Hogeweg formulated a model(Van Der Post and Hogeweg, 2006; van der Post and
Hogeweg, 2004), where:

1. Individuals seek out and select resources to eat. These resources give varying amounts of nutrients,
and also have bulk and some value for toxicity. The resources are renewed each ’year’.

2. These individuals live in an environment with many different types of food.

3. They select resources depending on their (learned) preferences and on preference expectation: if
they have not seen their favourite foods for a while, they are more likely to accept less-preferred
foods.

4. Unknown (new) resources are always tried (sampled).

Given these behaviours, they wound up with a model where TODO behaviour occurs relative to the
environment, and an internal state (the expectation of finding your favourite food). In the model, trial-
and-error learning in solitary and grouping (gregarious) individuals is then compared. Learning is also
compared in patchy (clustered food sources) and uniform (a little food everywhere) environments.

In the uniform environment, the diet was heterogeneous in groups: minimisation of competition (Figure
??). This is quite sensible: if everyone in the group eats something different, you can make the most
of uniformly available resources. This type of diet, however, is not generally observed in nature. In the
patchy environment, there are homogeneous diets in groups: group diets. These opposite results indicate
that what is being done (which food is eaten) is partly an effect of what you see in the environment
(which food you find). In mixed environments, where food is uniformly distributed and food patches
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Figure 3.6: Van Der Post and Hogeweg (2006)

are then superimposed as well, both effects can be observed at the same time. This gives a good search
image for experimentalists and field workers, since that is perhaps the situation that occurs most often.

In the patchy worlds, different groups have different diet cultures: certain groups eat only certain foods
(Figure ??). Specifically, this happens in the category of foods that are average to good: the very good
foods are eaten by everyone, but the less energy-dense foods are only eaten by certain groups. We thus
observe that grouping makes diet and diet makes grouping. Compare this to the CHIMP model, where
a similar phenomenon is observed. For details, see (van der Post and Hogeweg, 2004).

Inheritance of dietary cultures

Now, we turn to culture and how we can use models to learn something about it. First, we point out
that culture is a fuzzy concept. On the one hand, there are traditions, which represent stagnation.
For example, a group can learn that certain foods are inedible and pass on that knowledge, while the
foods are actually edible but they consumed a rotten cache. This works against what might be optimal
food consumption. On the other hand, there is cumulative change: standing on the shoulders of giants.
Behaviours learned over a life time can be passed on and improved to, for example, access more difficult
food sources.

So, how should we get a better view of the concept culture? Well, we could start with inheritance through
learning as a basis and see how far that goes towards culture. To do this, van der Post and Hogeweg
extended their trial-and-error model from above, by adding primitive population dynamics to conduct
transmission experiments in patchy environments(van der Post and Hogeweg, 2008)

They introduced a new, naive individual into each group every year, while removing one of the older
individuals. The results of the model were that diet traits were inherited over generations, giving rise to
diet traditions. Over the generations, there was also an increase in diet quality: the cumulative change
aspect of culture (Figure ??).

We observe cultural phenomena here as side-effect: grouping + environmental conditions gives a sem-
blance of culture for free. Of course, the parameters still need to be right: this doesn’t happen under
every parameter regime. Transmission of learned behaviour and learning need to be of certain strengths
for this to work. However, these parameters can evolve due to all manner of reasons that have nothing
to do with culture!
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Figure 3.7: van der Post and Hogeweg (2004)

Conclusion optimality-based versus opportunity-based
approaches
We observe that social learning can arise as a side-effect, not a strategy. Importantly, we get environmental-
based memory, e.g. in a uniform environment, diet divergence is seen. We also obtain coherence between
sets of behaviour: between grouping and social learning, and how this translates into traditional or pro-
gressive cultural phenomena. Moreover, we obtain alternative explanations for behaviours. We see
automatic adaptation: behaviour automatically adapts due to the environment. The BUMBLE socially
regulated clock (large nests versus small nests, self-regulation for correct reproduction timing), and com-
pensatory feeding are two examples. There is also stagnation by doing what you did before: if you won
previous dominance interactions, you will likely do that again. If you have learned to eat some foods,
you will probably eat them again. Lastly, there are long-term effects and what you can call long-term
information integration: over the generations, diet traits turn into diet traditions, but they are still
amenable to cumulative change.
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Chapter 4

Prebiotic evolution and the
information threshold

We now come to a new part of the course, where we investigate how the evolutionary process led to the
complexity that we can observe today. What are the prerequisites for Darwinian evolution, how does
evolution lead to more complexity, and what problems are encountered along the way? That is what we
will focus on in this part of the course.

Introduction to prebiotic evolution
One of the most fundamental issues in biology is the question of the origin of life. How did life arise from
molecules in the environment of a pre-biotic world? Not surprisingly, there are many hypotheses and
theories regarding this issue. We will address some of the main ones here. So far, research has mainly
focussed on three aspects of life:

1. Vesicles: how do vesicles emerge from the properties of lipids and how do they grow and divide?
(Schrum et al., 2010; Mansy and Szostak, 2009; Luisi et al., 1999; Ruiz-Mirazo et al., 2014)

2. Catalysis: how do we get self-sustaining networks of catalytic peptides (as we see in cells)?
(Falkowski et al., 2008; Ruiz-Mirazo et al., 2014)

3. Replicators: how do we get replication of information-coding molecules (as we see in DNA and
RNA)? (Ruiz-Mirazo et al., 2014; Orgel, 2004)

In each case there is a focus on building blocks (i.e. a basic unit from which complexity can be assembled)
and some form of replication process. Assuming the availability of these simple building blocks, we can
summarise these theories as:

Life is energy/nutrient cycling (catalysis first)

All living organisms have catalytic networks that convert certain nutrients into building blocks or energy.
Furthermore, the core machinery in these networks seems to be conserved over many species. We could
therefore speculate that (auto)catalytic networks stood at the basis of life. In this scenario, there has
been a focus on hydrothermal vents, where we get energy (temperature) gradients and compartments
(in the rock) for free, and in this rock there are potential catalytic substances (metal sulphides) (Lane
and Martin, 2012; Lang et al., 2010). This would create an optimal environment for the emergence of
autocatalytic sets (of e.g. peptides). However, the main question in this scenario remains: are these
autocatalytic sets evolvable? Can selection act and complexity arise from them?

Life is cells (compartments first)

As suggested by, for example, Szostak, life requires compartmentalisation (protocells) (Schrum et al.,
2010; ?). These compartments ensure some kind of organisation, and furthermore allow for competition

61



between different compartments (and hence selection). In wetlab experiments, Szostak et al. have shown
that they can get large, heterogeneous, mutlilamellar vesicles (i.e. micells/protocells with fatty acid
”membranes”) that grow and divide into multiple daughter cells. Furthermore, these protocells can
absorb fatty acids from other protocells, leading to competitive growth (Adamala and Szostak, 2013).
One interesting point from Szostak’s experiments is the following: initially, they worked in a very ”clean”
system, studying uniform, unilamellar vesicles. This led to problems with divisions: during each division
the volume decreased until eventually the vesicles were too small and disappeared. When they switched
to more heterogenenous, multilamellar vesicles, these problems disappeared and they found protocells
that could keep dividing without volume loss. Actually, this heterogeneity is more likely to occur in a
highly heterogeneous, messy environment, which is what we should expect from a prebiotic soup. This
example shows that, while in experiments we always try to be as ”clean” as possible, the heterogeneity
that we should expect in real life might sometimes make things easier!

Life is evolution (replication first)

We can also state that the main characteristic of life is replication of heritable information that can be
selected. According to Gerald Joyce (Joyce, 2012), living systems:

1. Have a molecular memory (genotype) which is shaped by experience (selection)

2. Are maintained by self-replication

If we consider this starting point, RNA is a good candidate molecule because RNA can both store infor-
mation (template, nucleotide sequence) and catalyse reactions such as its own replication (i.e. ribozymes).
The current in vitro state-of-the-art of an RNA system that is capable of ongoing Darwinian evolution
is an evolving, self-replicating system. It is ligation based: A+B +E → E.AB → E.E → E +E. This
system grows exponentially and evolves. However, only a few nucleotides are prone to evolution, most
nucleotides in A and B are fixed. These fixed nucleotides are ”borrowed” from a current ribozyme, that
is known to have a ligation function (Samanta and Joyce, 2017).

RNA world
We will focus on the replication-first scenario. RNAs act as replicators as well as information carriers.
Our focus is on whether RNA molecules, with some form of self-organisation, can evolve to resemble
living systems. Recent findings show that many RNAs can act as enzymes called ribozymes (Doudna and
Cech, 2002): think of the ribozymes in the ribosome, for instance. This means that RNAs are molecules
that have special properties and behaviour (catalysis), and are capable of carrying the information coding
for these properties. They can, in principle, also replicate this information (by replicating themselves).
Hence, RNA molecules are ideally suited as a minimal model for the evolution of complex life from simple
building blocks.

In our approach to the origin of life we focus first on replicators in the form of RNA molecules. Unlike
peptides, in which self-replication is always highly dependent on particular other peptides (non-generic),
RNAs can always self-replicate (in principle) by binding of the correct complementary nucleotides. In
this way an RNA-world provides the minimal requirements for evolutionary optimisation (Darwinian
selection):

1. Generic replicators

2. Independent synthesis and decay

3. Mutation

4. Competition

The difficult problem is the synthesis and stability of RNA. One of the biggest questions in prebiotic
evolution is how early RNA replicators managed to evolve into larger complexes. Given that an RNA
world would suffice in terms of the minimal requirements for evolutionary optimisation, the most imme-
diate question is whether Darwinian selection would actually occur, and what its consequences would
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be. Can an early population of self-replicating, rapidly mutating RNA molecules exist and give rise to
complexity? This issue was studied by Eigen et al. when they developed their quasispecies theory (Eigen,
1971; Eigen et al., 1988).

Quasispecies theory
Eigen and Schuster formulated the quasi-species model in order to study whether some key ingredients
of evolution would allow for selection processes to arise in non-living RNA molecules and lead to a
bootstrapping process which could amplify complexity. In other words: whether simple, short RNA
molecules could evolve into longer, complex RNA molecules (Eigen and Schuster, 1977, 1978). By using
RNAs, they took the best-case auto-replicator. Furthermore, they assumed a sequence-independent
replication rate. In this way, they had a pre-biotic system that fulfilled the four requirements listed in
the last section.

Eigen tried to capture these requirements in his replicator equations. These equations describe the
abundances of different replicators (e.g. strains, indexed with i) in a chemostat. A chemostat is a type of
bioreactor where new medium and/or micro-organisms are continuously added, while an equal volume of
medium and/or micro-organisms is removed, such that the total volume of the system is constant. The
equations are:

dXi

dt = Ai ∗Qi ∗Xi − diXi + Sum(Wij ∗Xj)− Ωi with Ωi = (Xi/Sum(Xj)) ∗ Sum((Aj − dj)Xj)

Here, Xi is the abundance of replicator strain i, Qi the quality of replication of strain i (i.e. how faithfully
the replicator can reproduce itself), Ai its growth or replication rate and di its death or decay rate. The
first term thus represents successful replication of Xi, again forming individuals of strain i, while the
second term is the decay of Xi. Unsuccessful replications (i.e. non-perfect replications) of Xi mutate and
form other strains j. This happens at a rate Ai ∗ (1−Qi)∗Xi. The third term in the equation represents
the formation of Xi by the replication and mutation of other types Xj . Here, Wij is the amount of j
mutants that are equal to the i genotype. This takes into account the rate and quality of replication
(i.e. Aj and Qj) and the mutational distance between i and j. Lastly, Ωi is a dilution term: it leads to a
decrease in Xi-concentration at a rate proportional to the frequency of Xi in the population (first factor)
and the total population growth (second factor). This term represents the chemostat assumption: it
assures that the total sum (Sum(Xj)) remains constant, i.e. that the total concentration of replicators
does not change.

For the more mathematically trained people: the main result of this equation is that, over evolutionary
time, the system will converge to the normalised eigenvector corresponding to the largest eigenvalue
of matrix W (mutation interactions). This eigenvector describes the final frequency distribution of
all strains. If you are a not sure what that means, in layman’s terms we can say that instead of a
single “fittest” replicator, we get a distribution of replicators that is “fittest”. This is what we call a
quasispecies. The evolutionary process maximises the total growth rate, and hence selects for the
quasispecies (i.e. a collection of genotypes) that grows fastest. This means that it does not necessarily
go to the fittest RNA, but to the fittest combination of RNAs which is a cloud of mutants that are
(genotypically) related.

The first surprising insight from this model is that certain replicators are present in the population not
because they are optimal (i.e. have a high growth rate), but because they are mutationally close to
a replicator with a high replication rate. This illustrates an important point: just observing a certain
phenotype in the population does not mean that this phenotype is evolutionary optimised itself !

A second important result is that whether evolution leads to the fittest RNA in this model depends on
the mutation rate. When the mutation rate is too high the fittest replicator (in terms of replication rate)
might no longer be able to survive. This can best be illustrated in a simpler model, that is described
below.

Master-mutant simplification
In the original quasispecies model, fitness can be defined a priori as the rate of replication. Let’s assume
a Dirac-delta like fitness function: one particular replicator has a high replication rate (a1), while all
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other replicators have the same, lower replication rate (a2). We can then simplify the model to two
equations: a master equation (the fittest) and a collective mutant equation (all others):

dx
dt = a1 ∗ x ∗Q− d ∗ x− x ∗ ((a1 − d1)x+ (a2 − d2) ∗ y)

dy
dt = a2 ∗ y + a1 ∗ (1−Q) ∗ x− d2 ∗ y − y ∗ ((a1 − d1)x+ (a2 − d2) ∗ y)

Here, x is the fittest strain (i.e. the master sequence) and y represents all the less fit mutants. x + y
= 1. Because x is only a specific “strain”, and y represents all other mutants, we neglect back-mutations
from y to x. Both x and y have a negative term to keep x+y equal to 1 (textbfthe chemostat assumption).
We can use this set of equations to investigate under which conditions the master sequence, x, will be
present in the system. For this we will use the invasion criterion, which looks at whether a small amount
of x is able to invade a population of y. In effect, this allows us to research when selection works: if
there are conditions under which x is competed out of the system, that means there are fundamental
restrictions to when natural selection can work.

For x close to zero, we can simplifie into:

dx
dt = a1 ∗ x ∗Q− d ∗ x− (a2 − d2) ∗ x ∗ y = x ∗ (a1 ∗Q− d1 − (a2 − d2) ∗ y).

Since x+y = 1 and x 0, y 1. Hence, we see that x can invade (dxdt > 0) if:

a1 ∗Q− d1 > a2 − d2

Assuming d1 = d2, i.e. the difference in fitness is only given by the growth rates a1 and a2, this simplifies
into:

Q > a2

a1

and since a1

a2
is the selection coefficient: the relative fitness advantage of a1 over a2, which is denoted

as σ, we can simply write:

Q > 1/σ

This is the error threshold condition. If the replication quality Q is not large enough, x cannot invade
into a population of y. This means that the master cannot sustain itself in the population; and hence
that we do not see survival of the fittest: if one master sequence would mutate into existence into a
large population of less fit sequences, it would not prevail. Therefore, these equations lead us to believe
that natural selection cannot operate if quality of replication is too low. In other words: for too low
replication quality, fitter sequences cannot be selected for, and as such the system is outside the grasp
of natural selection. Would this have posed a problem during evolution as it occurred on Earth? We
should wonder whether the error threshold poses a problem at realistic parameter values. For this, we
need to determine what sequence lengths can be maintained at particular mutation rates.

Information threshold
RNA is a polymer, and hence mutations at many locations in the sequence are possible. Hence, Q, the
quality of replication per genotype, can be calculated as qL, where q is the quality of replication per
residue and L is the length of the sequence (measured in number of base pairs/residues). Now, given
that q is fixed, limitations on Q (as given by the error threshold) also put constraints on the length of
the sequence L.

For q close to 1, we can use the following identity:

qL ≈ e(−L∗(1−q)); where e is the natural exponent 2.71828....1

Then, substituting this into the expression we found for the error threshold yields:

Q > 1/σ → e(−L∗(1−q)) > 1/σ

1We simplify by using only the first order of a Taylor series, which is good enough for q close to 1
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Figure 4.1: Graph visualising the Error Threshold On the X-axis is the error rate (1 minus the
quality of replication). The Y-axis depicts the concentrations of the master sequence (blue) and its
n-distant mutants. The abundance of consensus (the presence of a consensus sequence) it depicted in
red. Not that after the threshold, all replicators are in equal abundance, and natural selection does not
function.

If we now take the natural logarithm on both sides, we arrive at the following equation:
−L ∗ (1− q) > −ln(σ)

Which finally gives:

L < ln(σ)/(1− q)

What have we learned by jumping through all these mathematical hoops? The interesting thing about
this equation is that it predicts a limit in sequence length, above which information cannot be main-
tained because the master sequence can no longer be maintained in the population. In other words:
for a given error rate per base pair, only a limited amount of information can be stored in a replica-
tor. This is the concept of the information threshold, which of course directly relates to the error
threshold. In simulations, it appears that RNA strings larger than +/- 50 bases are not under the error
threshold anymore (Takeuchi and Hogeweg, 2007). Hence, for longer RNA strings another molecule
(enzyme/ribozyme) would be needed to improve the copying fidelity (increase q). It has been calculated
that the information threshold already occurs for a sequence length of 50, a 95% replication fidelity,
and a very strong selection coefficient. If we imagine early, unoptimised copying of replicators, we can
imagine that replication fidelity might be a lot less than 95%. This is thus not merely a theoretical
problem: we should expect this error threshold or information threshold to be a major obstacle in
evolution towards complexity that life has somehow overcome.

The dynamics before and after crossing the error threshold are quite different (Figure ??). The main way
in which we can recognise that the system has not yet crossed the error threshold is that the common
ancestor of all individuals is the master sequence (in blue). Hence, all other sequences are only present in
the population because they are mutants of the master sequence, and this is represented in the consensus
sequence of all sequences in the population (which is still the master sequence; red). This is thus a
clear example of a quasispecies: a master sequence and its close mutational neighbours make up the
population. Note that although the master sequence is the common ancestor of all sequences present, it
is not necessarily in the majority. As we get closer to the error threshold, the mutants greatly outnumber
the master sequence.

Three important remarks at this stage:
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1. Quasispecies theory is deterministic, and defined on infinite populations (in contrast to Muller’s
ratchet which describes a stochastic effect on finite populations).

2. The replicator equations have the nice feature of combining evolutionary and ecological time scales.
Mutation happens while ecological dynamics also play out (often, these are separated to simplify
matters).

3. By writing down simple differential equations we come to two fundamental concepts: error threshold
and quasispecies. This turns Darwinian selection into a theory, away from a tautology: now it can
be false (i.e. it is not always true that replicating sequences with differing fitness are within the
grasp of Darwinian natural selection).

Importance of the information threshold

But is the information threshold really a problem for evolution? The most likely answer to this question
is yes, since we have seen that the information threshold already becomes problematic for relatively short
RNA sequences (see above). Furthermore, by looking at genome size and mutation rates we get a good
indication of its consequences: research has shown that there is a negative correlation between genome
size and base substitution mutation rate (Lynch, 2010). Larger genomes have less mutations, and in order
to have less mutations, they are often equiped with repair mechanisms. The latter mechanism sounds
like an “easy” solution to the information threshold, but it is in fact paradoxal: how to accumulate this
repair information, if accumulating information was our problem to begin with?

It is important to note that we have used a best-case scenario in the quasispecies model (i.e. to prove
there is a problem) to show there is a limitation of the power of Darwinian selection:

1. We have used an infinite population, which means that:

(a) All possible replicators exist, and the best quasispecies is always selected. If you would start
with only a subset, it might be more difficult. In other words: we start with all possible
genomes of replicators, but in reality, not all possible replicators with a sequence length of n
bases will have existed, so it might be more difficult for selection to lead to a master sequence.

(b) There are no stochastic population dynamics, meaning that even if something is present in
very low concentrations it doesn’t go extinct. In effect, if there is 0.01 master replicator, we
still take it into account, while it would actually be extinct in the real world.

2. We used strong selection and a single-peaked fitness landscape. This means that there is a very strong
transition in fitness between the master replicator and the mutants. Said another way: we assume
a large selection coefficient. All mutants are very unfit, while the master sequence is supremely
fit. That is optimistic: not all mutants need to be much less fit than the master replicator. If the
landscape is different, delocalisation of the quasispecies still occurs but the transition is less sharp
(Takeuchi and Hogeweg, 2007). You will learn more about fitness landscapes in the next chapter.

3. We used a fixed sequence length and no other constraints on length. In actuality, there would be
negative energetic selection on longer sequences: shorter sequences are replicated faster and take
less energy to replicate.

Moreover, this analysis doesn’t address how we get longer sequences in evolution, although it does allow
us to focus on length alone. Even in this best-case scenario, sequence length slams into a brick wall if
mutation rate is too high and sequences are too long. Life definitely has a major problem. This is called
Eigen’s paradox: to store more information we need better replication, but to get better replication
we need to store more information(Peck and Waxman, 2010). In other words: longer sequences require
better replication, but better replication can only be achieved by more proofreading or fidelity-enhancing
processes, which would require more sequence length to code for them. Nonetheless, we exist, so the
problem must have been solved. How, then, to cross the information threshold?
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Figure 4.2: A simple two-species hypercycle

Figure 4.3: A five-species hypercycle

Hypercycles
A first attempt to explain how the information threshold could be crossed was also formulated by Eigen
and Schuster (1977-1979) who considered an ecological solution: an ecology of interacting molecules that
form stable networks and so together maintain more sequence length than each on their own(Eigen and
Schuster, 1977, 1978). Their ecological modeling approach focussed on ecological stability (and thus,
ironically, neglected mutations). A very simple form of this idea is depicted below (See Figure ??).

The accompanying ODE equations are:

dA
dt = a1 ∗A+ b1 ∗A ∗B − ω dB

dt = a2 ∗B − ω

where a1 and a2 are the catalysis-independent replication rates, b1 is a catalysis-dependent replication
rate and ω is a chemostat-assumption term (see the quasispecies equation). This leads to the system
below:

If we generalise this two-species model to any number of species we get:

dXi

dt = ai ∗Xi + bj ∗Xi ∗Xj − ωi

with the second term signifying that Xi receives catalysis from Xj . Thus, you can get hypercycles as
below, with self-catalysis and help in catalysis from others in cycles of varying sizes (Szostak et al., 2016):
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If we look at the simplified ODE, a1 + b1 >> a2 would imply that A outcompetes B. The other way
around (A catalysing B) will not work either, then B will outcompete A. We will always expect the
replicators that are not catalysed to be outcompeted, and this holds for any number of species that
catalyse each other. Hence we need feedback: a cycle.

The resulting dynamics depend on the cycle length. There is always one non-trivial equilibrium. When
the cycle length is 3 or less than three, there is a fixed point attractor (see introduction to ODEs in model
formalisms). At 4 replicators, there is a stable spiral. From 5 replicators onwards, there is a limit cycle
with increasing amplitude. The latter notion illustrates one of the problems with ODEs: replicators in
these systems can go to concentrations/numbers of 0.001 before receiving catalysis again. That is not
realistic, as we discussed in Chapter 2 when we talked about the attofox problem.

In this model, the only stable topology is a circle, because non-catalysing branches will always outcompete
other molecules. In other words, parasites that do not give catalysis but do receive it will quickly
outcompete the mutualists. When mutations are added to the ecological system it is clear that even the
stable topologies (cycles) are quickly destroyed by parasites which destroy its cyclical nature. If only one
replicator evolves such that it gives less catalysis than it receives, the system is doomed.

Moreover, new hypercycles without parasites cannot invade the system since the X2 term (the Xi ∗Xj)
dominates the equations in the model. This is the only quadratic term, and thus has most influence on
the fate of the system. Thus, concentrations of replicators matter more than their growth rate (while
growth rate is what you could see as a measure of fitness). Hence, cycles with a better growth rate
but low concentration could never invade an already established cycle. This in itself is an interesting
consideration for Darwinian selection. Darwinian selection only works if replication rates are more of
less linear, i.e. if in a ∗Xn:

1. n > 1, then survival of the first (very strong founder control)

2. n < 1, then survival of everyone (this will be covered further in a question during the practicals)

Peculiar properties of the hypercycle solution

We considered the stability of the system in terms of invasion of mutants. This consideration is illustrative
of the importance of a famous essay by Dobzhanksky (Dobzhansky, 1973): Nothing in biology makes
sense except in light of evolution. Mutations happen, and so one should always consider what a biological
system does in response to these mutations: is it stable? In this case, we see that the hypercycles are
resistant to invasion of hypercycles with better replicators. Invaders can’t get a foot through the door if
they are a tiny concentration to begin with, as you would expect when a mutant first arises (invades).
There is thus once-only selection: once a hypercycle is established, it cannot be invaded by hypercycles
with better replicators. Thus, this is no answer to the information threshold. In this way, complexity could
never arise, because fitter hypercycles (higher growth rate) would not outcompete less fit hypercycles.

In fact, the solution as a whole is a bit peculiar. The information threshold is encountered because
high mutation rates cause there to be a hard limit to the length of a sequence: increase it, and natural
selection cannot work anymore. The conundrum is thus that longer sequences require lower mutation
rates, while having a lower mutation rate is probably dependent on having a longer sequence that codes for
some proofreading step or repair mechanism. This attempt at a solution, however, does not incorporate
mutations. In fact, if any replicator would mutate (lower) its parameter governing how much catalysis
it gives to another, that replicator comes to dominate and the system fails. Why? There is no pressure
to coast a replicator into giving high catalysis to others. If it lowers its catalysis of others, it still gets
help in catalysis itself (from an altruistic sucker), and might be able to catalyse itself more. Win-win!
Except that if that goes on, the system eventually dies out. So, somehow, this “solution” to the error
threshold only works when we allow for no errors at al!

A final weakness is that survival of a hypercycle with many replicators (>= 5) depends on limit cycles
with high amplitudes: high fluctuations in replicator counts. If you correct for replicators where 0.0001
replicator still exists (as is possible in the ODE formalism), the cycle is actually unsustainable. Thus,
the system is also instable for large cycle sizes.
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What happens if we add space?

We will now consider removing the infinite and the well-mixed assumptions of the ODE hypercycle
model. These are assumptions that are implicit in the ODE model formalism. They snuck in through
the back door, but life isn’t infinite and certainly isn’t always well-mixed. We will explore how space
and locality influence the hypercycle model.

Hypercycles in space
Spatial modelling systems do not assume well-mixed conditions, and when using a CA, it also assumes
that there is limited reproduction space (i.o.w. population is finite). Here we discuss the study of
hyper-cycles in a CA by Boerlijst and Hogeweg (Boerlijst and Hogeweg, 1991). In this model the only
assumptions are: decay of replicators, replication (local in space) and catalysis of replication (local in
space). Thus replicators can replicate locally, and catalyse others locally. With these assumptions, the
CA rules are a translation of the ODE assumptions into the CA formalism.

The question then is: how does the system behave? A very general result of this model is that the
system organizes itself into a particular form of mesoscale patterns, namely spiral waves. In these
spirals, bands of individuals that receive catalysis from the band preceding their band are formed. So if
A catalyzes B catalyzes C catalyzes D catalyzes A, we will see patterns in which we see bands of A - B
- C - D - A, etc. In the figure below, we can see such spiral waves, where different replicators are given
different colours. Waves arise from the core and spin outwards, showing the banded pattern described
above.

Figure 4.4: Hypercycles
in space form into spiraling
mesoscale patterns when the
number of species is greater 4

Just like we saw in the hypercycle ODEs, the dynamics in the CA
depend on the number of species (i.e. length of the cycle, see Table
4.1):
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Figure 4.5: Where ODEs form “attofox” problems for more than 4 species, the CA hypercycles form
into spiraling mesoscale patterns

Table 4.1: Modeling formalisms and their assumptions on space, time, and the modeled variable(s)

Cycle length (n) ODE behaviour CA behaviour
n <= 3 stable fixed point no pattern / mixed
n = 4 stable spiral chaotic wave pattern
n >= 5 limit cycle (note: attofox!) spiral waves

So, we see that the stability of the dynamics is very different in the
CA than in the ODE. In the ODE, we found limit cycles with high
amplitude for systems with many species. Hence, we would expect
extinction in the oscillations (when correcting for attofoxes). In the
CA, this problem is solved: the stable spiral wave patterns ensure
that a large number of species can be sustained.

We also see in the CA that the spirals grow from their core. All
individuals that are part of a spiral are offspring of one of the few
core individuals. Hence, long-term fitness is determined by location:
only individuals in the spiral core are at the right place at the right
time and will have non-zero long-term fitness!

The next question is whether these spirals have any meaning for the
biological system in question? What do they represent? Unlike the
rule 54 CA studied by Hanson and Crutchfield (Hanson and Crutch-
field, 1997) ), there is a model relation to something in biology, i.e. entities in the CA represent molecules.
Hence, the mesoscale pattern has some biological meaning in terms of those entities. In other words:
mesoscale patterns in elementary CA 54 consisted of particles, but they were just random effects of a
binary rule set. Here, the rule set is based on biology, and hence the resultant mesoscale patterns could
have an actual meaning in biological terms, and are likely very important to biological systems.

The next question we can ask is whether such meaningful patterns are important, or just colourful scenery?
This question becomes clearer when we study the system’s properties, in particular its resistance to
parasites. Unlike the ODE model, we find that the CA system can recover even from introduction of
very severe parasites (see Figure ??). We see that parasites can grow locally, but eventually die out as
they are pushed out the the periphery of the spirals. Obviously, you could argue that if we were lucky
not to introduce any mutant parasites into the spiral cores, we should expect that the parasites should
be expelled from the system, because the spirals are generated and refreshed from their cores, washing
out all parasites in the spiral. However, even if we specifically introduce parasites into the spiral core and
these manage to take over a whole spiral, they are still purged from the system by other, non-infected
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Figure 4.6: Hypercycles in space are very resistant to parasites due to the formation of spirals, where
parasites are pushed out of the system

Figure 4.7: Hypercycles in space with different levels of diffusions (from left to right: low, 0, high)

spirals. In this instance, we take a worst-case scenario in terms of parasite invasion in order to show how
resistant the system is!

Given that we find such a difference in results with the ODE model: which is the best model? This
is actually a bad question! Instead, it is more fruitful to view both models as two extremes in terms
of local interactions versus well-mixed populations. One can then ask what happens in intermediate
situations: what if there is some level of diffusion? In the CA, we can add this diffusion in (see Margolus
diffusion in timing regimes). Then, results show that with no diffusion, waves have quite a small scale
and stochasticity plays a large role in the system (Figure ??). As diffusion increases, the spatial scale of
waves tends to increase (larger waves) making them more resistant to parasite invasion. On the other
hand, fewer waves fit in the field (there are only so many CA grid points) making the system more
sensitive to invasion if a wave would be taken over by parasites. In a sense, these results indicate an
irony, though it may take some time to understand it. In going towards the more well-mixed state (in
an ODE, everything is consistently well-mixed), the power of mesoscale patterning is actually increased.
We introduce diffusion, and the waves become larger! As long as you increase the space somewhat
concomitantly with diffusion, mesoscale patterns keep occurring and shaping the dynamics of the system.
This illustrates that the ODE result is the limit of extreme diffusion in an infinite domain. In other words:
only in the extreme case that everything is well-mixed all the time and there is infinite space do the
ODE results hold. In mixed space (local interactions with diffusion) on the other hand, spatial resolution
(patterns) dominates, no matter how much we increase diffusion!

Multi-level evolution: emergent levels of selection
The previous section has shown that many properties of the ODE system can be reversed in a spatial
system due to the emergence of mesoscale patterns (spiral waves). In the ODE model with 5 or more
species, the hypercycle becomes a limit cycle and becomes unstable. In the CA, in contrast, it becomes
a pattern of spiral waves, which is globally stable and can be resistant to strong parasites. Local
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interactions and space thus make a huge difference. Next to these differences, we also observe a reversion
in the direction of selection on death rate:

In the ODE model, increasing the death rate of a replicator is clearly a disadvantage. However, if we
allow for mutations in the death rate of individuals in the CA, we see that a higher death rate can evolve!
This might require some significant mental readjustment, so let us break this down:

1. We are in a CA, with local growth and interactions. If a replicator wishes to replicate, it needs an
empty square next to it. Replicator A helps replicator B helps replicator C, etc. Thus, fast growth
depends on empty space, and having the replicator that catalyses you close to you.

2. Spiral waves form. It is known from theory surrounding excitable media that spirals that rotate
faster invade on the space of spirals that rotate slower(Krinsky and Agladaze, 1983; Boerlijst et al.,
1993).

3. It is also known that all offspring comes from the core.

4. Given this knowledge, we can understand what happens:

(a) For an individual replicator, a higher death rate seems unfavourable: it has less time to
replicate.

(b) However, spirals that rotate faster can invade spirals that rotate slower.

(c) Faster rotation, in this case, entails a quicker succession of replicator A, by B, by C, etc.

(d) A limiting step is grid point occupancy: if replicator B wants to replicate into a spot where
A still is, it cannot. This limits the speed of the spiral.

(e) Thus, given that faster-rotating spirals are fitter spirals, a higher death rate evolves, so that
replicators more quickly vacate space, resulting in a faster-rotating spiral.

This process does not include a trade-off where higher death rates lead to a change in some other
replicator parameter like birth rate. Instead, this is a new level of selection: faster-rotating spirals are
fitter, and this reverses the selection pressure on the lower-level hypercycle replicators).

This illustrates how local interactions in space lead to non-local selection criteria in the form of spirals.
Therefore, in contrast to the ODE, we do not get the phenomenon of once-only selection because locally
stronger molecules can win and globally faster spirals win. Spiral waves can therefore be said to enslave
the molecules they are made up of because the fate of these molecules is completely determined by how
good the spiral that they live in is. Hence, we get positive selection for higher death rates and for giving
catalysis which is a reversal of selection relative to the ODE.

This argument only holds for the case that there are stable spirals. However, these only occur for a
certain parameter range of death rate, birth rate and catalysis rates. If, for example, the death rate of
the mutants is too high, the spirals will disappear. Once there are no more spirals, the selection for early
death will disappear as well and the direction of selection will again be reversed. Thus, this does not
weaken but strengthens our conclusion: it is the selection pressures exerted by the mesoscale organisation
that leads to this result. To summarise, the events proceed as follows:

spirals → selection for higher death rate → faster spirals → selection for even higher death rate → spirals
disappear (start of chaotic behaviour) → no higher-level selection pressures → selection of lower death
rate

These reversals of the direction of selection will cause the system to evolve to those regions on the border
between spirals and spiral break-up, and hence lead to evolution to the edge of chaos, or border of
order: the parameter value just below the value where spirals break down.

If we think back to the classification of all 1D CA models with the λ parameter, you might remember
that there was a class IV with universal computation and unpredictable behaviour. This was wedged in
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Figure 4.8: The decay rate of individual replicators is given on the axis, and it is shown which behaviour
is observed at different values. The blue arrow displays the direction of evolution

between class II CA, which had a limit cycle, and class III CA, which had high dimensional chaos. Thus,
there was a small sweet spot just beyond class II CA models but just before class III CA models where
there was an unusual and rare behaviour. Here, the systems evolves to something between class II and
class III. This, too, can be seen as a border of order of sorts: a small region just before chaos sets in.

Mapping higher-level selection in hypercycles back to the information threshold

It is important to consider that this spatial hypercycle system does not directly solve the problem of
the information threshold. We merely look at whether shorter or longer hypercyles can invade: if you
introduce a mutant that skips one replicator and gives catalysis to the next (i.e. normally A -> B ->
C, now A-> C), what happens? We have, however, gained a very important insight from this study,
namely the concept of multi-level evolution. We have seen that individual interactions lead to spatial
patterns (the mesoscale) which through mutation and selection (Darwinian evolution) affect individual
interactions and therewith spatial patterns. Thus, the replicators cause the mesoscale patterns, which
cause the replicators to change, which changes the mesoscale patterns. This has implications for how
we view the evolution of complex systems and how we model them. The traditional view was that we
could make a model, allow a certain variable to evolve, and thus see what the optimal evolved value for
that variable is. The CA view is that there are micro rules which are set in stone, which cause emergent
mesoscale patterns. Now, we arrive at a third vision: the evolutionary system generates mesoscale
patterns, which in turn influences the selection pressures on the micro scale, which then again influence
the mesoscale patterns. The rules of “what is good to do”, is thus not set in stone.

This is extremely important: we must let go of the idea of a static set of rules which are set in stone.
We have seen now that the lowest level does not make sense except in light of higher level processes. It
does not make sense that replicators should evolve higher death rates, except in the light of higher-level
spirals. Thus, evolution works on multiple levels, and we need an understanding of all for it to make
sense.

One more point to consider with respect to spirals is that they are very generic and occur in many
different systems. This means that conclusions that are drawn from them are very fundamental! For
instance, in PDEs spirals do not arise spontaneously as in CA due to minimum scale, but they need to be
initialised (Boerlijst and Hogeweg, 1995) However once initialised we see that they cannot be resistant
to parasites since parasites will be in all cores and the system dies out. However this is due to the
everything being everywhere problem (think of the attofox problem). When a threshold is used for a
probability of a molecules being present (i.e. to conserve mass) the PDE shows the same properties as
the CA (Boerlijst and Hogeweg, 1995). Spirals are therefore generic, as are the conclusions drawn from
them.

Subconclusion hypercycles in space

We have now seen that the hypercycle model in space behaves completely differently. Where there
are limit cycles in the ODE, there are spatial spiral waves in the CA model. This allows a higher-level
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selection pressure to shape the fate of the replicators. There is evolution to the border of order: replicators
increase their death rate to be as high as possible without going so high that the spirals in which they are
present go extinct. In the ODE, parasites kill the system. In the CA, that is not true: even if they are
introduced into the core of a spiral (where all progeny comes from), they kill that spiral and other spirals
then fill up the empty space. The system survives. By adding diffusion to the CA, the spatial situation
more approximates the ODE. The extreme locality of the CA system is more relaxed. Despite that,
mesoscale patterns continue to exist and shape the behaviour of the system. This shows that the ODE
findings are only true for the limit case: only when population size is infinite and everything is perfectly
mixed do they hold. While this spatial system thus shows a very different result than the ODEs, and
shows us the importance of multi-level selection, it is not the solution to the information threshold: if
mutations are added, there is only limited stability.

Further than Dobzhansky

Dobzhansky wrote that nothing in biology makes sense except in the light of evolution. At this stage,
we have added to Dobzhansky’s quote. We have seen a glimpse of the importance of CA models to
understand what happens in biology. Local interactions, micro-macro transitions (local rules give an
emergent macro behaviour), non-linear dynamics, mesoscales, and simple rules that lead to complex
behaviour: they are all invaluable to understanding biological systems. We have glimpsed this specifically
through modelling hypercycles in a CA system and observing the resultant behaviours of the system.
Nothing in biology makes sense except in the light of (lessons drawn from) CA models. The most
condensed bottom line of this course is that:

“Nothing in biology makes sense except in light of multilevel evolution”
Of course, giving a condensed bottom line at only about 60 pages in might strike you as premature. Do
not fret, for many details will still be added in the coming chapters.

Minimal eco-evolutionary model of emerging higher levels of selection
The hypercycles were a proposed solution for the information threshold problem. Once we had imple-
mented the hypercycles in a CA model, we observed that we could use this model to study the emergence
of mesoscale patterns (spiral waves), their stability against parasites, and higher levels of selection. How-
ever, we can also go back one step and ask: what kind of dynamics do we get if we make a minimal
model of a replicator (i.e. an ”RNA”) and a potential parasite? Such a model was made by Takeuchi
and Hogeweg (Takeuchi and Hogeweg, 2009a).

Consider a system with a replicator R and a parasite L. The parasite can be in a folded (functional)
and unfolded state, and only the unfolded state can be replicated (i.o.w. it is only truly parasitic when
unfolded). The parameter l of a parasite describes which proportion of the time it is folded (and hence
cannot be replicated). Both replicators and unfolded parasites can be replicated by a replicator R. The
parameter kL describes how strongly parasites bind to the replicators. The system can be summarised
by these reactions:

Not that in this system, parasites can evolve two things: how parasitic they are (kL), and how often
they are parasitic (l). This system was implemented in space (CA). What happens if we let the system
run, and let the parameters l and kL evolve? The system forms waves in space. There is a difference
between young waves (that have just arisen) and older waves. In young waves, the average l value of
parasites is high (weak parasites), while in older waves the average value of l is lower (see figure; blue
= high l, yellow = low l). Hence, we see that over the lifetime of the wave the parasites in the wave
become stronger, because they spend less time in their folded state and more time being replicated.

However, if we look at a longer timescale we see that the average value of l in the system goes up: the
system seems to evolve weaker parasites! How can this be? Remember that the parasites can evolve two
parameters:

1. l : how often they are in their folded (inactive) state
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Figure 4.9: All reactions in the simple replicase-parasite (RP) system of Takeuchi and Hogeweg (2009a)

2. kL : how strongly they bind to the replicator

If we look at the evolution of these two parameters, we observe an emergent trade-off between kL and l
(see below). This trade-off is not inherent to the individuals, but rather emerges because of selection on
the higher level entities (the waves). Evolutionary trajectories first converge towards this trade-off and
then move upward along the trade-off line, increasing both kL and l, leading to parasites that bind more
strongly to the replicator (high kL) but do so less often (high l).

Why do we find this trade-off? As said, it emerges from selection on the wave level. Intuitively, you
might expect that parasites would become stronger and stronger, increasing their kL and decreasing
their l. This is also what we see over the lifetime of a wave. However, waves with very strong parasites
have a very high probability of dying out (being consumed by the parasites) quickly, and will hence not
be able to produce many new waves. In this way, selection at the wave level poses a maximum on the
strength of the parasites. Why then do we move up on the trade-off (instead of down, towards lower l
and kL)? Again, we need the level of waves to understand this: If l is high the probability of birth of a
new wave is higher, because these starting waves experience little trouble from the parasite. To explain
that a bit more in-depth: waves of replicators are followed by waves of parasites. These parasites have
a high chance of being folded, and a high chance of binding to a replicator. This is a game of chance,
and by chance a replicator in the wave might find itself with free space at the back of the wave. If the
parasite would have a low l, that would immediately be bound to and this nascent wave killed off.

To look at this more closely, we can use the ODE framework: if we make an ODE system of a replicator
and a parasite, and make the parasite parameters evolvable, we will find that the parasite wins out
and the system goes towards extinction. In ODEs, space is infinite and everything is well-mixed, so
no mesoscale patterns arise. However, we can use this ODE framework to check what happens after
evolution of the CA system. If we take the evolved parameters from the CA system and run the ODE
system of replicators and parasites with them, we might find out more about the workings of the CA
system. In Figure ??, we see that values of kL and l both have a tendency to rise in the simulations. If
we take the initial parameters and the final parameters of the system, we can see a marked difference in
the behaviour of the replicators. In the initial parameter regime, replicators only increase slightly, and
do so slowly. In the final regime, replicators increase much more rapidly, and reach much higher numbers
before the parasite catches up. This is exactly the maximisation of wave birth that we mentioned above:
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Figure 4.10: Wave formation in RP-system by Takeuchi and Hogeweg (2009b), where waves have a
lifetime of their own in which parasites become increasingly aggressive.

Figure 4.11: Evolution towards increasing l in RP-system by Takeuchi and Hogeweg (2009b)

Figure 4.12: Evolution towards, and on the trade-off between l and KL in RP-system by Takeuchi and
Hogeweg (2009b)
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Figure 4.13: ODE versions of the RP system by Takeuchi and Hogeweg (2009b) to study what the
evolved parameters entail.

if a replicator breaks through at the back of a wave that is being ’eaten’ by parasites, it can very quickly
replicate away and start a new wave.

Note that the waves we see in this model have the following qualities:

1. They are born, live for some time, and die.

2. They mature: the strength of the parasite changes over the lifetime of a wave

3. They mutate and can be selected

4. They compete with each other (for space)

Hence, these waves should be seen as Darwinian entities, upon which selection can act. This model shows
an example of long-term evolution on the level of these mesoscale patterns. Interestingly, the system once
again evolves to the edge of chaos (border of order): the fastest possible waves that do not die out are
retained in the system. Even though one would naively assume that parasites would maximize their
availability for replication, we have shown here why this needs not be the case.

A final note: this system has now evolved parasites that are in a folded state most of the time. In this
folded state, these parasites might have some different (ribozymatic?) function. It shows that in a system
where a parasite preys upon a replicator, at least the ability to have some function besides replication is
opened up. Hence, this system shows a potential for ecosystem-based information accumulation through
its parasites.

Separation of time scales
The fallacy of separating evolutionary and ecological time scales
We will now discuss the problem with separating evolutionary and ecological time scales. If you recall, we
mentioned the importance of time scales in our discussion of the CA formalism. There, we mentioned that
how you should encode the next state function (NSF) depends on the time scale of the interactions that
you are modelling. If a modelling step entails the passing of a whole year, and therefore the competition
between seedlings of different trees to grow in a certain spot in a forest, you should somehow encode
that. You could do this by implementing a claim-mechanic: have all trees bordering a square engage in a
sort of fitness-battle (with some chance involved) and the victor’s seedling then grows into a tree there.
You thus influenced the time scale of competition: if you allow squares in the CA to pick a random
neighbour and copy its state, you basically say that competition takes a lot longer to have an effect
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than the reproductive act: others dont influence colonisation directly. Rather, competition is then on
the level of empty space and which neighbours there are. In the tree example with the claim-mechanic,
you know that you are modelling a longer stretch of time, and thus the times cales of competition and
reproduction do intertwine.

Here, we look at another time scale issue. Oftentimes, models assume that evolutionary and ecological
time scales are separated. What do we mean by this? The simplest example are ecological models
(population dynamics) that assume that, since mutations are rare events, they do not happen often and
can safely be ignored. Another approach is that mutations happen, but that it is assumed they are
either competed out of the population instantaneously if they decrease fitness, or fixate instantaneously
if they increase fitness, and the ecological dynamics can then continue. An example of such a study is
studied in the exercises. In reality, of course, there is a lot of standing variation in a population due to
mutations, and population dynamics could very well be affected by this. We will showcase two examples
that clearly indicate that separation of time scales, and deciding what is fit a priori, don’t work.

Time-dependency of fitness in a spatial host-parasitoid system

We often think that fitness is a clear concept: the more of your offspring survive, the fitter you are.
However, the following example shows that it is not so easy. We look at a host-parasite system, as
classically defined by Nicholson and Bailey (Nicholson and Bailey, 1935). The conclusions here were
reached by work by many people, including Boerlijst and Hogeweg (Boerlijst et al., 1993; Savill et al.,
1997). In this system, there are hosts (similar to prey) that are parasitised by parasitoids (parasites
that live alongside or inside the host before killing them) that kill them. These parasitoids can move
towards the hosts with a certain inclination B. If B is 0, parasitoids randomly diffuses. If it is > 0, they
preferentially moves towards higher host density. When B = 1, the parasitoids sort perfectly according
to host density: two hosts will attract twiche as much parasitoids as one host. If B > 1, parasitoids
move towards areas with the highest host density. In that case, if there are 5 hosts in location A, and 6
hosts in location B, parasitoids would all move towards location B. Initially, you would assume that for
optimal parasite replication, it is best if B = 1.

The system is simulated as a MAP lattice: as you may remember, MAPs are a discrete form of ODE.
Each cell in a grid thus contains such sets of equations, and hosts and parasitoids can move between
lattice points (grid points). In the figures, hosts are not shown, and patches are coloured according to
the parasite with the highest density in that patch (Figure ??). We attempt to understand how and why
the migration parameters of the parasites evolve.

In this simulation, we can see three levels of selection:

1. Individual hosts and parasitoids

2. Chaotic waves versus spirals of hosts and parasitoids

3. Regions of chaotic waves or spirals

By studying the life cycles of patterns in the model, it becomes clear that a life-history of spirals emerges.
High B leads to chaotic waves, whereas low B leads to spirals. Thus, the evolution of B determines what
spatial patterns emerge, and there is a distinct order of events:

1. New spirals are born at the interface between spiral and chaotic wave regions with high B as
descended from chaotic waves

2. These new spirals rotate fast, as they have active migration

3. Over time, B within spirals evolves towards lower values, causing these spirals to lose their domain
(faster spirals outcompete slower spirals, as we have seen)

Why does this happen? Well, we know that all individuals in a spiral come from the core. Therefore,
being in the core is a good thing: you have high fitness. Individuals with low B have more of a chance to
stay in the core, because individuals with high B migrate out towards higher host densities! In chaotic
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Figure 4.14: Spirals in lattice map model by Nicholson and Bailey (1935)
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Figure 4.15: Short vs long-term fitness in lattice map model by Nicholson and Bailey (1935)

regions, however, it makes sense to have high B values: you need to migrate towards hosts to reproduce,
while in a spiral, a new wave of hosts will come along.

It becomes clear that there are various selection pressures especially when inclusive fitness is analysed
over different time scales (see Figure ??), i.e. how much fitness individuals have over the generations.
When viewed over 50 generations, low B parasitoids have the least offspring, no matter what spatial
pattern individuals are in. Keep in mind that this is inclusive fitness measured over a much longer
period than is done in any field experiment. If we look over 300 (!) generations, individuals with the
lowest migration towards hosts have the greatest fitness within spiral cores and also dominate over other
locations (spiral arms and chaotic waves). Thus, in the long term, low values of B are fittest. So does
everyone evolve to low B values? Clearly this does not happen, and the explanation is that over the 300
generations descendants from low B ancestors will always evolve to higher B values: once away from the
spiral core, you are fitter locally with higher B.

In this spatial system where mutations in migration towards hosts can occur, we see many counterintuitive
or novel phenomena:

1. There is no fixed notion of fitness, which always remains the same.

2. At one time point, lower fitness individuals might be the major source of offspring in the system
(initially low fitness of low B individuals)

3. In any biological system one should expect multiple evolutionary time scales

Thus, the most important conclusion here is that fitness is not static, but instead that fitness is a
time-dependent function. Indeed, immediate fitness benefits can be overruled by long-term fitness

80



Figure 4.16: Phenotypic space of predator prey dynamics implemented by Van der Laan and Hogeweg
(1995)

effects: individuals with low B evolve, even though they initially have low fitness. Only after many
generations and within the core of a spiral are they incredibly fit.

Eco-evo predator-prey model

Van der Laan and Hogeweg developed a predator-prey model to study the interaction between ecology
and evolution (Van der Laan and Hogeweg, 1995). The model was set up with many phenotypic variants
with a probability of consuming each other based on Gaussian distribution around predator phenotypes
(Figure ??). Phenotypes are on a wrapped scale (think of the time of day being active; 24:00 is right
next to 1:00. In the same way, maximum and minimum values are right next to each other mutationally
on this scale) and there is no space so that all prey and predators compete globally. There is therefore
only shape-space: the space where variants are ordered (nearness). Offspring can be mutants on this
shape-space. This shape-space is depicted in the figure below .

You thus see that there is 1D space for both predators and prey to sit on. The Gaussian curve from a
predator to the prey below shows how much of the prey with that phenotype the predators can eat. σ
is the parameter that determines how broad the area that each predator phenotype can eat is, higher σ
thus gives a more generalist predator. Mutations in the model can be turned off and on, and mutation
speed for predators and prey is the same (not because we assume that is so in real life, but because it
is not what we are looking at here). We will now look at what simultaneously simulating ecological and
evolutionary dynamics does to the system.

Simulations are initialised with monomorphic (only one phenotype) and symmetrical predator and prey
populations (i.e. they start at the same position along the phenotype axis). Quickly, however, there is
speciation into two predator-prey pairs. Interestingly the predators are not on top of the prey, but in
between them. Moreover, there seem to be evolutionary oscillations in the parameters.

So how to characterise this role of evolution? The most straightforward way is to stop mutations
and see what happens. When this is done the system mostly dies out, though it does depend on
when mutations are stopped (not shown in the figure). This indicates that mutations affect ecological
population dynamics. Moreover, diversity is lost when mutation rates are set to zero. Note that this is
not just a quasi-species, but four ”true” species: they exist separately on the phenotypic scales. Given
that they exist with but (often) die out without mutations, we can see that mutations stabilise this fairly
diverse ecosystem, whereas their lack dooms it. What the wiggles show is that, at all times, populations
are being pushed phenotypically. Although this is a very simple model, this could be an important
mechanism for maintaining ecosystem diversity, i.e. continuous adaptation through mutations maintains
diversity.

To gain more insight, the system is described using ODEs and parameters are fitted (Figure ??). Note
how that apart from the aforementioned evolutionary oscillations, we here observe strong ecological
oscillations. The dotted lines are the system when mutations are allowed. The oscillations are less
extreme. This thus leads us to the conclusion which is clear as day: mutations stabilise ecological
dynamics.

Indeed, population dynamics often uses the argument that mutations are such rare events that they
don’t really impact the ecology. The lower figures show that the lower the mutation rate, the more
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Figure 4.17: Space-time plots of the phenotypic axis (left panel) and population densities of predators
and prey (middle and right panel) Van der Laan and Hogeweg (1995)
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Figure 4.18: Ecological vs evolutionary dynamics in predator prey model by Van der Laan and Hogeweg
(1995)

the purely ecological and ecological + mutation system are out of sync with each other in the ODE
formalism. This counterintuitive finding happens because mutations affect how far predator and prey
bands are away from each other: small mutations result in some separation between predator and prey,
while high mutation allows close matching and more specialised predators. Taken together, this leads us
to the following considerations:

1. There is a narrow parameter range to make ODEs biologically viable at an ecological time-scale
(i.e. when time scales are separated and mutations don’t occur).

2. The population dynamics of each species (the period of the system) are much faster in the evo-eco
model, which is counterintuitive given that evolution is always considered to be a slow process.
Instead evolution speeds up ecological dynamics, showing that these time scales interlock, and
interplay.

Changing the width of the interaction of phenotypes (i.e. the width of the Gaussian, σ) also leads to
interesting differences. As σ increases the evolutionary oscillations take longer. Moreover as σ decreases
the system changes from a static system to runaway red queen dynamics (figure above).

The bottom line of this all is thus that we now have an existence proof of a counter example to fast
ecological processes and slow mutational processes. We have shown conclusively that they can interact
and that, in this case, larger disparities in speed means it is more important to include mutations, because
the behaviour is then most different. Evolution could play an important and continuous role in stabilising
ecosystems.

Adaptive dynamics (the study of invasion dynamics by completely separating ecological and mutational
time scales) is thus not a realistic choice for modeling such systems. We cannot say beforehand that
ecology and evolution do not interact or influence each other. In fact, it is more likely that they do.
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Conclusion separation of time scales

It is abundantly clear by now that separation of time scales can lead to wrong ideas about evolution. We
have seen from the first model that fitness is a time-dependent function. If you look at inclusive fitness
over fifty generations, parasitoids with high B parameters did very well for themselves. However, over
300 (!) generations, it is clear that those with low B parameters are the long-term victors due to spatial
pattern formation. Immediate fitness comes from chasing hosts optimally (high B), but long-term fitness
comes from doing the exact opposite. The latter does evolve, even though it is detrimental in the short
term! If we would not have looked on a longer time scale, we would never have understood why this
happened.

In the second example, we saw clearly that adaptive dynamics (where one separates ecological and evo-
lutionary time scales) is a poor reflection of reality. The model provides an existence proof of a different
situation: mutations actually stabilise a fairly diverse ecosystem, that breaks down when mutations
are stopped. Moreover, the less often mutations happened, the more important it was to include them
(because the discrepancy between the system with and without mutations grew larger). This counterin-
tuitive result clearly shows that we cannot intuit beforehand what we should do, and that separation of
time scales because we presume they will not interact too much is a very bad idea.

We now turn to another subject entirely, though the interaction of time scales there is also important.
We have looked at hypercycles, but will now look at another basic entity of life: cells or vesicles.

Vesicles, group selection, and the information threshold
In this section, we will take a look at models with a predefined higher level: cells. We have seen how
higher levels can come into existence and protect systems from parasites. We will now see how this
predefined higher level impacts on the information threshold and how selection pressures from different
levels interact. We thus aim to answer the question: Can group selection lead to stable coexistence of
several species and so generate stability against parasites?

Wilson’s group selection model: an example that it can work in theory

Group selection has long been seen as a very controversial term because it was often formulated in terms
of the good of the species (Wynne-Edwards, 1965). For the last couple of decades, there has been an
explicit focus on the individual as “the” unit of selection, be it the individual genes or organisms. This
individual selection is furthermore thought to always undermine group selection (Leigh, 1977; Alexander
and Borgia, 1978). However, we have already seen some examples in which looking at selection at a single
level was insufficient to explain the evolutionary dynamics: the outcome was determined by selection
on characteristics of higher level entities (e.g. faster moving spirals, or waves that survive long enough
to produce new waves). Recently, the debate around group selection flared up again when 3 scientists
(evolutionary mathematical biologist M. Nowak, biomathematician C. Tarnita and ant-specialist and
famous evolutionary biologist E.O. Wilson) published a paper in Nature (Nowak, Martin; Corina, Tarnita;
Wilson, 2010), in which they claimed that the evolution of eusociality could better be explained by group
selection than by kin selection: the famous explanation for social behaviour introduced by Hamilton
and described in his Hamilton’s rule (Hamilton, 1963, 1964). Their paper was met with a large amount
of heated replies and a defence of their paper by the authors(Nowak et al., 2011; Ferriere and Michod,
2011; Abbot et al., 2011; Herre and Wcislo, 2011; Strassmann et al., 2011). The debate has still not been
settled.

However, in work in the 1970s, D.S. Wilson formulated a group selection model in which he studied
the conditions in which group selection could occur given the individual as the unit of selection(Wilson,
1975; Slatkin and Wilson, 1979). The model was formulated with explicit higher-level trait groups and
selection within and between trait groups. The main idea was to look at the evolution of altruism and to
separate kin and group selection: he needed a model that did not use relatedness. The model works by
defining patches of space (trait groups). Within these patches, there are two types of individuals, who
work according to the following equations:

1. dX
dt = aXX–cX

84



Figure 4.19: Wilson’s model of group selection Wilson (1975)

2. dY
dt = aXY

We have X, which is an indiscriminate altruist: it helps both X and Y to replicate. One could think of
this altruist as one who makes alarm calls: it hinders the caller, but aids all others of his kind nearby.
Thus, X incurs a cost on replication because of its behaviour: c. If we were to simulate this as a full
ODE, X would be removed from the population. It incurs a cost that Y does not, so it will never survive.
However, we now have distinct patches, and the patches can only support so many individuals. Then, if
c < a it can persist.

After a certain growth period, individuals disperse to a random other patch, there is a binomial distri-
bution of X and Y over the patches. Here comes the kicker: within any one patch, X loses out over Y.
But patches with X and Y together will have more progeny in total! The help that X gives ensures this.
Remember also that c < a, so helping also helps yourself. In this way, X will stay in the population,
because patches with X will have more progeny.

There were many arguments leveled against this model. For example, dispersal from patches needs to
be quick enough that X is not already out of the population. Another argument is that no organisms
work like this. However, we might say that is not the point. Even if it is unlikely to find this situation in
nature, the idea was the individual-level selection would always win out over group-level selection. Here,
without invoking kin selection, Wilson showed that that need not be the case: an proof of principle.

What are the important insights from this model? The following:

1. Group selection works according to compartmentalisation of the population.

2. Kin selection is a parameter of group selection: it is not needed in this model.

3. Group selection causes a reversal of selection relative to individual-level selection: altruism evolves
instead of non-altruism!

Next, we will consider how adding an explicit layer of groups affects a model of prebiotic evolution.
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Figure 4.20: Simple illustration of the stochastic corrector model by Szathmary and Demeter (1987)

Stochastic corrector model: a vesicle-based solution to the information threshold

The potential role of group selection in the origin of life was studied by Szathmary and Demeter (Sza-
thmary and Demeter, 1987). They asked whether group selection could help overcome the information
threshold. They developed a model based on ideas similar to the model of D.S. Wilson, but then in
a prebiotic setting. This model is called the stochastic corrector model. The model considers two
explicit levels: molecules and vesicles (which contain the molecules). Note that this is again a hypercycle-
like model, in that we look at ecological dynamics without mutation. The model considers two types of
molecules, X and Y, which together form a replicase (heterodimer) that can replicate both X and Y,
causing growth of the vesicles. Hence, vesicles need both X and Y to grow and grow fastest if [X] =
[Y]. However, parameters are chosen such that X replicates faster than Y, making the system unstable.
Vesicles grow and split without any interchange of molecules (this is thus an extreme grouping case,
similar to completely isolated patches). In this process, however, vesicle composition could change due
to stochastic processes during vesicle division and because of stochastic replicator dynamics (see below).
Moreover, multi-level selection is explicitly implemented in that vesicles need both X and Y molecules
to replicate (i.e. cooperation), but within a single vesicle, X outcompetes Y. The question here is then:
can group selection stabilise the system?

The system of equations used is as follows:

1. dX
dt = aX(XY )

1
4 − dX −X((X + Y )K)

2. dY
dt = bY (XY )

1
4 − dY − Y ((X + Y )K)

3. Whereby a > b

If one runs this as an ODE (without vesicles), Y is competed out of the population. X replicates faster, so
X comes to predominate, and if Y dies out the system dies out (because the replicase is the heterodimer).
In the real model, everything is discretised. This means that there are a finite number of replicators,
and there is a random chance that the replicase makes an X or a Y. Thus, a cell that starts out with
equal amounts could end up with unequal amounts upon replication. Additionally, there is randomness
(stochasticity) upon division: if you have 5 X and 5 Y, you could, by chance, give 2 X and 4 Y to one
daughter cell, and 3 X and 1 Y to another. Hence, there is the potential for stochastic correction of
molecule amounts in daughter cells. The principle is shown in the figure below.

This principle mirrors the master equation that we encountered in studying the information threshold.
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Here, the master vesicle is that with [X] = [Y]. All other types are ’mutants’. In this case, the fidelity of
replication would be how randomly a vesicle, upon division, divides the replicators: the less random, the
higher the copying fidelity of the vesicle. Note that there are no actual mutations here, and that there
is a difference in time scales between vesicle dynamics and replicator dynamics that wasn’t there in the
master equation. Nevertheless, there is some similarity.

So what happens in this system? Although the two dynamics (intra- and inter-vesicle dynamics) are
separated, they are statistically related in that the replication dynamics are used as a parameter in
the vesicle dynamics. However, the population of vesicles is considered to be constant (no extinction).
The model results show that both molecules can be maintained in the system due to group selection,
and that even the master cell (which contains equal amounts of X and Y) can persist. However, this
happens only if there are few replicators per vesicle. In other words, this system works when the number
of molecules is small. Why? Because this makes it easier to correct excesses of either molecule by
stochastic correction. If you have 6000 molecules of one and 4000 of the other, a little stochasticity on
the redistribution to daughter vesicles will not matter much. But if you have only 6 of one and 4 of the
other, the luck of the draw reigns supreme, and stochasticity is powerful! Vesicle-level selection is also
less powerful when there are many molecules within vesicles: if you have two vesicles, one with [X] =
[Y] = 10, and the other with [X] = 5 and Y = [10], the first is obviously much better. With such small
numbers of molecules, a difference of 5 molecules is a huge relative difference. However, if you have two
vesicles, one with [X] = [Y] = 1000, and the other with [X] = 1000 and [Y] = 1200 the relative difference
between the two vesicles is smaller, even though the absolute difference is larger. Thus, selection on the
vesicle level becomes weaker as the number of within-vesicle replicators grows, because small differences
in small numbers of molecules have a relatively much stronger effect than differences in large numbers
of molecules.

How does this influence the information threshold? The stochasticity/discreteness in the system means
that the information threshold is crossed more easily. Why? In the ODE system, we allowed for pop-
ulations of 0.0001 individuals. Now, that doesn’t happen, and it is possible to lose the master vesicle
completely. Similarly, limited diffusibility (when the vesicles don’t move much from their initial loca-
tion) lowers the information threshold, making it easier to cross. Why? Well, the stochastic corrector
works because selection between vesicles keeps the master cell (with equal [X] and [Y]) in the population.
However, if vesicles don’t diffuse, who are master vesicles likely to be next to? Because they are the best
at replicating, they will be positioned next to each other. Therefore, the master vesicle will not compete
with an average population, but mostly with copies of itself. These latter points were not realised in the
model since there was no mutation! Therefore, although the model shows that group selection (the higher
level selection on vesicles) can help to maintain information given certain molecules, group selection only
works under those conditions that worsen the case for information relative to the information threshold
if mutation is included.

Note that vesicle death rate needs to be tuned, vesicles need to be small enough (for enough difference
between them for vesicle-level selection to act upon), and there need to be enough vesicles in the system
(for selection to have something to choose from).

Vesicles and the information threshold

At this stage the role of vesicles in the information threshold is still questionable. It can work, but
stochasticity makes it easier to go over the information threshold. Also, time scales and the size of
vesicles need to be tuned. Mutations were absent, but the information threshold exists due to them.
Therefore, we wish to answer the following questions:

1. Can vesicles alleviate the information threshold when mutations happen?

2. Can group selection play a role with respect to the information threshold and overrule the negative
effects of stochasticity due to vesicles?
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Figure 4.21: Ancestor trace of kL values of individual replicators within vesicles (different coloured
lines). Within vesicles, kL increases. However, succesful vesicles are those with low kL at birth.

Micro- and Macrolevel dynamics: intricate implicit mutual interactions

In the previous sections, we have first seen examples of emerging higher level patterns on which selection
could act (e.g. spiral waves in the hypercycles, and waves in the minimal eco-evolutionary model) and
later examples of predefined higher levels (e.g. Wilson’s trait groups, cells in the stochastic corrector, and
vesicles). Next, we will try to directly compare the dynamics of emerging and predefined higher levels.
We do so by looking at a modeling study by Takeuchi and Hogeweg (Takeuchi and Hogeweg, 2009b).
This is in many ways the same model discussed in previous section.

On the micro-level:

1. Two types of molecules: replicators (R) and parasites (P), i.e. an RP-system.

2. Parasites are either in a folded or unfolded state. They can only be replicated if they are unfolded,
but when they are folded they can perform a certain task, which in this model is assumed to be
lipid production. Hence, parasites in the folded state enhance the growth of the vesicle they are
in. The parameter l describes the fraction of the time the parasite is folded, the parameter kL how
well it binds to the replicators (as before).

3. Ongoing mutations (in contrast to the stochastic error corrector, which had no mutations).

On the macro-level:

1. Explicitly defined vesicles, modeled in a CPM (see Cellular-Potts model earlier).

2. Growth rate of vesicle depends on the number of folded parasites inside.

3. Vesicles can divide once they contain a certain minimum number of molecules.

Results of this model first of all show a nice example of (stochastic) correction: an ancestor trace on the
values of kL shows that although kL values might be quite high at any given time, the long ancestor
has a relatively low value of kL (and hence is a relatively weak parasite) (see above). To understand the
evolutionary dynamic better we apply a technique called ancestor tracing. An ancestor trace works
as follows: at a certain time point, you sample the whole population. You then follow the evolution
of certain parameters in the sampled individuals with that ancestor. In this way, you can see what
happens to descendants of certain ancestors in the system. The explanation for the behaviour is that in
the short term, stronger parasites are selected within the vesicles. However, in the long term, between-
vesicle selection selects for vesicles that contain relatively weak parasites because these vesicles contain
more replicators and hence grow faster. Stochastic variation between vesicles allows for this higher-level
selection.

In the long run, we again find that there is a trade-off between kL and l (as we saw in the non-vesicle
model) and that over time, both the value of kL and l increases. This makes sense, because folded
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Figure 4.22: Vesicles show a similar trade-of as the surface model in the RP-system, but this trade-of
can be reversed when the parasite gains a function for the cell growth.

parasites increase the growth rate of vesicles (and high l → many folded parasites). However, if this
dependency of vesicle growth rate on folded parasites is removed, the direction of movement on the
trade-off changes and instead vesicles with both low l and low kL are selected. This means that in
this case, the selection for fast replication of the parasite dominates. This result is only found for high
mutation rates.

Why does this happen? And why can this system still sustain itself (i.e. why aren’t the vesicles killed
by fast-growing parasites)?

To investigate this, we measure the death rates of vesicles. Two things are changed: the vesicle size is
now constant (no growth), and vesicles perish when no replicator or parasite is inside. We consider these
as a function of ∆l, the distance from the Hopf bifurcation value of l, the value at which the parasites
become too strong and the system becomes unsustainable. You can see this from the Figure ??: though
for different kL values it happens at different times, at certain l values the system breaks down. If you
take the distance from this l value, ∆l, then you can compare scenarios with different kL values.

If we do this, we see a remarkable thing occur. Note that in this modified model, vesicles do not grow
(vesicle size is constant), so selection cannot act on growth rate. However, it can act to minimise death
rate of vesicles. That is what happens. Compare low kL parasites (green, fast replication) and high kL
parasites (black triangles, strong binders but folded most of the time). For high kL values, the death
rate of the vesicle is lower than for low kL as long as you are before the bifurcation point (∆l > 0; see
inset in figure), but beyond the bifurcation point (∆l < 0) the death rate is lower for low kL. Within
vesicles, there is selection for stronger parasites and hence for lower values of l, i.e. vesicles will move to
the left on the x-axis. If mutation rate is high, evolution is fast and hence the system will be close to the
bifurcation point. Selection for lower death rate of the vesicles will then lead to selection of lower kL.

This is some tough material, so let us reprise: we now have pre-defined higher-level vesicles with a set
volume. We know that a parasite would normally want to be replicated as quickly and often as possible.
Thus, it would maximise kL and minimise l. However, we saw that in the scenario where you make
vesicle growth dependant on the l value of the parasite (for example, you assume that the parasite in
its folded state aids lipid production), l, the foldedness of the parasite, is increased over time. The
concomitant increase in kL makes sure that if the parasite is unfolded it is replicated very efficiently. If
you make vesicle growth independent of parasites (but make vesicle death contingent on having at least
one replicase or parasite inside), something different happens. Instinctively, you would think the parasite
would be free to do as it pleases: decrease l while leaving kL high, thus getting maximal replication,
with the stochastic correction of vesicle division saving the whole system frome extinction.

That is not what happens. Instead, kL is minimised (if mutation is high!). Why? If kL is smaller, the
increase of death rate when going over the Hopf bifurcation (left of ∆l) is lower. Just before the Hopf
bifurcation (when ∆l > 0), higher kL values have lower death rates (see inset in figure; note that the
scale of the y-axis is much smaller). In other words: if l is mutating all the time, and mutates fast, the
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Figure 4.23: Death rates of vesicles close to the hopf bifurcation (=information threshold) reveal that,
even though low kL results in higher death rates before the hopf bifurcation, is lowers the death rates
when the system passes the hopf bifurcation. Evolution has thus become concerned with not dying when
surpassing the information threshold.

chance that it mutates to a value that can kill the vesicle is high. The stochastic error corrector can
save the day, and if kL is lower (the parasite associates less vigorously with the replicases), the vesicle
survives for longer, and therefore has more chance of having progeny.

Thus, we see that kL is minimised because evolution proceeds to the border of order. If mutation rate
is high, then many parasites will mutate over the border of order, into a regime where the vesicle could
die. By minimising kL, death rate of the vesicles is minimised. Stochasticity in the system is maximised:
by being as close as possible to the Hopf bifurcation, random mutations have the largest effect. We
see here also that there is survival of the flattest at high mutation rates: in this context it means
that vesicles with minimal kL have a slower rise in death rate over the information threshold/Hopf
bifurcation, so the flatter this increase of death rate, the better they can survive. So, in a regime with low
mutation rates, there is a delicate balance between internal and external dynamics. In a regime with high
mutation rates (and set vesicle size), the internal dynamics change, and the system becomes concerned
with not dying so fast once it eventually goes over the information threshold (Hopf bifurcation).

What does this model tell us about explicitly defined versus emerging higher levels?

Comparing this model to the non-vesicle case:

1. Explicit higher level entities (vesicles) are less stable than emerging higher level entities (waves),
especially at high mutation rates. That is logical: waves form by themselves, so they have to
be stable or they wouldn’t form. Vesicles are imposed, and therefore only stable given certain
conditions.

2. Stochasticity is maximised and used by evolution, both for correction and tuning. In other words:
it is used to have the best selection between cells, in this case by bringing cells close to the Hopf
bifurcation, so that those going over have the most dire consequences.

3. Implicit interactions (in explicit multilevel models) can automatically mutually tune the parameters
(in this case, death rate).

One step further: evolutionarily stable disequilibrium in a
stationary population
We now look at more recent work of Takeuchi, Kaneko, and Hogeweg (Takeuchi et al., 2016). Here, the
previous model has been simplified. Now, there is no explicit parasite, simply two replicators, R and R’,
that need each other to replicate. Additionally, vesicles are not CPM vesicles, but just compartments
in which there are replicators. The internal dynamics are once again ODEs which, if left to their own
devices without other selection pressures, would lead to extinction. This is because replication requires
two replicators to form a complex, so that one of them may be replicated (template-mediated replication).
The replicated molecule is the one that served as template, but its parameter for serving as a catalyst,
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k, which initiates complex formation, can mutate a little. Being the molecule doing the replicating is
altruistic: while you are replicating, you cannot be replicated. You would thus expect that, for both
replicators, catalyst propensity decreases all the time. This would lead to ever-decreasing replication.
As the vesicles need them to grow, they would then die out (Figure 4.24).

Figure 4.24: Schematic that describes the workings of Takeuchi’s model. Taken from (Takeuchi et al.,
2016).

Similar to the previous models, there is thus a minimisation of catalysis within the vesicle (complex
formation is selected against), but a maximisation of catalysis between cells (the best vesicles are those
with replicators with high rates of catalysis). This provides two opposing selection pressures. Of course,
the rate at which an extinction can happen depends on mutation rate, which governs how quickly
replicators can change their catalysis rate. A new feature is that there is competition over an explicit
resource, which diffuses over the system, and is used up at replication (think of nucleotides). The vesicle,
or, protocell volume is equal to the resource + the molecules within it.

The model works in steps: first, many reactions within protocells are allowed to occur. Then, substrate
diffuses over protocells, with a probability proportional to the number of replicators (so cells with more
replicators have a higher chance of getting more substrate). Replicators do not diffuse. Then, there is
protocell or vesicle division: if a protocell has more than V particles (substrates + replicators) it divides,
and its particles are randomly split between daughter cells. This serves as a version of the stochastic
corrector.

Evolution hidden behind a seemingly static population
The first thing to check in the model is how the different selection pressures interact. This can be done
most easily by varying V . As we mentioned previously, vesicles with larger within-vesicle populations of
molecules cause the within-vesicle selection pressure to be dominant. Firstly, this is because stochastic
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differences in large populations of molecules are small, and secondly because larger volumes divide less
often. In small vesicles (when division already occurs at low V ), between-vesicle selection is much
stronger: stochastic processes at division and low molecule numbers mean that, by chance, some vesicles
will be much better than others. The dependency of average k (catalysis propensity) on V clearly shows
this relation (Figure 4.25).

Figure 4.25: Dependance of the average k parameter on the division volume V of vesicles. Note the
region in the middle where the higher-level and lower-level selection pressures are matched. Adapted
from (Takeuchi et al., 2016).

At intermediate values of V , the two selection pressures are about equally strong, and the average value
of giving catalysis k is more or less constant. However, this statistical rigidity of k belies a tumultuous
underlying evolutionary process. In Figure 4.26, we see an ancestor trace of a certain cell for V = 1000.
In black you see the normalised protocell size (cell size/V , right axis) for a protocell along the line of
descent (i.e. over the generations). Circles are cell division events. The average value for k within the
protocell is the red line, and the orange area surrounding it shows the range of values that k can take
for all replicators in the cell.

Let us first focus on k. Over the generations, the average value of k (red) in a protocell declines, until
it suddenly shoots back up again. This process is repeated continuously. At the same time, you see that
as k becomes lower, the normalised cell size of the protocells only just manages to skirt past 0 (the black
line almost hits the x-axis). It goes back up again just as k shoots up as well.

So how does the system survive? There is continuous downward evolution of k. As k decreases, cells
become smaller. Small cells have a lot of stochasticity upon division. Purely stochastically, you can thus
have one with only good replicators (high k values), which will be selected. Since this all happens by
chance, note that most cells perish, and only the odd cell that manages to score the jackpot survives,
immediately increasing the average k value and beginning the process anew. This process happen not
at the cellular population level, but at the level of replicators within individual cells. Here, we look at
an ancestor trace of one such lucky protocell, whose ancestors continuously got replicators with high k
values upon division.

If division volume is smaller (V = 316), cell size reaches less catastrophic lows, and k is much more
constant. This is consistent with the fact that the stochastic correction effect is stronger at smaller cell
sizes, and that between-vesicle selection is stronger if there are less within-vesicle molecules (Figure 4.27.
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Figure 4.26: Top: Changes in average k values per cell (red), range of k values in the replicators within
a cell (orange), and normalised cell volume (cell size/V ) (black) over time. Bottom: population-level k
averages over time. Target volume V for division is 1000. Taken from: (Takeuchi et al., 2016).

Figure 4.27: Top: Changes in average k values per cell (red), range of k values in the replicators within
a cell (orange), and normalised cell volume (cell size/V ) (black) over time. Bottom: population-level k
averages over time. Target volume V for division is 316. Continual movements to near extinction are
prevented by the higher strength of vesicle-level selection. Taken from: (Takeuchi et al., 2016).

You can wonder whether it is a good thing that cells almost die all the time. It does not sound like a
particularly great idea that there are continuous bottlenecks where most cells die. On the other hand, it
might help survival of the system as a whole at larger division volumes. If one kills protocells that are
too small, the protocells with replicators that are driving themselves to extinction are filtered out. You
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might think that removing bad protocells could help the system. However, it also prevents stochastic
correction! As it turns out, if protocells that become too small are removed, the system collapses at
much earlier values of V than if the evolutionary oscillations (low k, bottleneck, stochastic correction,
higher k) are allowed (Figure 4.28). Additionally, the distribution of cell sizes in the population is one
with many small cells (that can rescue the system) and some large cells (whose k values fall over time).
The arrows denote the two V -values discussed above (1000 and 316).

Figure 4.28: Top: Population Average k values for a range of division volume (V ) values. Arrows
denote the values 316 and 1000 (discussed above). Bottom: distribution of normalised protocell sizes in
the system at different values of V . Red: protocells with volumes below a certain threshold are removed.
Black: all protocells, no matter how small, are kept in the system. Taken from: (Takeuchi et al., 2016).

The specific conclusion of this story is thus that the oscillatory evolutionary dynamics contribute to
the survivability of the system, and that the system can survive only when the two selection pressures
can somehow remain in balance (Figure 4.29). A more broad interpretation of this result is that when
selection pressures are matched, evolution is uniquely poised to find creative solutions.
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Figure 4.29: Parameter ranges (division volume and mutation rate) and the resultant dynamics of the
system. When within-vesicle selection and between-vesicle selection are matched, oscillatory dynamics
occur. Note that mutation rate affects within-vesicle dynamics (governs how fast the catalysis parameter
k can mutate), whereas V affects both between- and within-vesicle selection (regulates strength of the
stochastic error correction, see Figure 4.25). Taken from: (Takeuchi et al., 2016).

Evolutionary advantages and properties of more RNA-like replicators
Until now, we have looked at replicators. We have talked about the RNA world and called our replicators
RNA-like. However, they are not truly RNA-like, in more ways than one. We have just looked at
a system with two replicators, where either could be the template in a complex. In reality, however,
what is replicated upon replication is the complementary strand of the template, not the template itself.
The plus strand is a template for the minus strand and the other way around. What would happen if
we introduce plus and minus strands into our models? Does this matter for the dynamics, and what
situation evolves? Something else we have not yet considered is the shift from a RNA world to a world
that contains DNA. Besides chemical constraints, we must marvel at the fact that somehow a system
that has catalysis and replication in one molecule (RNA can do both) shifts to a system where there is
a molecule that only carries information (DNA) and a molecule that only performs catalysis (or codes
for proteins, as is the case nowadays), RNA. If we think that DNA somehow evolved from RNA, then
why would an RNA ever devote itself solely to catalysis? As we have seen, being replicated is where it’s
at, and giving catalysis to others is a loser’s game that can only be enforced by higher levels (whether
emergent, like waves, or predefined, like protocells). We are going to take a look at these questions, and
see some surprising results. First, let us look at what happens when plus and minus strands are added
to the model.

Symmetry breaking

We take the last model we discussed, and add in the reactions and parameters needed for complementary
replication (Takeuchi et al., 2017). What does this mean? The figure below explains it best. There are
now 4 replication (k) parameters: plus to plus, minus to minus, minus to plus, and plus to minus. All
these can evolve, and different complexes can form, where different strands can be either template or
catalyst.
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Figure 4.30: The model with symmetry breaking. Now, different strands have different catalysis
parameters for the different reactions: plus to plus, minus to minus, plus to minus, and minus to plus.
Substrates (S) are needed for replication. Taken from: (Takeuchi et al., 2017).

The question is: what do these extra degrees of freedom add to the system? As it turns out, they add
a lot. If the parameters are allowed to mutate freely, one becomes very high, one has some positive
value, and the others are extremely close to 0 (though never 0 outright) (Figure 4.31). What we observe
here is a phenomenon called symmetry breaking: one of the strands gets high catalytic rates (in this
case, we designate that strand as the plus strand, you can see that the catalysis of plus to plus kPP and
the catalysis of plus to minus kPM are relatively high) whereas the other strand gets values that are
extremely close to 0 (kMM and kMP ), and the amount of the strands also drastically diverges: the plus
strand is abundant, whereas the minus strand is very rare (not shown). You can see that survival in this
system is possible for higher values of V than if symmetry breaking is not allowed at all (Figure 4.31d),
or if it is limited in some way (Figure 4.31b and c).
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Figure 4.31: Taken from: (Takeuchi et al., 2017). (note that b and c are not discussed in this reader)

This is basically the same trick as before, but now, it is much more efficient because of specialisation (you
see that the range of volumes that the protocells can survive is much larger). Also, this arrangement
increases the power of mutations: a very small mutation in kPP has a huge effect on intracellular
replicator concentrations, because there is so much plus strand that a small change in its catalytic rate
translates into many more reactions.

It is very interesting that this happens, because there is no explicit selection pressure for symmetry
breaking: at low cell volumes (V ), between-cell selection prevails and all catalytic rates are maximised.
At very high cell volumes, all catalytic rates are minimised (within-cell selection prevails) and the system
dies out. What we see here is again a creative evolutionary solution when two levels of selection are
matched in strength. This creative solution is somewhat similar to the emergence of DNA as a separate
information carrier: one strand loses (almost) all catalytic activity (more like DNA), while the other gets
very high catalytic rates (more like a catalytic RNA or proteins).

Symmetry breaking in a spatial model

We have seen symmetry breaking in a model with imposed multiple levels (protocells versus replica-
tors). However, we first encountered higher-level selection pressures in the context of emergent waves.
Can symmetry breaking also occur spontaneously? This is a question that von der Dunk et al. inves-
tigated (von der Dunk et al., 2017). The previous model happened in protocells that occupied no real
space. Now, replicators are in a CA grid, where complex formation can happen when a binding partner
is next to you, and replication can happen when there is an empty space next to you.

In this model, the diffusion parameter (D) is analogous to the volume parameter in the protocell model.
Why? We have seen (all the way in the beginning of waves in CA models) that adding diffusion actually
increases wave size and thereby decreases the amount of waves and increases the amount of replicators per
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wave. Thus, more diffusion means more replicators per wave and less waves to select between, thereby
strengthening replicator-level selection relative to higher-level selection, just as increasing protocell vol-
ume does this. So, what happens to the catalytic parameters in this spatial model for different levels of
diffusion?

In the model with all degrees of freedom (all 4 parameters can evolve freely), symmetry breaking also
occurs in space (Figure 4.32). A difference here is that in space, it is not so that at low diffusion values,
all catalytic parameters are high, as was the case in the protocell model. That is because those values
were enforced by the higher level, but here, that higher level first needs to emerge. It only emerges once
higher diffusion rates cause die-off of replicators and empty space results. Again, the model without
different catalytic rates (replicators without strands) goes extinct much earlier.

Figure 4.32: Evolved steady-state values of catalytic parameters for different diffusion (D) values in
space, for different models (ranging from completely independent catalytic parameters to completely
constrained catalytic parameters). Increasing diffusion rates are analogous to increasing division rates
in a protocell model. The system is most resilient if all catalytic parameters are allowed to evolve freely,
obtaining optimal benefit from symmetry breaking. Taken from: (von der Dunk et al., 2017).

Of course, these are steady-state catalytic rates. It is interesting to see what happens in the transient,
and how exactly evolution gets these results. This is displayed in Figure 4.33. Since there is a lot to see
in this figure, let’s go through it step-by-step.
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Figure 4.33: Evolutionary trajectories of catalytic parameters, population dynamics of strands, snap-
shots of the model space, and bar plots indicating rates of bound and unbound plus and minus strands.
Taken from: (von der Dunk et al., 2017).

On the far left side are the diffusion values used. Right beside that are the averages of kxy in the
population, shown as lines. Each colour represents a certain combination of x and y. These lines
are plotted against a backdrop that shows the total population density of the four molecules in the
simulation, where cooler (more blue) colours indicate higher population densities, and warmer (more
red) lower population densities. Right beside that are snapshots of the field, where the catalysis of the
plus to the minus strand is visualised, along with bar plots that show what proportion of the plus and
minus strands are free and in complex. Note that whichever strand gives lots of catalysis is denoted the
plus strand.

Emergence of waves directs evolution

So what can we see? Until a diffusion rate of 20 there are almost no empty patches in the field (see
the snapshots on the right), and replicators mostly compete locally, so that replicators with very low
catalytic rates drive themselves to extinction locally.
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If diffusion is higher than 20, individual-level selection first starts to win and replicators die out. How-
ever, this produces empty space, which creates a novel selection pressure for invasion of this empty
space. Invasion of empty space is achieved by rapid replication (i.e. high catalysis), which can oppose
the selection for decreasing catalysis on the strand level. Thus, emergent higher-level wave patterns
(mesoscale patterns) counter individual-level selection pressure. You can see by the background that
higher diffusion values coincide with much larger fluctuations of population density, which illustrates this
point: individual-level selection wins, replicators start dying off, and the available space creates a new
selective pressure. Interestingly, you can also see a development through time in these plots: the die-off
is most extreme in the beginning (stretches of dark red to the left), and levels off over evolutionary time
(this is most visible for a diffusion of 40 or 70: there are wide blotches of dark red in the beginning, while
later, there is only yellow or light red, indicating less severe die-off of replicators). This means that the
two selection pressures balance each other and the system stabilises itself over time.

If we look to the right at the rainbow-coloured snapshots, you see that higher diffusion values allow more
diversity in the catalytic parameter. Why is this? This is similar to the RP system. There, there was
selection for replication at the wave front, while the parasite advanced at the back. In this case, there
is a selection for high replication (lots of catalysis) at the wave front, while low catalysis is favoured at
the back (so that you get replicated more than you are doing the replicating). Depending on where you
are, the selection pressure is thus different, and this causes more diversity in the parameters. In the long
term, this can go so far that the difference between replicators at the front and the back of the wave
becomes larger than just a few mutations. Then, two different lineages form. You can see this in the
first figure we discussed. When D = 40 and D = 60, you can see a clear division of the kpm parameter
into two hubs: large for the wave front, small for the back (Figure 4.32).

Different types of symmetry breaking

You can see that until a diffusion value of 30, something appreciably different happens to the catalytic
rates than after that. Before it, kpm and kmp take about equal (high) values, while after it, all values
except kpm are minimised. This is reflected in the proportions of plus and minus strands in complex:
after a diffusion value of 30, the amount of minus strand falls drastically. The former behaviour is what
we can call directional asymmetry or reciprocal asymmetry: both strands preferentially like to catalyse
their complement (plus catalyses minus and minus catalyses plus, i.e. both kpm and kmp are high). This
behaviour happens when small-scale interactions dominate (as is true for low diffusion). Then there is
catalytic and template asymmetry: where one of the strands is a better catalyst or template, respectively.
Both these asymmetries are seen between diffusion values of 40 and 70 at equilibrium of the system: the
plus strand is the superior catalyst, the minus strand the superior template.

Evolution of DNA in an RNA world

Some earlier work explicitly studied the emergence of DNA in an RNA world. Why would DNA ever
evolve? Hogeweg, Takeuchi, and Koonin tackled this question in 2011 (Takeuchi et al., 2011). Note that
they focused purely on an informatic reason. That is to say that they ignored the fact that DNA could
be a more stable molecule, or that there could be some chemical benefits or constraints. They purely
looked at catalytic rates and information storage. In this system, there are two polymerases. One can
make a string of DNA, the other can make a string of RNA. DNA can only be a template, RNA can be
both template and catalyst. This gives rise to four different reactions:

1. RNA-dependent RNA synthesis

2. RNA-dependent DNA synthesis

3. DNA-dependent RNA synthesis

4. DNA-dependent DNA synthesis

Parameters such as the ability to recognise DNA and RNA can mutate, and a rare mutation can change
a DNA polymerase into a RNA polymerase. There is a common resource that is used up for replication.
Note that the model is working with many simplifications: there is no real strandedness, all DNAs are
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just general DNAs and all RNAs are just general RNAs (i.e. though parameters of molecules can change,
there is no underlying sequence), a rare mutation can cause a conversion from an RNA polymerase to a
DNA polymerase, and the ability to recognise DNA is initialised as a neutral property in the population.
Nevertheless, it can be informative to observe what happens given these simplifications. Two systems
are compared: a vesicle-based system, with strands within vesicles modeled within a CPM framework
(i.e. deformable vesicles), and a system in space.

Let’s first survey the possibilities. In the image below, you can see that within the bounds of this
system, three possible situations can occur (Figure ??). The first is the starting situation, where an
RNA-dependent RNA polymerase synthesises RNA. The situation in the middle is the transcription
system: in the lower left, you see a DNA-dependent DNA polymerase (made of RNA), which catalyses
the reaction to make more DNA-dependent DNA polymerase (made of DNA) and the reaction to make
more DNA-dependent RNA-polymerase (made of DNA). Thus, this RNA uses DNA as template to create
more DNA. Then, in the top left, there is the DNA-dependent RNA-polymerase (made of RNA), that
catalyses the creation of more of itself (from DNA) and the generation of more DNA polymerase (from
DNA). The last possibility is one with reverse transcription, where DNA can be made from RNA.

Figure 4.34: Modes of replication in the model. Taken from: (Takeuchi et al., 2011).

Although this might seem a bit confusing, the important point here is that systems including DNA
immediately seem more cumbersome: they need more molecules to complete the same task of replication.
Both system B and C require four types of molecules for replication. If the total concentration of
molecules remains constant, this means that replication is slowed in these systems compared to self-
replication depicted in Figure 4.34A. However, the saving grace of DNA could be that it takes away
the implicit evolutionary battle between templates and catalysts: if RNA is both the template and
the catalyst, there is a pressure to lose catalysis (thus being the template more often), which, if left
unchecked, leads to extinction (as we have seen time and time again). Perhaps another (higher level)
selection pressure can help the system survive (waves or vesicles)). If any parasite were to evolve that
only serves as template, it would be supremely fit. This trade-off does not exist in the DNA system:
RNAs do not need to be templates, so there is no problem if the DNA encodes for continuously better
catalysis, and the DNA is the template all the time. Note, however, that this is not the case in the
reverse transcription system: there, RNA still needs to serve as the template, so this trade-off is not
alleviated, or only to a lesser degree.

The spatial model: co-existence of transcription and self-replication

We now look at what happens in the spatial model. The system was initialised with RNA-dependent
RNA polymerases and parasites. When it was at equilibrium, the rare mutation from an RNA polymerase
to a DNA polymerase was allowed, and the resultant evolutionary dynamics are shown (Figure 4.35).
Rrec and Drec are recognition of RNA and DNA, respectively.
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Figure 4.35: CA model of DNA and RNA replication. Taken from: (Takeuchi et al., 2011).

So what can we see? Over time, two subsystems evolve. The transcription system evolves, but the RNA
system remains as well. You can see in the lower right that there are DNA polymerases that almost
solely recognise DNA, and that RNA polymerases have split into two groups: one has lost the ability to
recognise RNA (upper left corner; transcription system), the other recognises RNA. This is interesting:
initially, the DNA replicase that evolves had dual specificity (you can see that DNA and RNA recognition
exist in these molecules (Figure 4.35B)), but evolution swiftly causes specialisation. Interestingly, the
transcription system could not supersede the self-replication system: if the simulation was continued,
but all self-replicating molecules removed, the system re-invented a self-replication cycle. However, if an
ancestor trace was done, in the long run, all molecules descended from DNA. This somewhat mirrors the
central dogma, in that all in the long term, catalytic activity is descended from information in the DNA.

Vesicle system

The vesicle system assumes that there were cells before there was DNA (or, in other words: given
that there are cell-like entities, what might we see then?). Let us see what happens there. A parasite
(RNA that is only template) is put in at the beginning like before, but in the vesicle system, it is
immediately filtered out by the stochastic error corrector. There is an evolutionary transient to
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a transcription system (Figure 4.36). First, once equilibrium was achieved, the mutation from RNA
to DNA polymerase was enabled. DNA polymerase (made of RNA) with a high recognition of DNA
quickly invaded the system. However, it did not immediately evolve to a replicase, but maintained some
reverse transcriptase activity (Figure 4.36B). After this invasion, the RNA polymerase (Rp) evolved
high transcription activity. The system then stayed this way for a long time. In this phase, the fact
that DNA polymerase exists at all is dependent on continuous mutations from Rp to Dp (if mutations
were disabled, it went extinct). There is still a dual-function RNA-polymerase here. Later on, DNA
polymerase evolved towards less reverse transcriptase activity in some vesicles, and Rp in those vesicles
concomitantly became a stronger catalyst (Figure 4.36D). Vesicles with this transcription-like system
then quickly outcompete others, and there is no reverse transcriptase in the system anymore (contrast
this with the spatial system, where it remains).

Figure 4.36: Dynamics of the vesicle model of DNA and RNA replication. Taken from: (Takeuchi
et al., 2011).

Some vesicles randomly lose the transcription system, being left only with an RNA-dependent RNA
polymerase: self-replication. These vesicles quickly expand and locally outcompete the DNA system,
but in the long term, they disappear again (Figure 4.37). This happens multiple times in this system.
Why is this?
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Figure 4.37: Loss of the transcription system causes short-term fitness advantage, but is competed out
in the long term. Taken from: (Takeuchi et al., 2011).

If you lose DNA, recognition of RNA by RNA polymerase is decreased. Why? Well, this is the simple
template-catalyst conflict: it is detrimental to replication to be a good catalyst. These vesicles thus grow
slower, and are then outcompeted again by those with DNA. Thus, DNA evolves here because it is good
for evolutionary reasons, not for dynamical reasons. That is to say, it only plays a role in keeping fit in
the long term. DNA is not hampered by having a code that codes for strong catalysis, so this pressure
that a self-replicating RNA experiences is (almost) absent. This causes molecule-level (within-vesicle)
selection pressures to be less strong, so that the system with vesicles can survive. Thus, for informatic
and evolutionary reasons, DNA can evolve, because a division of labour between storage and usage of
information is good.

Though the caveats we discussed in the beginning are to be kept in mind (no chemical constraints
taken into account, neutrality of mutation from RNA to DNA polymerase, no strandedness), this is very
interesting: a modern transcription system can evolve from an RNA precursor system in vesicles. In
space, the transcription variant evolves, but cannot efficiently rid itself of the self-replication variant.

Conclusion
This chapter has been quite a ride, and it will not be easy to recap everything that we have discussed in
a few sentences. Let us look back on what brought us here. We started this chapter with the question
of how life began, and then focussed on a workable example: the RNA world. We discovered that, at
least in classical ODE models, there is a major hurdle in obtaining enough complexity: the information
threshold. Best described by Eigen’s paradox: it takes more information (a longer genome) to get a
repair mechanism, but to get more information, you need a repair mechanism. That’s a catch-22 for
life, it would seem. Nevertheless, we exist, together with many more complex organisms. What gives?
We looked at Eigen’s initial (peculiar) solution: the hypercycle. An ecosystem-based solution where
multiple replicators together can code more than an individual replicator. We saw that this presents a
new problem: better hypercycles can never invade, because the amounts of established replicators are
the largest driving force in the equations (remember the X2 term).

We then switched gears and added space. Even though the hypercycle model is a somewhat nonsensical
model that doesn’t address the problem it set out to solve, adding space taught us many valuable lessons.
We saw our first emergent higher level of selection: waves. These mesoscale patterns impart their own
selection pressures, that can conflict with lower-level selection pressures. An example was the death rate
of replicators: higher death rates of replicators can increase the fitness of waves, as empty space is needed
for their successful propagation. Additionally, adding space made the system resilient to parasites. We
also saw that evolution went to the edge of chaos or border of order: replicator death rate got as
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high as possible without letting the waves go extinct. This is a general pattern of evolutionary dynamics.
This was further explored in the minimal replicator-parasite system (RP system).

We learned that separation of time scales in models is often a very bad idea, especially if done from
a position of ’I think we can separate this and it won’t really matter to the dynamics’. The first
example was the host-parasitoid system, where you saw that fitness is a time-dependent function.
In time, all parasitoids were descended from those in spiral cores, but at shorter time scales, fitness
for other parameter values seemed to dominate. Experimentally, you could never measure this many
generations, which should caution all of us to be very wary of measurements of fitness. In the minimal
eco-evo model, we saw that for the lowest mutation rate, the highest discrepancies between a strictly
ecological (analogous to adaptive dynamics) and ecological + mutations simulation occurred. Therefore,
the argument of ’Mutations are rare so they do not influence the ecological dynamics’ does not hold at
all in this case.

Next, we investigated vesicle-first scenarios of evolution, where replicators reside inside protocells that
need replicators to grow and divide. We looked at Wilson’s archetypal group selection model (an exis-
tence proof), that showed kin selection was not per se necessary for group selection to work. We then
looked at stochastic error correction: how random sorting of replicators to daughter vesicles upon
division can stochastically result in fit vesicles (where replicators are in the correct ratio) surviving, thus
balancing within-vesicle fitness imbalance between the replicators.

We then looked at an explicit comparison of pre-defined (vesicles) and emergent (waves) higher levels in
a RP system. We saw some interesting evolution close to the Hopf bifurcation, where at high mutation
rates, the system concerns itself with not dying so fast once it invariably mutates over the information
threshold. This model further taught us that waves are often more stable than vesicles.

Moving on to endless evolutionary dynamics in a stable population, we saw that continuous cell-level
bottlenecks are what allowed the population to survive at high division volumes of vesicles. If they were
removed, the system could not survive at as high division volumes. More generally, this shows that
creative solutions emerge when selection pressures from different levels are about equal in strength. This
might be a major mechanism allowing complexity to arise.

Finally, we looked at adding in some aspects of RNA to replicators. Specifically, we observed symmetry
breaking when we added in plus and minus strands in both spatial and vesicle systems, which is
reminiscent of the division of labour between DNA and RNA + proteins in present day cells. A final
model showed that DNA can evolve for informatic (long-term) reasons only, though in the spatial system,
a transcription-like system still coexisted with self-replicating molecules.

Phew, that is a lot to take in. Be sure to go over some of the sections that are still a bit fuzzy to you,
or ask questions to the student assistants. Let’s end on a more general note: in multi-level biological
systems you should expect the levels not to be independent, but very much dependent on each other.
And we should expect that micro- and macro-levels, as well as different time scales, affect each other.
Then, asking the question ”what level is causing the observed dynamics?” (e.g. is it the selfish gene, or
the good of the species, or of your kin) is actually non-informative, because what happens at a certain
level will always influence and be influenced by the other levels in the system. What happens at the
micro-level only makes sense in light of selection pressures from higher levels, and vice versa.

Constructive evolution
We know that evolution can construct new things. New shapes and new solutions to problems. Somehow,
life went from simple self-replicating entities to cells, multicellular organisms, and even the majestic
elephant. Up until now, we have focused on the role of space and the effects of interlocking ecological
and evolutionary dynamics (i.e. mutations happen while ecological processes play out, and both influence
each other). We have thus allowed, and seen the importance of, local interactions. We have also seen
mesoscale patterns. The ongoing mutations were contrasted with the classical approach of changing
parameters. We looked at invasion dynamics of different phenotypes and asked what parameters (such as
catalysis or death rate) were optimal in the system. We investigated endless dynamics of the stochastic
corrector, and symmetry breaking in replicators with plus and minus strands, as well as the evolution
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of DNA as an information carrier in a RNA world. Though these latter two systems went some way
towards including more real aspects of RNA, there is a lot of ground left to cover. Now, we take a look
at how novelty arises in evolutionary systems. How can evolution be constructive? For that, we need to
change our models.

What we have missed until now
We have looked at RNA-like replicators in space. These replicators could change through phenotypic
mutations: mutations that directly acted on a parameter such as death rate. However, that is not how
mutations on a true RNA molecule work. Functional RNAs have a primary sequence, their genotype,
that folds into a structure. Although computing the precise tertiary structure is still challenging (Major
and Thibault, 2008), methods on predicting the secondary structure are very good (Figure 4.38) (Tsang
and Wiese, 2010). This secondary structure is formed by interactions between the different bases of the
RNA molecule. The secondary structure then folds into a 3D tertiary structure. This final 3D tertiary
structure is the phenotype: the functionality of the completely folded RNA is what natural selection can
act upon.

Figure 4.38: Structural complexity in the RNA secondary structure. Taken from: (Tsang and Wiese,
2010).

Our models up to now were simplified by omitting these levels between the mutations and the phenotype:
the RNA sequence is mutated, which might change its structure. Given that it is reasonable to say that it
is the structure that has a certain functionality, we should say it is this structure that affects fitness. We
will now introduce this mapping from the genotype to the phenotype. As mentioned before, accurately
predicting the tertiary structure is unresolved, although new Deep Learning methods are making large
strides, as Alphafold 2 did for proteins (Pearce et al., 2022). When this work was done the situation was
very different, and the secondary structure can be a good proxy for the real tertiary stucture. Hence, we
will take the secondary structure as a proxy for the phenotype. Most folding algorithms use free energy
minimisation (where the binding energies of bases are calculated and (globally) minimised) (Mathews
and Turner, 2006), although here, too, Deep Learning methods are changing the game (Fu et al., 2022).

Using these two levels, the genotype and phenotype level, we introduce a complex many-to-one
genotype-to-phenotype mapping (GPM): genotypes fold into a certain secondary structure, which
is what defines a fitness that can be selected for. Many genotypes fold into the same secondary structure.
We shall see how this alters evolutionary dynamics.
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Besides this mapping, we also introduce a finite population. In the replicator equation by Eigen, all
possible genotypes existed. In real biological systems, possible genotypes far outnumber extant geno-
types: a DNA strand consisting of 100 bases has 4100 possible sequences. The human genome contains
approximately 3,000,000,000 bases. These have 43,000,000,000 possible combinations. That number is as-
tronomically high, and by far larger than the amount of humans that have existed. Thus, real evolution
somehow finds good fitness while it cannot possibly sample all genotypes, or even a large fraction of
them. We will see how this is possible.

We thus use the RNA genotype-phenotype mapping as a paradigm system: in order to understand
how genotypes translate into phenotypes, we will study one particular system and draw conclusions from
it. We will later discuss whether these conclusions are special (only true for RNA), or generic features
of biology.

A first peek: genetic algorithms
The first to model and use the constructive power of evolution was not a biologist but a computer scientist
named John Holland (Holland, 1992). He was the founding father of evolutionary algorithms. The idea
was simple: evolution is clearly a powerful tool to construct solutions to problems. What if you replicate
the workings of evolution to find the most efficient algorithm for a certain computational problem? If
you want an algorithm that can efficiently sort lists of numbers from high to low, you could start with
a random population of algorithms. These algorithms have a ’genome’ that represents the functions
they call on the input to produce their output. Unlike in real-life evolution, you know what the perfect
algorithm should do beforehand: it should correctly sort every list of numbers you give it. So there is
an external fitness criterion: it is defined a priori what the ’most fit’ algorithm is. Now take a set
of problems: in this case, sequences of numbers. You know the correct sorting of these numbers. Now
unleash every algorithm in the population on the problems, and record how many they solve correctly.
The more problems an algorithm solves correctly, the fitter it is. All that remains are three ingredients:
algorithms should replicate according to their fitness, there should be a death rate, and, importantly:
there should be mutations in the genome of the algorithms that change them. Voilà, you have created
an in silico version of the great optimisation process we know as evolution.

In this way, algorithms that, by chance, solve some problems correctly will rise to dominance. Better
algorithms arise by mutations and the external fitness criterion allows these to replicate more than
others. Very importantly, Holland first recognised the importance of different mutational operators:
besides point mutations, there are rearrangements, cross-over, deletions and duplications. These all affect
the evolutionary process.

Evolutionary algorithms are used to find efficient solutions to complex problems, such as in (computer)
network architecture, robotic control, the optimal placement of windmills for energy generation, and
in vitro evolution of ribozymes (Walters and Smith, 1995; Biebricher and Gardiner, 1997; Fleming and
Purshouse, 2002; Grady et al., 2005). These evolutionary algorithms align well with our change in
perspective: we focused on parameter changes in spatial systems, and asked: ”What evolves?”. Now,
we too will define external fitness criteria and ask: ”How does evolution solve this problem?”. For
this, we will use the paradigm RNA system.

Adaptive landscapes
In previous sections, we have discussed spatial models of an RNA world. As has been noted, we left out
a quintessential property of RNA: that the sequence is connected to a structure. In experimental studies,
it has been shown that evolving a functional RNA ligase happens quickly. With small population sizes
(in the range of 1010 - 1016), efficient RNA ligases can often be evolved in a mere ten generations with
random mutations and selection in vitro (Ekland et al., 1995; Ekland and Bartel, 1995; Jaeger et al.,
1999; Joyce, 2007). This is astounding: if we take a length of 220 base pairs, there are 4220 options
(about 2.8 ∗ 10132!). How can this happen so quickly, when so few genotypes are sampled?

To think about this, we should think about the difficulties that evolution faces in finding high fitness. A
tool that is considered useful here is the notion of adaptive landscapes: visualisations of the fitness for
every genotype (given a certain environment). In such a space, you can see what the optimal genotypes
are, and what difficulties might arise in reaching them via natural selection. Please note that adaptive
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landscapes are always relative to a certain environment (i.o.w. fitness is dependent on the environment)
which is not represented in the figure, but plays a role nonetheless. Conceptually, we could envision
two different types of landscape. A smooth adaptive landscape has no epistasis: mutations all have
independent effects on fitness. A smooth landscape with a single peak would be easiest to traverse: there
is one defined optimal fitness, and every mutation independently brings you closer to it or farther away
from it (Figure 4.39A). Then we could think of a rugged landscape: a landscape where mutations in
different combinations produce different effects. If there are multiple slightly lower fitness peaks than the
global optimum (the highest fitness peak in the field), we might think that evolution could easily get
stuck there, because every mutation away from a local fitness optimum decreases fitness (but these
mutations would be necessary to get the global optimum) (Figure 4.39B). This is especially the case
given that we now think of finite populations: there are so many possible genotypes that they will never
all exist. If existing genotypes by chance all surround a local fitness optimum, how can evolution ever
find the global optimum?

Figure 4.39: Two different adaptive landscapes we might envision. A: there is one, easily achieved
global fitness peak. B: there are multiple fitness peaks. In theory, this might make it more difficult for
evolution to find the best possible fitness in this landscape. Adapted from: (Conrad et al., 2011).

The adaptive landscape of RNA
Now let us zoom in on the RNA adaptive landscape, and see what the genotype-phenotype map-
ping means for those landscapes. Here, the genotype is the sequence of nucleotides (As, Us, Cs, and
Gs), and the phenotype is the calculated secondary structure. Given this genotype and phenotype, what
does the RNA adaptive landscape look like, and why can efficient RNA ligases so quickly evolve?

Neutrality in RNA landscapes

A core concept that makes evolution in RNA adaptive landscapes so efficient is neutrality. First defined
by Kimura (Kimura, 1983). When DNA bases change but there is no concomitant change in an amino
acid, this is neutral evolution. Similarly, in the RNA world, if the sequence changes but the structure is
unchanged, this is neutral evolution.

Figure 4.40 illustrates the high neutrality of RNA landscapes (Huynen et al., 1993). Given that this
image is 3D it might be hard to understand at first. Start with the x- and z-plane. These show the effects
on the (calculated) secondary RNA structure that mutations can have. If you look at the “front” of the
picture (a single mutation), you see that the vast majority of mutations have no effect on the secondary
structure: they are neutral. However, there are also single mutations that change the structure by up to
100%!

This model finding is supported by experimental evidence: eukaryotic mRNA folding can be completely
changed by just one mutation (Konings et al., 1987). Additionally, an RNA ligase exists where every
position in the sequence is essential for the function (Schultes et al., 2000). Changing a certain residue
changes every fold in the molecule and turns the molecule into another functional ligase.

Note here that most models do not take this effect of mutations into account. Mutations are often modeled
as gradual departures from a starting value. For example, individuals can be modeled with a parameter
that describes a certain propensity for feeding on a food source, and offspring can deviate by between
0-2% in that parameter. However, we see even in this simple model that this is a misrepresentation of

108



the evolutionary process: the redundant genotype-phenotype mapping means that a single mutation
can have no effect at all, or have a drastic effect on secondary structure.

If we now look at the axis with the number of point mutations, we see that after about 20 random
mutations from a given sequence, the distribution of the effects on the change in secondary structure
stabilises: additional mutations are neither more nor less likely to affect the secondary structure. This
defines the correlation length: how many mutations you can step away from a sequence of origin until
the resulting structure is no longer dependent on the sequence of origin, but could just as well have come
from a different sequence. This correlation length is at 2̃0 mutations. There is thus a saturation in
the magnitude of change of secondary structure.

Figure 4.40: The high neutrality of RNA landscapes. On the x-axis, the percentage of change in the
calculated secondary structure. On the y-axis: the number of point mutations added to a sequence. On
the z-axis: the amount of times this occurred. Adapted from: (Huynen et al., 1993).

Looking back on the aforementioned smooth and rugged adaptive landscapes, where does RNA fit?
Strikingly, it not fully smooth nor is it fully rugged: it is both:

1. One mutation can completely change the phenotype (so a single change can throw you right off
from the fitness optimum). Contrast that with changes gradually moving you from the fitness
optimum in a smooth landscape.

2. Many mutations are neutral (there is no single clear fitness peak on the sequence level).

The intuition was that rugged landscapes are difficult for evolution to traverse, yet experimental evolution
of ligases was extremely efficient. How can this be? To understand that, we have to dive further into
neutrality.
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Percolation on neutral paths

We now focus on the work of Schuster (Schuster et al., 1994; Schuster, 1995). Figure 4.40 shows that
the one-mutational neighbourhood (the pool of sequences that is one point mutation away from
a sequence) is overwhelmingly neutral. You see that as you introduce more point mutations into a
sequence, the chance of no change in secondary structure happening decreases rapidly. But another
question arises: can you move from neutral mutation to neutral mutation until you completely changed
the sequence, and yet retain the same structure? In other words, do neutral mutations percolate through
sequence space?

In short, the answer is yes. Schuster et al. simulated RNA sequences and their structures. They started
with a pool of sequences (of length 100) that folded into 500 different reference structures. They then
allowed only point mutations in which the secondary structure was retained. The question: what is the
distribution of the neutral path lengths; how far can you go on completely neutral mutational paths?.
The vast majority of sequences could percolate fully through sequence space (Figure 4.41: the peak of the
distribution is at n = 100): even if the sequence was completely different from the sequence of origin, the
structure was still the same. The peak in the left of the figure is the answer to a different question: how
many steps can you mutate towards a specific target sequence while retaining your original structure?
To test this, a reference sequence and its structure were chosen, and a random target sequence was
chosen. Sequences were then allowed to mutate only such that they kept their structure but approached
the target sequence in sequence space. The results show that you can, on average, get to about 20
mutational steps away. The most important finding, however, is clear: sequences can percolate over
neutral networks, and even completely different sequences can have the same structure. The genotype
space is easily traversable and highly interconnected due to these networks.

Figure 4.41: Neutral paths percolate through sequence space. Left: if a pool of sequences with length
100 are allowed to mutate via SNPs that do not change their structure, how far can they mutate away?
The peak of this distribution is at neutral path length (d) = 100. The sequence can thus change
completely yet retain the same structure. The peak on the left shows to what mutational distance from
a defined target sequence sequences can mutate without changing their structure. Right: illustration of
neutral paths. The sequence space is percolated with neutral networks or neutral paths, interconnected
networks of sequence mutations that are neutral with respect to the structure and span the whole
sequence space. Adapted from: (Schuster et al., 1994; Schuster, 1995).

Novelty along the percolating path

The question arises what this means for the ease of evolving novel structures. The fact that neutral
mutations connect vast reaches of sequence space will affect the evolutionary process. To investigate,
Huynen calculated how many structures are seen in the one-mutational neighbourhood as a sequence
meanders along a neutral path (Huynen, 1996). The amount of novel structures (phenotypes) seen
along the neutral path continuously increases (Figure 4.42). Despite this novelty along the neutral path,
there is a shadow of similar structures: structures which are continuously in the one-mutational
neighbourhood of your sequence (i.e. now we count how many structures you see that you have already
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encountered before along the path). Though the amount tapers off with increasing neutral path length,
there are structures (which are closely related to the original structure) that are continuously seen along
the neutral path.

Figure 4.42: Continuous innovation and a shadow of similar structures along neutral paths. Left:
if sequences are allowed to keep walking along neutral mutational paths, the amount of novel structures
seen keeps rising linearly. Right: as the walk along the neutral path continues, the amount of structures
that have already been seen in the one-mutational neighbourhood decreases, but never becomes 0.
Adapted from: (Huynen, 1996).

Clustering on the neutral network

How do sequences percolate through the neutral network? If you start with a specific sequence, does
the sequence randomly drift away from this point? Is there some kind of pattern to be found in how
neutral mutations wander away over sequence space? This question was first explored in a flat landscape
(a landscape where every sequence folds into the same structure). In that case, the neutral mutations
are equal to a diffusion process ??. Interestingly, it was shown that there is some sort of speciation in
a flat (neutral) landscape (Higgs and Derrida, 1992). For this, the authors used a population of 1000
individuals. Population size was fixed, and each individual had an equal chance of reproducing asexually.
Over the generations, the last common ancestor of sequences was followed. In this completely neutral
landscape, there are nonetheless clusters of sequences with different most recent common ancestors
(Figure 4.43). These can be seen as clusters moving along the time (x) axis, where there is larger chance
that certain sequences share last common ancestors. Sequences thus percolate in random directions over
neutral networks, but because population sizes are finite and some sequences reproduce more than others
due to chance, defined subclusters form on the neutral network.
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Figure 4.43: Clusters of defined neutral subpopulations (size shown on the y axis) move along the time
axis (x) in steps of 50 generations. Clusters arise due to random effects and fixed population sizes, even
though they are all neutral with respect to one another. Peaks can appear and disappear over time.
Taken from: (Higgs and Derrida, 1992).

This analytical result is backed up by a computational result (Huynen et al., 1996). In this study, 1000
copies of the sequence coding for the phenylalanine tRNA were initialised. Population size was fixed.
Mutation chance per base pair was 2% and the target structure was set to the phenylalanine tRNA
structure. Thus, all sequences started with the correct structure, and those sequences which deviated in
structure suffered fitness penalties. By taking the Hamming distance between all sequences and using
dimensionality reduction to project sequence clusters into 2D, one can see that there are defined
clusters of sequences in different parts of the genotype space (Figure 4.44). The Hamming distance is
a simple metric: if you have the aligned sequences AABB and ABBA, the Hamming distance between
them is 2, because they differ in two positions. It’s a distance that adds 1 whenever two positions are
not exactly the same.
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Figure 4.44: This is a PCA (a form of dimensionality reduction) done on a population of one
thousand neutrally evolving sequences coding for the phenylalanine tRNA. Sequences are connected by
lines to their closest mutational neighbours (blue: Hamming distance < 6, yellow: Hamming
distance >= 6). Due to random effects, neutral clusters of sequences exist that can sample defined
parts of the genotype space. Adapted from: (Huynen et al., 1996).

Consequences for evolution and the adaptive landscape

We introduced adaptive landscapes as a useful tool to think about what evolution encounters during
the rise to optimal fitness. We thought about smooth and rugged fitness landscapes: whereas smooth
landscapes are easy to traverse with their single fitness optimum and/or lack of epistasis, the local
optima and/or epistasis of a rugged landscape make it hard to traverse. That, at least, was the
intuition. We have found out that RNA landscapes are, in fact, both rugged and smooth.

If we map the immense neutrality in the sequence space back to adaptive landscapes, a different
picture emerges: local optima are a bug in our thinking, rather than an actual phenomenon. In the true
RNA adaptive landscape, local optima do not exist (or only extremely infrequently): structures with
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intermediate fitness are retained while the underlying sequences change continuously. The sequences
percolate along neutral paths, continuously seeing many new structures in their one-mutational
neighbourhood. Not only that: these neutral sequences are also clustered into neutral subpopulations
or quasispecies: groups of sequences that are close to each other in the genotype space. These groups
are sampling different regions of the genotype space, and therefore potentially different structures. In
other words, populations can do a large “parallel search” for the optimal structure, which is more efficient.
Structures with better fitness can thus rapidly be searched while the current best structure is retained.

How does this translate to observed evolutionary phenomena? In 1972, Stephen Jay Gould revolutionised
evolutionary theory with his theory of punctuated equilibrium (Eldredge and Gould, 1972). Darwin’s
original contention was that mutations with small fitness benefits accumulate over time due to natural
selection, and that this culminates in the gradual formation of new species. He was confounded by
the lack of gradual change in the fossil record: ’Why then is not every geological formation and every
stratum full of such intermediate links? Geology assuredly does not reveal any such finely graduated
organic chain; and this, perhaps, is the gravest objection which can be urged against my theory’ (Darwin,
1859). The new synthesis ( state of the art in evolutionary theory around the 1950s-1970s) still supported
this gradualism, and breaks in the fossil record were held to be due to imperfect preservation.

Gould argued something different, and something that we can now understand: there is no gradual
change. There are long periods of homeostasis (equilibrium), punctuated by bursts of innovation. His
proposed mechanism was that of allopatric speciation: a species lives in a certain area, to which it is
well-adapted. A breakaway population that becomes geographically separated and lives in a different
area will, by chance, only carry a subset of the genetic traits of the original population, and will rapidly
adapt to the new area. Thus, a new species can rapidly come to be (Eldredge and Gould, 1972).

What we have learned of neutrality supports the observation of punctuated equilibria, but not (per se)
Gould’s supposed mechanism. Instead, we have found that there are prolonged periods of phenotypic
neutrality, while the underlying sequences percolate along neutral paths. This allows a population
of sequences to sample many new structures, until such time as one is found that is better. The pheno-
type appears suddenly, but there is continuous change in the underlying sequences. This is illustrated
beautifully in work by Huynen et al. where they modeled evolution in a flow reactor with capacity N =
1000, initialised with 1000 copies of a single random RNA sequence of length 76 (Figure 4.45) (Huynen
et al., 1996). They defined a target structure (the phenylalanine tRNA), allowed for mutations and set
a replication rate per sequence. This rate was dependent on the distance of its structure to the target
structure, with lower distances yielding higher replication rates. The line shows the average distance
of structures in the population to the target structure. Superimposed on the picture are dots. These
indicate the Hamming distances between all sequences in the population that are present > 10 times,
projected on to one dimension. If that sentence is unclear to you: fear not. It simply shows the sequence-
level diversity in the population of sequences. These dots illustrate again that there are different neutral
subclusters (collections of dots which are closer together). What you see are punctuated equilibria in
optima forma: on the population level, nothing happens to the (average) phenotype for long stretches of
evolutionary time. However, different clusters of phenotypically neutral sequences arise and percolate
over the network, causing a gradual increase in sequence diversity. These sequences consistently ’see’
new structures in their one-mutational neighbourhood. Then, a structure is encountered that is
closer to the target structure, and the sequence coding for it quickly comes to dominate the population.
At these points, the population diversity on the sequence level is notably reduced (the dots are much
closer together). Then, neutral percolation begins again. This repeats until the target sequence is
reached.
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Figure 4.45: Evolutionary dynamics of 1000 DNA sequences of length 76 evolving towards a target
secondary structure (phenylalanine tRNA cloverleaf). Dots show dimensionality reduction of the
neutral sequence-level variety. Whenever a structure is found that is closer to the target, that sequence
quickly takes over the population and neutrality is lost, only to be gained again during the search
for the next favourable adaptation. Dynamics clearly show punctuated equilibrium. Taken from:
(Huynen et al., 1996).

Similar behaviour has been found in experimental studies on evolution, such as in Lenski’s long-term
evolutionary experiment (LTEE) (Lenski et al., 1991; Lenski and Travisano, 1994; Barrick et al., 2009).
This is an experiment that has been going on since 1988. E. coli are grown in flasks, fed at set times, and
new generations started by sampling from the current generation daily. Samples are regularly frozen, so
one can look back in evolutionary time, and strains are subjected to additional evolutionary experiments
such as adaptation to novel media or nutrients. In the experiment, it was observed that cell size, which
is correlated with bacterial fitness, evolved in a step-wise manner: long periods of phenotypic stasis,
followed by a sudden jump in cell size (Figure 4.46) (Elena et al., 1996). A live report of punctuated
equilibrium, if you will. Whether this is related to neutral networks, or a feature of rare mutations, is
not yet clear.
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Figure 4.46: Punctuated equilibrium in a population of E. coli experiencing rare mutations that alter
cell size. Left: change in average cell size during 2000 generations of E. coli evolution. Each point is the
mean of 10 replicate assays. Solid line is the best fit of a step-function to this data. Right: Correlation
between cell size and mean fitness, measured at 100-generation intervals for 2000 generations. Fitness is
expressed relative to the ancestral phenotype, and was derived from competition experiments. Adapted
from: (Elena et al., 1996).

Taken together, the apparent ruggedness of RNA landscapes is nullified by the power of neutral evolu-
tion. Through evolution that is neutral on the phenotype level (phenotypically neutral), sequences
can percolate over a neutral network and continuously ’see’ novel structures. This percolation is clustered,
with different subsets of the population sampling different regions of genotype space, further increasing
efficiency. There is smoothness in apparent ruggedness. Because of this, phenotypic innovation is fol-
lowed by neutral drift on the sequence level until a new phenotypic innovation is found: this is a possible
explanation for punctuated equilibria.

Constructed adaptive landscapes
We have now looked at the adaptive landscape of RNA, with secondary structure as a proxy for the
phenotype (keeping in the back of our mind that tertiary structure is a better indicator, and that other
effects could play a role in reality, of course). To get more of a grip on adaptive landscapes, let’s look at
some constructed ones and the dynamics of evolution on them.

Constructed landscape 1: Kauffman’s NK networks

We first look at Kauffman’s NK networks. This work serves as a caveat about trying to be general
but thereby missing the point, as has been alluded to early in the reader. Kauffman wished to study
how ruggedness hinders the evolutionary process. In Kauffman’s NK networks, there are a number
of blocks (N) which can be either 0 or 1. In both states, each block gives a certain fitness benefit.
Thus, the parameter N gives the dimensionality of the network (rather like genome positions). K is the
connectedness of each block, i.e. on the value of how many other blocks a block’s fitness contribution is
dependent. In this system, Kauffman tried to investigate the optimal connectedness of blocks (i.e. how
many genes should be connected for optimal fitness) and other effects (Kauffman, 1969, 1974; Kauffman
and Levin, 1987). The system works as shown below for N = 3 and K = 0 (Figure 4.47). Beside the
schematic representation of how it works, you see the fitness landscape to which it leads. This fitness
landscape is known as a Mount Fuji landscape (Hayashi et al., 2006): it has continuously rising fitness
and one global fitness peak. Without the knowledge of the power of neutrality that we now have,
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this looks like the easiest landscape for evolution to navigate.

Figure 4.47: Illustration of the work by Kauffman on NK networks and the adaptive landscape to
which it leads. Left: Blocks can be either 0 or 1, and have a specific fitness benefit in each case. The
fitness a block gives can be made dependent on the state of other blocks. In this example however, there
is no dependency (K=0). Right: This setup results in an adaptive landscape that is conceptually
easy to traverse. This landscape is called a Mt. Fuji landscape, after the Japanese mountain with one
defined peak and sloping sides (Hayashi et al., 2006). Made by Dieter Stoker, based on work by Kauffman
(Kauffman, 1969, 1974; Kauffman and Levin, 1987).

If K > 0, then there are epistatic interactions. The simplification is that for every position in the
’genome’, the amount of epistatic interactions is the same (so if K = 1, every position’s fitness
is dependent on the value of one other position) (Figure 4.48). These epistatic interactions give
ruggedness, and allow study of how that influences the evolutionary process. Note that this system
has no neutrality whatsoever: that idea came later, by studying the RNA landscapes that we have just
looked at.

Figure 4.48: Conceptual illustration of NK networks by Kauffman with K = 1, such that the fitness
contribution of each block is dependent on the value of one other block. Made by Dieter Stoker, based
on work by Kauffman (Kauffman, 1969, 1974; Kauffman and Levin, 1987).

In this case, for two positions, we could get the following situation for the fitness contribution of A:

1. A = 0;B = 0 → 0.1 fitness

2. A = 0;B = 1 → 0.8 fitness

3. A = 1;B = 0 → 0.5 fitness
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4. A = 1;B = 1 → 0.9 fitness

Thus, random patterns are assigned (randomly chosen which blocks are dependent on which other blocks).
Interactions also need not be symmetric (the dependency of B on A can be different from that of A on
B). By researching these landscapes, Kauffman found that a Mt. Fuji landscape is in fact not optimal for
evolution. However, neutrality did not enter into this thinking at all. So, by studying a general example
outright, he actually drew conclusions that were far away from generic. By studying the dynamics of
specific landscapes (RNA evolution), we were able to draw much more general conclusions about the
importance of neutrality.

Constructed landscape 2: Royal road landscape

A royal road landscape is an adaptive landscape where there is a rising line straight to the top
possible fitness, interspersed with neutral areas. From studying the RNA adaptive landscape, van
Nimwegen took the idea of neutrality and then applied that to genetic algorithms. He made a landscape
where he added neutrality, a schematic representation of which is shown (Figure 4.49).

Figure 4.49: The artificial royal road landscape constructed and studied by van Nimwegen. Made
by Dieter Stoker, based on work by van Nimwegen (Van Nimwegen, 1999).

How does this work? The genome is made up of blocks of 1s and 0s. There is a target sequence per block,
for example: 011001. There are mutations, and the blocks only give a boost to fitness once their target
sequence has been met. Thus, you can see how the landscape arises: periods of neutral mutation, until a
block arrives at its target sequence, bumping up the fitness (Figure 4.49). Given that this idea was based
on observations in the RNA landscape, does RNA have a royal road landscape? No, because after
pro-longed evolution , the local RNA landscape becomes flatter (more neutral) which is not implemented
here. Additionally, we defined here what is neutral and fitter a priori by having blocks of sequence, while
in the RNA landscapes, you can only find that out by sampling the genotype space. Below, we see what
the evolution on this constructed royal road landscape looks like. Here, q is the mutation rate, K is
the size of blocks, and M is the population size (Figure 4.50).

We observe the following:

1. Epochal evolution/punctuated equilibria (Figure 4.50a-d).

2. Increased mutation leads to an increase in maximum fitness, but the system does go over the
information threshold: it cannot keep the fittest. It does, however, keep the part of the string
that can be maintained given the information threshold (Figure 4.50g and h, for instance).

3. Lower population sizes lead to more stochasticity and an earlier information threshold.

What we see here attenuates our idea of the information threshold. Rather than completely losing all
fitness when it is crossed, we instead note that if parts of the sequence give some contribution towards
total fitness, some can be maintained when you are over the threshold for the entire sequence length.
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Figure 4.50: Evolutionary dynamics on the royal road landscape for different mutation speeds
(q), block sizes (K), and population sizes (M). In the top, you see a classic view of punctuated
equilibrium. For higher mutation rates, fitness is suboptimal, but some fitness can be retained. This
attenuates our idea of the information threshold: even if the optimal fitness cannot be retained, a
slightly lower fitness can be kept (panels g and h, for instance). Taken from: (Van Nimwegen, 1999).

In other words, this artificial landscape serves as a reminder that information accumulates up tot the
information threshold, and the problem need not be an all-or-nothing scenario. Earlier, we thought
of a catch-22, however, if some functionality can be reliably maintained in part of the sequence, that
attenuates the problem.

AVIDA computer programme

We now turn away from constructed landscapes and to the AVIDA computer programme. In it, we aim
to study what happens during evolutionary optimisation. Multiple programmes with 100 lines of code
are instantiated, and the internal code can be mutated. The programmes need to perform a specific
function, and there is a fitness based on how well it is done. The programmes compete in the population
based on their fitness, which determines who gets to replicate. A colour-coded map of the evolutionary-
trajectory is provided below, as is the epochal evolution that goes along with it (Figure 4.51). More
red at a position means that there is more variation in the population, while cooler colours indicate less
variation at that code position.

At low fitness, there is lots of variation in the population. The code is optimised by having more
positions being of importance to the working of the programme (less variation at those positions, the
image becomes more blue). So here, variation goes down, while we have just discussed that neutral
evolution should increase variation. However, note that in this case we are evolving towards a higher
fitness. If there is an innovation that increases fitness, that will be selected. Thus, variation goes down.
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Figure 4.51: AVIDA evolution of programmes through time. When a new innovation is found, this
reduces variation. Adapted from: (Adami et al., 2000).

So, what we see here is that if a programme becomes fitter, there is a variation bottleneck at that point
as it quickly overtakes the population. During fitness increase, more neutrality does not accumulate.
However, in the intermittent periods, you clearly see an increase of neutral variation (more red). Also,
just after a bottleneck the rate of variation increase is higher. This underlines the point that when you
go to a higher fitness, you are less

Mapping insights on RNA adaptive landscapes back to the information threshold
We have covered the information threshold in relation to Eigen’s work on ODE systems of RNA-like
replicators. There, we saw that for mutation rates higher than a certain threshold value, the replicator
with optimal fitness would not be the most prominent in the system: in essence, natural selection broke
down. Besides lacking space (whose importance we have previously seen), Eigen’s model didn’t include
a quintessential property of RNA: there is a mapping of sequence to structure. This GPM (genotype-
phenotype mapping) leads to a lot of neutrality on the genotype level: genotypes can diverge a lot,
while maintaining the same phenotype.

If we map this finding back to the information threshold, we can say the following: given that the
phenotype is what natural selection acts upon (it is the folded RNA that can catalyse replication with
a certain propensity), and given that a phenotype can be kept while the underlying genotype neutrally
evolves, there is a relaxed phenotypic information threshold. Why? Well, a phenotype can be
maintained while the underlying sequence is constantly mutating. In fact, what used to be a problem
(selection cannot maintain the fittest genotype in the population) is now a boon: the fittest phenotype
at any time point can be retained, while maximum neutral percolation over the genotype space ensures
that fitter phenotypes are found very fast.

Coding structures
Introduction

In the previous section we have discussed the concept of neutral paths and neutral networks and their
role in allowing populations to discover novel structures. However, is there more going on? Is there a
directionality on an RNA neutral path? And how neutral is a neutral path? In other words: which code
evolves (given neutral evolution)?

How neutral is neutrality? The move towards robustness

In Drosophila (fruit fly), it was often observed that new strains had more deleterious mutations than
well-established strains (Scharloo, 1991). RNAs, which are evolved, were known to be very mutationally
robust (Huynen et al., 1993). This means that they did not suffer many deleterious consequences from
mutations. If neutrality is higher in established strains of fruit flies, and evolved RNA structures are
also mutationally robust, might it be that neutral evolution has a directionality towards more neutral
regions of the genotype space?
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The figure below illustrates this point. In it, the authors looked at RNA evolution to a target structure
(Huynen and Hogeweg, 1994). They examined the average decrease in fitness after point mutations in
two different situations: just after reaching a fitness peak, and after some neutral evolution from that
peak. The mean decrease in fitness is higher when mutating away from sequences that have just reached
the fitness peak (Figure 4.52, open circles) than when mutating away from those that have neutrally
mutated for some time (Figure 4.52, squares and crosses). The effect is more pronounced if cross-overs
are allowed.

Figure 4.52: The effect of point mutations after just reaching a fitness peak (circles), or after some
neutral mutation on that peak with (crosses) or without (squares) crossing-over. Taken from: (Huynen
and Hogeweg, 1994).

Thus, neutral evolution leads to areas that are more neutral. Note that this is early work on the subject,
and a suboptimal metric was used: the mean fitness decrease. Now we see an example where the metric
is more in line with what we want to know (Figure 4.53). Here, λ is the fraction of neutral mutations in
the one-mutational neighbourhood. We start from many copies of the real sequence of phe-tRNA,
and the imposed fitness criterion is having the phe-tRNA structure. Hence, every molecule is already
optimally fit at the beginning, but we observe what happens to the fraction of neutral one-mutational
neighbours.

Depicted are the master sequence (red, the correct sequence and its neutral neighbours) and the
mutant sequences (green, those who are not maximally fit, i.e. have a sequence that folds into a
different structure). Though there are fluctuations in λ, it is clear that, over time, the fraction of neutral
mutants of the master sequence increases. What we thus see is that neutral evolution (the master
sequence and its neutral mutants continuously have the highest fitness attainable) leads towards flatter,
more connected, parts of the neutral network. This also increases the connectivity of the neutral network:
if you have more neutral neighbours, it is easier to percolate away over the neutral network.
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Figure 4.53: The effect of point mutations after just reaching a fitness peak (circles), or after some
neutral mutation on that peak with (crosses) or without (squares) crossing-over. Made with RNAevol,
which you will be using as well during the practicals.

You do not go to the highest robustness that exists, but you do go above the average robustness or
connectivity that exists in the neutral genotype space. It depends on population size ∗ mutational rate
where you end up (population size because 1,000 individuals can walk farther while taking neutral steps
than 10 individuals, mutation speed for the obvious reason that exploration is limited by mutation rate).
We can ask why real phe-tRNA is not more robust, if we can make it so in a measly 10,000 generations.
We assume here that the only selection pressure is folding into the correct structure. However, we only
look at the secondary structure, and fail to account for what phe-tRNA actually does: it needs to be
able to undergo conformational changes to fit into the ribosome and get out of it. Therefore, complete
robustness at the sequence level (mutational robustness) is, in real life, probably counteracted by the
need to make conformational changes.

Why this move towards more mutational robustness? Neutrality is a double-edged sword. On the
one hand, sequences with more neutral mutants will have more fit offspring: if a mutant occurs, it is less
likely to be detrimental to fitness. Over the long term, robustness thus pays off. On the other hand,
more neutrality allows a greater exploration of other possible phenotypes that might be fitter. What
you would initially think to be opposites (being readily able to adapt vs being robust against mutations)
are thus perfectly reconcilable. This leads us to the study of the evolution of evolvability: the idea
that evolution can work to optimise later evolution. We have come far from the strictly adaptationist
view. Now let that all sink in while I grab myself a cup of tea.

Recent experimental example of evolved robustness

*Slurp* Aaah..I do like me a nice warm cup of dried fermented leaf pulp. Proper hydration is key,
kids. Where were we? Oh yes. We have introduced this move towards robustness based on work from
some years ago by van Nimwegen. The decrease in robustness had already been noted in Drosophila
(Scharloo, 1991). Some recent experimental work verifies these results.

In this study, the authors looked at the effects of single point mutations from the wild-type sequence
of Hsp90 and from 7 of Hsp90’s (almost) neutral mutants (mutations were induced between base pairs
580-590 of the sequence). Thus, you have a direct comparison of the robustness in the mutational
neighbourhood of the wt and newly created (not evolutionarily optimised) Hsp90 sequences (Bank
et al., 2015). The results are telling (Figure 4.54). The wt has many neutral mutants (high peak at
growth rate of 1.0). Relative to wt, the mutants of neutral mutants are much less likely to be neutral:
they are much more likely to be deleterious (higher peaks on the left). Once again, we see that the
optimised evolved form (wt) is much more neutral than other nearly the same sequences, indicating that
this property is something that evolves.
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Figure 4.54: The effect of point mutations after just reaching a fitness peak (circles), or after some
neutral mutation on that peak with (crosses) or without (squares) crossing-over. Taken from: (Bank
et al., 2015).

We will here remark upon the fabled ’U-shape’: mutations are either neutral or extremely deleterious.
If we look more closely, we can see that, in fact, this effect is accentuated in the wt compared to all of
its mutants. This is a first hint that perhaps something is up. Details will follow in later chapters, but
know that this allows for high neutrality (and thus high robustness), and also for a high selection
coefficient relative to the highly deleterious mutants, so that they can be quickly outcompeted.

How neutral is neutral?

We have now seen that neutral evolution is directed towards flatter parts of the fitness landscape: neutral
evolution leads towards areas that are more neutral. This leads to both robustness and evolvability.

We are now forced to ask: what is neutrality? How neutral is neutral? If neutral evolution has a
goal, is it neutral? What we can say is that a mutation is neutral when it is above the information
threshold for selection. Yes, there it is again, our good friend and difficult concept the information
threshold. If a neutral mutation causes an organism to have 0.001 less offspring, that is not something
selection could ever act upon. Thus, neutral mutations can be slightly deleterious, but not more so. The
fact that neutral mutations, over the long term, lead to more neutral areas of the genotype space which
makes descendants of those individuals more likely to be fit does not change the fact that the neutral
mutations themselves cannot be acted upon by selection.

Integrating pattern formation, coding structure, and evolution

In a CA we see spatial pattern formation which affects ecological and evolutionary processes. Higher
order patterns arise by themselves and feedback on the evolution of replicators, i.e. they enslave the
evolution of replicators. This is a two-way process whereby replicators interact to generate patterns
which then feedback on replicators.

On the other hand we have seen that replicators have a coding structure which leads to a particular
genotype-phenotype mapping. In organisms, there is therefore a complex transformation from a
code to an organism, and we could well argue that this code, itself, is evolved.

These observations lead to the following questions:

1. What is the best code for good evolution? (Is that, for example, a smooth landscape, or something
completely different?)

2. Given a code, how does evolution proceed? What evolutionary process occurs? In RNA, the
landscape is not smooth, but we found out that its properties are in fact very helpful to the
evolutionary process: redundant coding and neutral paths help rather than hinder evolution.
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3. Given an evolutionary process, what kind of code evolves? Can evolution select for certain kinds
of coding because properties of the landscape are not the same everywhere. In other words, can
evolution select a place in genotype space such that the adaptive landscape there has certain
properties?

We have already started to answer the first and second question. In the following pages, we will look at
them more closely, before moving on to the third question.

Constructed landscapes and landscapes as a metaphor

The adaptive landscape metaphor is useful to give an intuitive idea of what kind of things could be
going on, and was originally proposed by Sewall Wright (Wright, 1986; Skipper, Jr., 2004). However, we
have seen by now that the concept has its flaws:

1. Too few dimensions: 2D or 3D adaptive landscapes are anything but realistic. Evolution has many
more dimensions to work with.

2. The dimensions are fixed: bigger genomes have more dimensions (nucleotides) to change, and
therefore have more dimensions to work with. Evolution changes the dimensions of the landscape:
it increases or decreases the genotype space.

3. It only works well with point mutations, while there are many more mutational operators which
make the “proximity” of genotypes hard to define (think about cross-over, inversions, or large
duplications and deletions).

4. There is constant fitness: in the landscape metaphor, one assumes that the evolutionary pressures
(environment) are constant. However, they would normally change during the evolutionary process
(either from fluctuations outside of the system, or by means of influences from inside of the system!).

In the following we study constructed (very much artificial) landscapes that explore particular aspects of
adaptive landscapes. Moreover, we aim to make a connection between coding structure and spatial
pattern formation, both of which can leave evolutionary signatures in their own right. Here, our
main question is: what kind of traces do evolutionary processes leave in evolved entities? We mean traces
that are:

1. Not there because they are functional

2. Not there for biochemical reasons

3. Solely present because the system has evolved in a certain process/way

Concluding remarks RNA genotype-phenotype mapping
What have we seen in these RNA landscapes up until now? We have seen that there are not many
true local optima. Instead, detours are available in the high-dimensional space that evolution can
work with. There is percolation over neutral networks: sequences keep encountering new structures in
their one-mutational neighbourhood as they amble through sequence space. There are punctuated
equilibria: a mutation that is difficult at one time can, through neutral percolation, be simple to
achieve at a later time. The underlying sequences for a certain phenotype are continuously changing,
leading to a massive parallel exploration effort for better phenotypes. There is thus diffusion on neutral
networks. During adaptive evolution, most mutations are actually neutral, with jumps in fitness due
to non-neutral mutations. There are intercalating neutral networks: neutral wandering sequences might
meet, and there are neutral subpopulations due to stochasticity. New structures are constantly sampled
from different parts of the genotype space, and there is a shadow of similar structures: you keep
seeing a small set of structures related to your initial structure throughout your neutral walk. We have
seen The RNA landscape is ideal for evolution. Lastly, evolution on neutral paths proceeds towards
flatter (more neutral) parts of the landscape. Why? Because a larger mutational robustness yields an
individual with more highly fit offspring (more mutants are neutral). At the same time, on a population
level, more neutrality yields more avenues to adapt (since a larger diversity of structures can be “seen”
by evolution)!
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What can we now say about what coding evolves in evolutionary systems and how they work?

1. Given a code, what are its evolutionary dynamics? For RNA, these dynamics are punctuated
equilibria, neutral paths, etc.

2. Given a problem: how is it best to code? The expectation would be that a smooth, non-redundant
search space is the best suited to find solutions. In reality, evolution in RNA landscapes is so
powerful because there is neutrality! This redundant coding thus works very well indeed.

3. Given evolutionary dynamics, which code evolves? We see that a coding evolves that moves towards
robustness and evolvability. Neutral percolation leads towards a more neutral area of the
genotype space.

Caveats of the work on RNA landscapes

Though they do not invalidate the concepts we have learned from looking at RNA, we should note that
there are some caveats.

1. RNA structure prediction is not perfect: if you look at the 16S RNA sequence for many bacterial
species and assume that conserved parts have conserved folding, you get a different folding picture
than when you calculate the minimum energy folding. This is probably, in part, due to the fact
that RNA starts folding from the moment it is made. There are some prediction tools that take
this into account and perform better (Hofacker et al., 2002). However, we should note that we did
not go for complete accuracy, just for the general behaviour of the system.

2. Alternative basins of attraction: RNA structures do have one true minimum energy structure,
but there are often many structures which are almost as good. In practice, RNAs in a chemical
environment could well switch between several different foldings continuously, which might well
impact our conclusions (Zuker, 1989; Fu et al., 2015).

An example of the power of neutrality: model of the insulin pathway by Wagner

To illustrate how important neutrality can be as a concept in our understanding of other biology, we
now focus on an example by Wagner (Wagner, 2015). Here, they took a literature model of the insulin
pathway (and resulting glucose uptake). This model contained mass action equations (i.e. reaction
kinetics) and these were translated to a system of ODEs. Wagner then took 13 kinetic parameters and 2
feedback loops, and evolved them (Figure 4.55a). These parameters thus form a sort of pseudogenotype:
changing the different parameters and seeing what happens will allow us to get a sense of the adaptive
landscape of the insulin pathway. The parameters were varied by six orders of magnitude. Wagner
then simulated a pulse of glucose (Figure 4.55b), and classified the behaviour of the system as normal or
diseased based on the glucose uptake curve in time (he was quite liberal in what counted as healthy, but
that does not change the findings) (Figure 4.55c). Though we will forego exact quantification here to
keep things short, the findings were that though there were about four times more diseased phenotypes
than healthy phenotypes, a huge range of parameter values produced healthy phenotypes.
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Figure 4.55: Illustration of the insulin pathway and its workings. a: reactions and parameters that
Wagner used to parameterise his model and make his pseudogenotype. b: the input glucose signal
that Wagner provided to all different parameterisations of the model. c: healthy (blue) or diseased (red)
glucose uptake for all different parameter sets. Inset: visualisation of the glucose uptake curves generated
by the different parameter sets in the model. Taken from: (Wagner, 2015).

He then took a large set of healthy parameter sets, and asked whether changing one of the 15 parameters
randomly had a strong deleterious effect. As it turned out, most random changes to healthy sets of
parameters gave no noticeable change in the glucose uptake curve at all. On the other hand, similar to
what we have seen in the RNA landscape, in some parameter regimes changing a single parameter made
the phenotype completely unhealthy. Which mutations are strongly deleterious is very dependent on the
genetic background!

To explore this further, Wagner then allowed mutations in parameters to occur eac time step, while only
allowing healthy individuals to survive. This means you introduce neutral drift into the insulin uptake
pathway, and only individuals without detrimental phenotypic mutations survive. Now, he observed
strong drift in the causes of disease: which parameter was most important for the generation of a diseased
phenotype depended very strongly on genetic background, and that changed rapidly under this regime.
In fact, after only about 10 generations, the correlation of what is a current causal disease mutation to
what was a causal disease mutation 10 generations ago is close to 0. This leads to a very fundamental
question: what is the cause of a disease, if, within 10 generation, the genes in which mutations are causal
to disease can shift completely under neutral evolution?

The kicker is that Wagner also performed some in silico GWAS studies on these pseudogenotypes. In
GWAS studies, you do logistic regression on effects (in this case, the parameters that cause a disease)
and add all these effects up (i.e. you assume effects are additive) (Visscher et al., 2017). However, as
has been shown in this chapter, there is a non-linear genotype-phenotype mapping: the genetic
background matters very much for which parameter mutation is responsible for causing a diseased state.
So just adding up the causal mutations in a population and inferring the cause of disease from that is a
dangerous business. The result in this case was that in different populations where Wagner had simulated
case-control groups (like one has in GWAS: healthy people and diseased people from certain populations),
the significance of a parameter for disease could vary immensely: the parameter with the lowest variation
in significance for disease causation varied over 47 orders of magnitude between populations.

These findings thus cast quite some doubt on our ability to infer the causes of disease from non-human
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model organisms: if we find the cause of disease in mice (note that lab mice are often extremely genet-
ically similar strains), not only do we have to contend with the fact that there are actual physiological
differences, we should also take into account that neutral evolution in all conserved mechanisms could
have completely changed what is causal to disease.

This example thus provides insight into how important examining the landscape of (neutral) mutations
can be. In this case, it shows us that GWAS studies should be interpreted very carefully, and that
neutral evolution can greatly influence what is causal to a disease phenotype. Therefore, inferring causes
of disease from model animals is a difficult task.

RNA world in space: structure-based modelling
Until now, we have done two things. They can be summarised as a world without true RNA, and RNA
without a true world. That is to say, we simplified the form of RNA in spatial models into simple
replicators with a few parameters such as catalysis and looked at the information threshold and
stochastic error correction in vesicles. Thus, we studied the world, but without real RNA properties.
In other words: we looked at ecosystem complexity. The last chapter has been about studying the
complex multi-one genotype-phenotype mapping that true RNAs have, and how this influences
what evolution does. However, we did not incorporate a world or any spatial structure: we just set fitness
targets and looked at what evolved. Thus we looked at individual complexity without the ecosystem.
Now we will incorporate the two and look at structural modelling.

Here, we will look at examples that incorporate structured entities (such as RNAs with true qualities of
RNA) and ask whether we can obtain individual-/ecosystem-based complexity, and what sort of coding
is needed to obtain it. While doing this, we will see that RNA is even more interesting than seen so far.

Model features

How do we model this? We take structured individuals. In this case, those will be RNA sequences, which
are either a + or - strand. If these fold into a predefined (class of) structure(s), they are considered a
replicase. There is no predefined target or fitness. There are also no predefined interactions, but there
are predefined reactions. If we contrast that with the earlier replicator-parasite system (RP system),
the difference is that in that case, one RNA was the parasite, and the other was the real replicator. Here,
we make no such distinction beforehand. We simply model sequences that, when folded into a certain
class of secondary structures, can function as replicases. This requires complex formation, where the 5’
end of one string binds to the 3’ end of the other. Complementary replication is also implemented. The
system is modeled in space (CA formalism). This model thus allows complex formation of compatible
neighbours, leading to replication of the complementary strand (Figure 4.56). Initial work was done by
Takeuchi and Hogeweg, later extensions by Colizzi and Hogeweg (Takeuchi and Hogeweg, 2008; Colizzi
and Hogeweg, 2014).
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Figure 4.56: How the model of RNA in an ecosystem works. No replicators or parasites are defined
beforehand. Rather, certain sequences can bind to one another and form a complex if they are close
to each other on the CA field. Complementary replication can then take place if there is empty space
nearby. Taken from: (Colizzi and Hogeweg, 2014).

For the next couple of paragraphs, we will thus work with these constraints/characteristics:

1. A class of predefined structures are assumed to be replicases

2. There is complex formation, and there are + and - strands. Therefore, replication yields a com-
plementary string.

3. Complex formation happens with the 3’ end of one string ligating to the 5’ end of the other
string. In other words, interactions between sequences evolve and this influences the genotype and
phenotype (see Figure 4.56).

4. In all the below, sequence logos show the average genotype of the population.

By observing these behaviours and observing and dissecting what evolves, we hope to learn more of
the mapping from genotype to phenotype to interactions in the ecosystem that evolves, and how these
processes feedback on one another (Figure 4.57).
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Figure 4.57: What the model investigates. We will look at how the mapping from genotype, to
phenotype, to interactions within the environment shapes what is coded for emergently. Taken from:
(Takeuchi and Hogeweg, 2008).

We will go about the results in a reverse order: starting with how the system behaves itself in a regime
with high mutation rate and gradually lowering the mutation rate to see what happens. The system was
started with a particular sequence that is a replicase. At the start, mutation rates needed to be quite
low (so this model is not an immediate answer to the information threshold in that sense), but after
evolving for some time, the system of RNA-like replicases could deal with ever-higher mutation rates.

Mutation rate of 0.015: a single quasispecies

Under this regime, if mutations are stopped at a certain time point, the resulting species is monotypic
(i.e. has one genotype). In other words, everything we observe here is one quasispecies of fit sequences
and their mutants. This was confirmed by looking at the phylogeny of these sequences: the relation
between all sequences in the population was plotted in a phylogenetic tree, along with the information
of whether or not these sequences folded into a catalyst. With this high mutation rate, there was clearly
only one quasispecies (Figure 4.58).

Figure 4.58: Single quasispecies at high mutation rates. Cyan and red are catalysts and non-catalysts
respectively. (more colours are displayed, but are irrelevant for now). Based on: (Takeuchi and Hogeweg,
2008).

We can now look at the sequence logo to see what happens on the sequence level. There, we see that the
replicase that exists is a very tight quasispecies, where most positions are extremely conserved (Figure
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4.59). Below the sequence logo is a representation of the minimum energy folding of the consensus
sequence in dot-bracket notation : matching parentheses mean bound bases, dots mean unbound
bases. Red parentheses indicate the main folding/folding of the functional replicase, whereas black
parentheses indicate other foldings that don’t lead to a functioning replicase.

Figure 4.59: The single quasispecies at high mutation rates has a sequence that is very conserved,
with many Cs. Based on: (Takeuchi and Hogeweg, 2008).

On the plus strand, there is a long open 5’ end, which aids complex formation. On the minus strand,
there is a long open 3’ end, for a similar reason. Additionally, it lacks an open 5’ end. This evolved to
prevent non-functional complex formation. There is a majority of G and C in the sequence: when these
bind, they bind strongly. This replicase can replicate itself. Finally, the Us interspersed in the 3’ end
of the plus strand make sure that it does not fold back on itself (the many Cs and Gc might otherwise
allow self-binding, which is non-productive).

Mutation rate of 0.013: speciation

If the mutation rate is turned down to 0.013, two distinct classes of sequences appear in the phylogeny:
one of which is a catalyst, another which is not: we see the emergence of a parasite (Figure 4.60).

Figure 4.60: Slightly lower mutation rates lead to two distinct quasispecies, one of which is a parasite.
Based on: (Takeuchi and Hogeweg, 2008).

If we examine the sequence logos of these two quasispecies, we see that the non-catalytic lineage
(parasite) has just one helix (Figure 4.61). Additionally, it has a long open 3’ end on both the plus and
minus strand, and a hairpin in both strands. In this way, the 5’ end of both strands is inaccessible,
further enhancing the changes for binding the 3’ end. Finally, it has many Gs at its 3’ end, so it binds
nicely to the replicator’s Cs. The catalyst is almost completely the same as the one that survives in the
high mutation rate regime.
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Figure 4.61: Slightly lower mutation rates lead to two distinct quasispecies, one of which is a parasite.
Based on: (Takeuchi and Hogeweg, 2008).

Lowering the mutation rate yet further

If the mutation rate is lowered to 0.008, there is another newcomer: the A-catalyst. This novel replicase
has an extremely high neutrality: 50% of SNPs still yield a functional replicase. At this point, the system
encompasses two replicases which behave very differently. Finally, if the mutation rate is then set to its
lowest value (0.004), this new replicase gets its own parasite: the U-parasite (Figure 4.62).

Figure 4.62: The lowest mutation rate leads to four different quasispecies, two of which are parasites,
and two of which are catalysts. Based on: (Takeuchi and Hogeweg, 2008).

The spatial dynamics are such that the first catalyst replicates, gains a parasite, which generates space
in the system. Upon lowering the mutation rate, this can be exploited by a different catalyst, which then
gets its own parasite when the mutation rate is lowered again. If the mutation rate is set to 0 in the
evolved system, the same ordering of different lineages still occurs. Thus, even when considering this as
a static ecosystem, these are stable species. Their survival does not depend on mutation (as was true for
the mutation rate of 0.015.). This is different from the eco-evo model earlier, where we saw that diversity
was maintained by continuous mutations. The spatial pattern, in this model, is one of chaotic waves.

Let us cut to the chase and discuss what we have learned. It is important to remember that this is
a structure-based spatial RNA system without predefined interactions or fitness. Nevertheless, we see
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a very interesting phenomenon: there is only one true resource here, and it is space. In other words:
there is only one niche. Speciation occurs, because we end up with a diverse ecosystem with different
lineages. It was deemed impossible that different species could coexist on one resource: survival of the
fittest means that the best exploiter of a niche wins. This is thus another existence proof : multiple
species can, in principle, coexist in a predefined “niche”, as they shape their own niches. Additionally,
the replicator-parasite system (RP system) that we have looked at before was quite stable in space, but
there we defined the interaction structure. Here, the interaction structure between the different catalysts
and their parasites evolved itself: we merely imposed complex formation and a class of structures that
could replicate.

Subconclusion structure-based modelling

We have seen that sequence, structure, and interactions do evolve. A very stable, multi-(quasi)species
system evolves. The interaction topology is different from what we have studied before. The variability
in the exosystem increases with decreasing mutation rate: lower rates lead to speciation. However, we
did see that an ecosystem-based ’solution’ is only found at lower mutation rates. In other words: only at
low mutation rates can different species coexist and is there room for parasites. Thus, though this finding
is interesting, it does not solve the problem of the information threshold. On the other hand, it does
show that given time, evolution can cope with high mutation rates (the system needs to be started on
lower mutation rates, but if they are increased afterwards, the system can cope). Lastly, we see that the
evolved genotype, phenotype, interactions and spatial structure are all interdependent (Figure 4.63).

Figure 4.63: The evolved structure in this system depends on all levels. Based on: (Takeuchi and
Hogeweg, 2008).

Evolution of coding structure at high mutation rates

If we look more closely at the situation with very high mutation rates, we see an interesting picture. As it
turns out, the master sequence in the quasispecies is a minority in the population. It is a self-sufficient
replicase, where both strands have an open 3’ end. There is only a structure in one of the strands, and
the strand with the structure has its 5’ end free. We have learned that high neutrality is favourable,
especially in regimes with high mutation rates: if more of your descendants have neutral mutations, the
population is fitter. However, in the single quasispecies, the mutational neighbourhood is filled
primarily with non-replicators (Figure 4.64a). If, instead, you take random sequences, find whether they
are replicases, and for those replicases see how many mutational neighbours are still replicases, that is
about 25%. The optimal replicator (optimal replication based on the constraints of the system) has more
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than 50% of its mutants as replicators. Somehow, there is thus an evolutionary pressure towards a very
high fraction of deleterious mutations for the master sequence. It does something completely different
than random and optimal (in terms of replication potential) replicators. This is a special property of the
evolved system. Why does it occur? That is what Colizzi and Hogeweg wanted to find out (Colizzi and
Hogeweg, 2014).

Figure 4.64: One-mutational neighbourhood of the master sequence evolved in the system
compared to random and optimal replicators. Replicators (black) and non-replicators (blue) are shown,
along with further functional subdivision. a: (non)-replicators in the mutational neighbourhood. b:
(non)-replicators and parasites (yellow). c: (non)-replicators, parasites (yellow), helpers (green), stallers
(red) and junk (grey). Taken from: (Colizzi and Hogeweg, 2014).

If we look at the fraction of parasites arising due to mutation (replicable molecules which are themselves
not replicases, they are replicated on the + and - strand), there are quite some in the optimal replicase
and average random sequence (Figure 4.64b). However, there are none in the evolved sequence. Why?
A parasite close to you in space is deleterious. Since reproduction is local (this is a CA model, after
all), parasites in your mutational neighbourhood will immediately compete with you for space. It
is thus a very smart idea to make sure you do not generate parasites near yourself easily. Parasites
are something we have seen in earlier models, so we expect them. However, what else is there in this
evolved mutational neighbourhood? As it turns out, there are many sequences with slightly different
functions (Figure 4.64c). Helpers (green) have a catalytic structure and an open 5’ end, but no open 3’
end. Their complementary strand can be replicated and forms a helper. However, they cannot replicate
themselves. Thus, these sequences act like a worker ant or bee: they help to replicate the master
sequence, but cannot replicate themselves and therefore do not compete. In the evolved sequence,
about 50% of one-mutational neighbours are helpers, which has clearly been selected for. Stallers
(red) have no catalytic structure, but have an open 5’ end on at least one of the strands. They therefore
bind, but don’t replicate, other sequences. Junk (grey) doesn’t really do anything.
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Figure 4.65: Mutational neighbourhood) of the master sequence evolved in the system
compared to random and optimal replicators at larger Hamming distances. Taken from:
(Colizzi and Hogeweg, 2014).

You see that the number of helpers drops quickly for larger Hamming distances, while the number of
stallers rises sharply as more SNPs happen (Figure 4.65). That is interesting. Stallers are bad for every-
body, so you wouldn’t want stallers in your close mutational neighbourhood. However, we see here
that somewhat further away, the amount of stallers increases. That is positive: the mutational neigh-
bourhood of competitors (your mutants) has more stallers, and is therefore more stalled in replication
than you are! This works because diffusion is low relative to mutation.

A question that remains is whether helpers really help. They can, but how necessary are they? To
test this, the model was now changed so that any helper that evolves is immediately turned into junk
or empty space. In that case, the system goes to extinction. This is a pretty strong hint that they
are crucial. To further test this, an ODE system was made whereby the fraction of helpers in the
mutational neighbourhood could be altered, and the dynamics of the system were observed (Figure
4.66). The question was at which mutation rate the system would die out, given different fractions of
helpers in the mutational neighbourhood. If parasites were present, higher fractions of helper mutants
actually hastened extinction. If parasites were absent, more helpers in the mutational neighbourhood
increased the mutational rates that the system could survive. So, in this sense, the fraction of helpers
determines where the information threshold is. In this case, the information threshold is on a
functional level, not on a sequence level. Without parasites, helpers extend the area before you are
over the information threshold relative to the master replicator. If parasites are there, helpers
actually hasten the demise. This is why the evolved sequence has no parasites in its mutational
neighbourhood.

Figure 4.66: ODE model to investigate survival of the system with and without parasites, if the fraction
of helper mutants in the mutational neighbourhood is altered. Taken from: (Colizzi and Hogeweg,
2014).

Lastly, we will discuss the part that stallers play. In some sense, they are bad for the whole system:
whether parasite, replicator, or helper, stallers can bind you for some time while nothing happens. If all
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stallers that arise are changed into junk, the density of replicators is increased. However, the master
sequence is also changed, and some form of pseudo-stallers evolve, which are less strong stallers that
were not in the definition of stallers. Bear in mind that the system can produce all sorts of structures
and sequences, but all these classes are defined in hindsight! In this case, by disallowing what we had
defined as stallers, the system nonetheless managed to make sequences that also stall a bit. If these
pseudo-stallers are also removed, a parasite lineage evolves! Thus, having stallers in the system prevents
parasites.

What we have just described evolved in 6/8 simulation runs. There are thus two qualitatively different
cases, where the quasispecies is incredibly steep: everybody except yourself is non-viable, so the se-
lection coefficient is very high. However, in competition experiments between a quasispecies from 2/8
simulations and from the other simulations, the steep quasispecies (that we have just observed, with
many helpers) wins. Thus, those 2/8 seem a suboptimal result.

RNA world at high mutation rates and meaning for the information threshold

What can we now conclude about this RNA world at high mutation rates?. We saw the following:

1. In this system, where the mapping from sequence, to structure, to interactions can change, a very
specific coding structure evolves.

2. One master sequence codes for a functionally diverse ecosystem (in its mutational neighbour-
hood).

3. This functional ecosystem was decoded by looking at the effects that mutations had. Hence, this
was most clear at high mutation rates.

4. This specific steep quasispecies (6/8 cases), shows this effect most clearly. There, the master
sequence has most control.

This sequence of events is similar to Dawkins’ extended phenotype (Dawkins, 1982, 1984): the idea that
genes of one organism might be selected for the effect they have on or in another. In this case, the genome
of the master sequence is selected for the effect that it makes many helpers which help it replicate, and
possibly also for stallers further away in the mutational space. We see now that a quasispecies can be
selected for specific attributes, which is contrary to Eigen’s initial assumption for making the hypercycle:
that other selection pressures would be needed to keep the good replicator in the population. In this case,
the good quasispecies is selected for certain attributes, even at high mutation rates (though the system
did need to be initialised with lower mutation rates initially). Thus, a quasispecies can be selected
for certain favourable characteristics (a functional mutational neighbourhood, in this case), without
additional ecological mechanisms. Whereas classical models don’t evolve the effect that mutations can
have, that is what happens here. We will further explore the consequences of this evolution of the
effect of mutations later on. To summarise in one easily digested sentence: individually-coded, but
ecosystem-based diversity evolves and persists close the information threshold.

Incorporating more RNA features: protocell system with adaptors

We have looked at a functional mutational neighbourhood in RNA, and that a sequence can be
selected for by virtue of its mutational neighbourhood. Now, however, we will incorporate more features.
As has been mentioned before, minimum energy structures are not all there is to RNA. Structures fold
and unfold in thermodynamic equilibrium and there are many structures with about the same minimal
energy. Additionally, different structures can be formed by binding to something (e.g. binding clay
surfaces or binding eachother). In populations of RNA, there might well be “adaptors”, RNA molecules
that bind another RNA, and shield some of its positions during folding.

To investigate what this does, we will look at a new model (de Boer and Hogeweg, 2012). In this model,
we simulate protocells with RNA. 25 RNA structures which are functional are predefined so they give
fitness. The higher the amount of functional structures in a protocell, the higher its fitness. However,
all other RNA structures are toxic. This is thus one of the few models that incorporates that most RNA
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structures might actually be negative for a cell (they could interfere with the workings of needed RNA
molecules, for example). Cells compete in space. Also, adaptors are predefined as a possible interaction
between RNAs (they can bind to other RNAs, and shield the bases that they bind from the minimum
energy calculations, thus changing the folding of RNAs that they bind). The RNAs in this model do not
replicate by themselves in the cell: in a sense, this model is therefore not a true protocell model as we
have seen it before. Here, instead, the RNAs replicate upon cell division. The question: how does the
system cope with high mutation rates? The figure below is a schematic representation of the model.

Figure 4.67: Workings of the model with adaptors. Predefined RNA structures yield fitness, whereas all
others are toxic to the cell. Adaptors can bind to RNA sequences, blocking some bases from the minimum
energy folding calculations, and allowing them to fold into different secondary structures. Taken from:
(de Boer and Hogeweg, 2012).

The first difficulty is defining a set of RNA target structures. These structures should not be too easy, but
also not too hard to obtain. Additionally, they need to be different enough from each other. Then, there
is the question of how strictly to enforce a target structure: should one base that is differently bound
matter, or can we be more coarse-grained? To implement the latter, only the so-called Shapiro structure
was taken into account. This only counts the number and relative positions of helices, loops, hairpins,
and other higher-level structural elements of RNA folding (Shapiro, 1988). Thus, sequence length is
not important, and a string can be translated into helix-hairpin-loop-helix etc. Therefore, each target
structure in this model is actually a set of structures with the same general shape. To define sets, many
random sequences and their foldings were simulated. For set A, a set of structures with intermediate
difficulty was taken (Figure 4.69a). For set B, structures from a database of real RNA structures were
selected which looked different from each other (Figure 4.69b). Some of these structures were very hard
to obtain, while some were very easy (Figure 4.69c).
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Figure 4.68: Structure sets chosen as targets. a: random structures of intermediate difficulty. b:
existing structures taken from a database that cover a range of difficulties. c: number of random
sequences that fold into a certain Shapiro structure (a measure for how difficult certain foldings are to
obtain). Taken from: (de Boer and Hogeweg, 2012).

The first thing that was checked in this model is the behaviour under various point mutation rates.
Genome size and fitness were observed as a function of SNP mutation rate. Fitness per cell is calculated
as the number of correct structures - the number of toxic structures. The genome size is the total
length of all RNAs. Fitness decreased with increasing mutation rates, but not immensely. In a way,
this system is similar to the royal road landscape. There, there were bit strings that needed to be
correct for every block, and only at that point did the block grant fitness. Here, each block requires a
correct structure before fitness benefit, and you have maximum fitness as a cell if all the structures are
present. Genome size goes down enormously as mutation rate increases, but fitness does not decrease at
the same rate. This is very interesting: somehow, at high mutation rates, functionality is achieved with
much smaller genomes. If we map this back to the information threshold, we here have a situation
where, if mutation rates are higher, acceptable fitness can be coded in smaller genomes. Seeing as only
small sequences could be kept under high mutation rates, that is interesting: evolution might be able to
manage even with short sequence lengths.
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Figure 4.69: Genome size and fitness under different mutation rates. Fitness does not decrease equally
with genome size; at higher mutation rates, acceptable fitness can be coded for in shorter sequences
(smaller genomes). Red: evolution towards target set 1 (medium difficulty) Shapiro structure. Green:
evolution towards target set 2 (real RNA structures). Dots: averages from a simulation. Taken from:
(de Boer and Hogeweg, 2012).

So, how does the system work? Two different solutions evolve. The system can evolve one adaptor, and
RNA sequences that fold into a certain functional structure with the adaptor and another functional
structure without the adaptor (Figure 4.70A). The other, perhaps more interesting, solution is one
whereby there is one RNA sequence that folds differently based on many adaptors (Figure 4.70B) (without
it folding into any non-functional/toxic structures!). This is an example of multiple coding: one RNA
sequence can code for many structures by using different adapters. Intermediate mutation rates do not
find this multiple-coding solution: it is enforced by a need to encode as much information as possible in
as little sequence as possible. Note that in real biological systems, viruses have extremely efficient coding,
with many overlapping ORFs and polycistronic RNAs and more, such that even the well-studied Herpes
Simplex Virus 1 still had surprises in store when its gene expression during infection was sequenced
with Nanopore sequencing (Depledge et al., 2019). Viruses are the real MVPs of retaining fitness while
compressing the coding structure to an extreme degree.

Figure 4.70: Different solutions the system finds to achieve fitness. A: One adaptor evolves that allows
a plethora of RNA sequences to fold into two distinct structures. B: One sequence evolves that can fold
into many structures based on many adaptors. Adapted from: (de Boer and Hogeweg, 2012).
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We can now conclude that RNA is an even more ideal molecule for evolution: multiple coding can
arise and alleviate the information threshold. Thus, the information threshold does not necessarily
limit functionality, rather, it shapes how information is coded. As a final note, if the system is set to
well-mixed conditions, the fitness achieved is much lower, so local competition helps, also in this case.
This is something you will look at (or have looked at) during the practicals as well. The overarching
conclusion (what we can take away as a sort of ground truth from this model) is that coding structure
can adapt to mutation rate. We see here that at higher mutation rates, coding adapts to encode more
fitness in less sequence. Thus, we can say that evolution converges to being close to the information
threshold.
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Chapter 5

Genome evolution, gene regulatory
networks and metabolism

Introduction
We now move away from the RNA world, and move onto genome evolution, and eventually move to gene
regulatory networks and metabolism. We have seen from all of the model discussed so far that evolution,
given enoug degrees of freedom, can solve problems in very creative and surprising ways. In this chapter
we will attempt to address questions such as:

• Why are certain genomes very small and other very big?

• Why do certain genomes have a lot of non-coding DNA, while other have very little?

• Why do certain genomes organize their genomes in very particular ways (gene clusters, overlapping
operons) while other do not show this trend?

• Why do we see certain network motifs more frequent than others? (feed-forward loops)

• Does evolution evolve to code information in any specific way?

AEVOL: a computational model of genome evolution
AEVOL is a simulation of genomes where the genome structure is fine-grained and abstract (Knibbe
et al., 2007; Misevic et al., 2012; Batut et al., 2013). The genomes are bit strings, which have predefined
start and stop codons, as well as termination codons for transcription. There are promoter sequences
and the bit strings are double-stranded. There are thus coding and non-coding parts of the bit string
genome. Genomes replicate based on fitness and incur different types of mutations (Figure 5.1A). Fitness
in this model is measured by how well all genes together produce a proteome and phenotype that match
a given landscape imposed by the environment (Figure 5.1B, this is a bit complex, read the papers for
more information if you so desire). In this model, it is easy to evolve new genes and there is a coding
structure on the genome. There are different mutational operators that can happen upon replication:
SNPs, duplications, deletions, and gross chromosomal rearrangements (GCR) (Figure 5.1C). Note that
the chance of these events happening is a per base pair chance. Thus, a larger genome has a larger
chance of SNPs or GCRs happening. The genotype-phenotype mapping is determined a priori.
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Figure 5.1: Mechanisms implemented in AEVOL. A: genomes in AEVOL are selected (based on some
environment-induced fitness) and replicate with mutations. B: the genomes are decoded into a proteome
signature and phenotypic signature, which needs to match what the environment imposes for survival.
This is the fitness. C: replication happens with a per base pair chance of different mutation types, such
as SNPs and GCRs. Taken from: (Biller et al., 2016).

One question we could ask of this model is what happens if, under a predefined fitness regime, mutation
rates are varied. What genome structure evolves? Under a low mutation rate, a compact genome evolves,
with closely packed genes (Figure 5.2). This strain is bacterium-like in its make-up. If the mutation rate
is set to high, genomes become small, genes overlap, and there is only one start site (virus-like genome).

Figure 5.2: Genome structures under different mutational regimes. Left: a bacterium-like genome.
Right: a virus-like genome with overlapping genes and one start site. Adapted from: [REF NEEDED].

A few times in the previous sections, we have foreshadowed the U-shape. In AEVOL (and actually, in
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many more computational models), evolved genomes have a tendency to have a high neutrality and a
high proportion of very deleterious mutation in their direct mutational neighbourhood (Beslon et al.,
2017). How come? Well, we have already gone over the fact that high neutrality allows both innovations
(percolation over a neutral path, with continuous novel phenotypes along the way) and robustness
(fewer mutations away from the fit phenotype). That is thus clear. Why the many highly deleterious
mutations (or why not slightly deleterious mutations)? This is to help purifying selection: if a negative
mutation does occur, an organism is most likely to compete locally with this less fit mutant. If the
selection coefficient is higher, it is easier for purifying selection to remove this mutant (because it is much
less fit). Slightly deleterious mutants will be hard to remove because their fitness disadvantage is less clear,
and could lead to mutational decline of fitness that cannot quickly be corrected. That is why evolution
moves towards a mutational neighbourhood with the shape of a U. In a virtual cell model where
the mutational neighbourhood is observed over time, both highly deleterious and neutral mutations
increase, whereas mutations with intermediate effects decline. If you generate a deleterious mutant close
by, you have a high fitness advantage over them. If we think back to the information threshold, we
might remember that the formula for it is ln(selection coefficient)/(1−quality of replication). Therefore,
higher selection coefficients are better, as they move the information threshold (remember, the
information threshold is defined as one over the selection coefficient). Thus, by making more mutations
deleterious while also increasing or maintaining neutrality, fitness can go up. A similar pattern was
noted in experimental studies in yeast and viruses. Thus, the U-shape is the increase of lethality and
neutrality concomitantly, while mutations with intermediate effects are minimised.

If we step away from the current discussion a little bit, we can think about what this U-shape means
for population models of mutations. Most population models assume a decrease of fitness proportional
to the amount of mutations (Figure 5.3). However, the U-shape invalidates these assumptions: most
mutations will be either neutral or highly deleterious, there is no nice downward fitness trend with the
number of mutations, and the effects of mutations are in fact themselves, evolved. Furthermore, the
specific detail of the U-shape (its depth, neutrality, etc.) could be an evolved property. This means
that most of the models that assume the below effect of mutations on fitness are wrong.

Figure 5.3: The fitness effect of mutations that population models often assume. Made by Dieter
Stoker.

Evolution of the U-shape in mutator strains
Let us see how the quest for the U-shape manifests itself in the AEVOL system. We take evolved
bacteria in this model (i.e. the entities under low mutation rates that have bacteria-like genomes), and
turn them into “mutator strains” (Rutten et al., 2016). These mutators happen in real populations,
where bacteria lose repair genes and therefore mutate much more often (Gross and Siegel, 1981; Giraud
et al., 2001). In this case, the chance of SNPs is set to one hundred times normal levels to simulate the
mutator state. There is an immediate decrease in fitness in these circumstances (Figure 5.4; the graph
shoots up in the figure below, as the y-axis is the error relative to ultimate fitness, i.e. the distance from
the target fitness). After some time, however, the fitness reaches pre-mutator levels, or sometimes even
higher levels. What is remarkable is that genome size increases under this regime of higher mutation
rates. Somehow, having a larger genome buffers against the effects of mutations. How is this possible?
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In a mutator, lethal mutations are increased a lot, whereas neutral mutations are increased a little. By
inflating the genome, the proportion of the genome that is coding decreases. Thus, SNPs are less of a
problem, as are small deletions and duplications. However, large chromosomal rearrangements happen
more often (remember that these depend on genome size). If a large chromosomal rearrangement hits a
coding region, it is very likely to create a lethal mutant. In this way, the increase in genome size facilitates
a U-shape. It creates more regions without coding genes, where SNPs and duplications/deletions do
not matter (increasing neutrality), while simultaneously increasing the chance of large chromosomal
mutations. Large deletions are lethal if they hit coding regions (increasing lethality). This effect as it
were “hollows out” to the U-shape, which is indirectly beneficial for the evolved genome.

Figure 5.4: The fitness effect of mutations that population models often assume. Based on: (Rutten
et al., 2016).

If a mutator strain is cropped, such that non-essential genome is reduced to the size of pre-mutator times
while mutation rates are kept high, it again increases its genome size, to increase deleterious mutations,
to increase its fitness (because it has a higher selection coefficient relative to its mutants). The system
thus prefers a higher selection coefficient over being more neutral.

Conclusions genome evolution in AEVOL

We have now seen that genome evolution selects for a U-shaped mutational neighbourhood, where
there is high neutrality and high lethality. The latter leads to a high selection coefficient relative to
mutants, which, given you have to deal with mutants anyway, can be a good thing. Under high mutation
rates, small genomes with overlapping genes were selected for, whereas under low mutation rates larger
but compact genomes with an operon structure (bacteria-like) evolved. We saw that mutators, however,
increased their genome size to increase the amount of deleterious mutations to increase fitness.

Evolution of gene regulatory networks
Feed-forward loops
We will now zoom in on transcription regulation networks. The results we present are qualitative. It has
been noted that transcriptional regulation networks often have many feed-forward loops (FFLs) (see im-
age).
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Figure 5.5: A feed-forward loop. One of the
regulatory connections found to be very common
in gene regulatory networks (network motifs)
(Alon, 2007). Made by Dieter Stoker.

It has also been observed that there is very fast
evolutionary adaptation of yeast to novel environ-
ments. After a week, changes in gene expression of
up to 10% were realised (Ferea et al., 1999). This
involves gross chromosomal rearrangements, often
the same ones in multiple environments (Dunham
et al., 2002b). The question we can ask now is
whether these observed structures of genomes and
gene regulatory networks (GRNs) are generic, and
whether they can be expected from random mu-
tations. The short answer is yes, so let us see how
it works!

We will explore this question with the Pearls on a
String model. This is a more coarse-grained model
than AEVOL. Populations are in space on a grid.
Each grid point is occupied by a genome, and has
a GRN derived from that genome (Figure 5.6A).

There are blocks which define certain transcription factors. There are also transcription factor binding
sites (TFBS), and because the genes code for TFs, there is a gene regulatory network. Mutational
operators act on the genome level: there are SNPs, duplications, and deletions (Figure 5.6B). These
always affect a number of blocks or a single block, whereas in AEVOL, these operators act on the single
base level. TFBS can also change from binding one gene product (transcription factor) to the next,
which changes the network derived from the genome. The mapping of genome to network to phenotype
is evolvable. Fitness can be defined on the basis of which genes are on and which are off, and can be
checked against a target imposed by an environment, which can change over time (Figure 5.6C). This
could thus force the evolution of a network that can be regulated to be in two different states. The
fun part about this “pearl-on-a-string”-formalism is that it is easy to come up with new “pearls”. For
example, in the work by Crombach and Hogeweg (2007), retrotransposons were added to study how the
mutations that these transposons generate evolve to specifically result in duplications and deletions of
genes that frequently needed to be either duplicated or deleted. We will now however, first discuss the
evolution of the aforementioned FFLs.

Figure 5.6: The Pearl on a String (PoaS) model. Based on: (Crombach and Hogeweg, 2008).

The observed network structure in biological transcriptional networks has a global property, namely that
the degree distribution follows a power law. The degree distribution is the number of connections
per node in the network. Many nodes have only one or few connections, whereas some very small number
of nodes have a huge number of interactions. In biological systems, this relation can be modeled using
a power law. If the distribution of degrees would be random, one would expect an exponential curve,
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but there are more genes with few connections, and more genes with many connections, than expected.
The local property of networks is that there is an overrepresentation of certain motifs: relations between
nodes in the network that are seen very often. An example of one such motif is the FFL seen above
(Figure 5.5) (Alon, 2007).

Now our tendency is often to ascribe significance to such findings: surely, if such a motif is overrepresented
in GRNs, it must be beneficial to the system. This assumption was tested in a simplified PoaS model
_without a fitness criterion. There is thus no direction imposed by selection at all. If these mutational
dynamics are unleashed upon a random network, one winds up with an interesting result: the power
law distribution and hierarchical ordering of observed GRNs is obtained (data not shown). After 2,000
time steps, many FFL have appeared without any selection for them in the system (Figure 5.7!)

Figure 5.7: Effect of mutational dynamics on a GRN in the PoaS formalism after 0 (A), 1,000 (B),
and 2,000 (C) time steps. Open circles denote feed-forward loops (FFL). Taken from: (Cordero and
Hogeweg, 2006).

How come that these FFLs pop up? If one looks at this evolution over time, there is a sudden increase in
the number of FFL (Figure 5.8). How does this happen? The reason almost sounds like cheating. Over
time, hub nodes (that regulate many genes) can duplicate. All that is needed then is a mutation that
connects the original hub node to its duplicate and voilà: many FFL are created. That might not seem
like ’real’ feed-forward loops. After all, if we take the schematic of FFLs as a guide (Figure 5.5), and
compare it with this case, we see that here, X and Y are constantly the same (duplicated hub gene), while
only Z changes. However, if you discount exactly these types of FFL, they are not overrepresented in
GRNs any more. Moreover, real examples of this structure (duplicated hub nodes leading to FFLs) exist
in yeast (Lee et al., 2002; Cordero and Hogeweg, 2006). Thus, the overrepresentation of feed-forward
loops in biological networks is something that arises for free from mutational dynamics with multiple
different mutational operators.
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Figure 5.8: Sudden increase in the amount of FFL after some evolutionary time. Taken from: (Cordero
and Hogeweg, 2006).

Evolution of evolvability
Randomisations of gene regulatory networks and the effect of mutations
We might also wonder why FFL were found as overrepresented in GRNs the first place. These network
motifs were tested against randomised networks. How are networks randomised? The normal practice in
randomisations is to keep every feature of the network the same except the feature to be tested. So, to
test whether FFL were overrepresented in networks, the degree distribution was kept the same, while
the connections between nodes was switched (Figure 5.9). This way, you have the most “fair” control
group. When comparing the actual amount of FFLs in GRNs to these random shuffled networks, a
significant difference was found. Seems like a clear cut case, but is this truly the right way to test for a
difference?

Mutational dynamics would never lead to swapping of connections between nodes: such mutations do
not readily occur. If you check what random mutations do, the in-degree of nodes (# of connections) is
not kept the same. In other words: random mutations ̸= randomisation. If a special structure is found
in the GRN and you check whether it is significantly different from a randomisation of the network, you
still don’t know whether what you observed could have been caused by random mutational processes:
these processes are constrained in other ways. Thus, randomisation of a network controls for a random
network, but not for a random network affected by random biological mutations.
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Figure 5.9: Randomisations to test for FFLs. The changes to the network that are performed would not
occur in this way due to mutations, and the procedure therefore does not test for a significant difference
from random networks under the influence of random mutations. Taken from: [REF NEEDED].

A mini-conclusion here is thus that random mutations do not give randomisation, but neutrally mutate
towards a certain structure. This is an example of an evolutionary signature. In this case, the
signature is that there are lots of FFL in evolved organisms. However, the evolved structures are not
necessarily selected for, though purifying selection could, of course, act on these structures if they happen
to be deleterious.

Evolution of evolvability in yeast
We will now focus on some surprising conclusions from work on yeast evolution. Efficient adaptation
was observed in a short period: over 600 genes changed their expression in a period in which no more
than 7 mutations were expected to occur (Ferea et al., 1999). This was not regulatory change (i.e. rapid
changes in gene expression due to changes in regulation) because the ancestor was already accustomed to
the medium. It had already had time to change its regulation. Hence, this was extremely rapid mutation
with widespread changes in gene expression, even resulting in changes in the TCA cycle. How can it be
that yeast so easily adapted to a new medium?

Years later, genome level changes in yeast during adaptation to a new environment were observed (Dun-
ham et al., 2002a). Large changes in chromosome structure occurred, often at the same break points. As
it turned out, there were transposon-related sequences at these break points. The evolutionary change
in some ways resembled regulatory adaptation, because genes that were duplicated were nonetheless
expressed more lowly, whereas some that suffered deletions were more highly expressed (the exact op-
posite of what one would expect). The question that faces us: is this evolved evolvability? Has the
evolutionary system yeast somehow evolved such that it can more easily evolve to fit novel environments
(i.e. environments that it might have seen during its evolutionary history)?

To investigate these questions, we go back to the model that was made by Crombach and Hogeweg (2007),
which was in many ways similar to the “pearl-on-a-string” model discussed so far, but now includes the
aforementioned retro-transposon dynamics. These transposon dynamics cause breakpoints, whose repair
can lead to gross chromosomal rearrangements. The selection criterion was that of a fluctuating external
environment, where in one environment you needed two copies of certain genes to be active, while in
other environments, only one should be active. This system was allowed to evolve, and the rate of
adaptation to novel environments was observed over time (Figure 5.10). After thousands of generations,
the rate of adaptation to a change in environment is much quicker. This is the definite proof that
evolution of evolvability exists: evolution will evolve a genome structure such that it is easy to cope
with environmental changes that were seen before in evolutionary time. This is long-term information
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integration. The how of this all is that genes that needed to be duplicated and deleted often were, over
time, surrounded by breakpoints (caused by transposons), so that they were easier to duplicate.

Figure 5.10: Evolution of evolvability in a simulation. Top: constant switches in the environment
(bottom) cause distance from target gene expression, which is rectified by mutations. Left: time steps
until adaptation to the other environment early in evolution. Right: time steps until adaptation to
the other environment late in evolution. Adaptation to the other environment is much faster later in
evolutionary time: the system has thus evolved to make it easier to adapt to the other environment.
Based on: (Crombach and Hogeweg, 2007).

What about the time scales of this system: when does this genome organisation evolve? To investigate,
the frequency of environment switching was varied (Figure 5.11). If the frequency of change is low,
most individuals are mostly adapted to the environment in which they are the majority of the time: the
distance to the required gene expression is chiefly 0 (Figure 5.11A). If the frequency of change is very
high a “bet hedging” strategy (stochastic switching between phenotypic states (Beaumont et al., 2009))
evolves: the genomes that evolve are somewhat fit in both environments, with an average distance to the
target expression of around 10 over time (Figure 5.11C). Under an intermediate regime of environment
change, adaptation is not fast enough in the beginning, but over time, it is faster (Figure 5.11B). At that
point, most individuals are very fit (distance close to 0). Thus, the system has evolved such that it is
easier to adapt to an environment that was already seen. You also see a band of individuals that is very
unfit (distance of about 20): these are individuals that made the right mutation (i.e. the mutation that is
made more likely over time and switches the system to the expression needed in the other environment)
at the “wrong” moment (when the environment is not changing).
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Figure 5.11: Distance from the target gene expression in the population for different frequences of
environmental change. Adapted from: (Crombach and Hogeweg, 2007).

Note that there is no short-term benefit encoded into the system. There is no direct fitness benefit of
having this genome organisation. The structure is there solely because it leads to better adaptation.
This was a major taboo in biology. Short-term fitness benefits reign supreme in the new synthesis.
Nevertheless, Darwin said that those who adapt can survive (Darwin, 1859). That is true here. Note
that there is still a need for the environment to have been seen many times, and semi-regularly. However,
for yeast and bacteria, we can imagine that circumstances such as starvation have been encountered many
times, and the system has thus evolved to be more adaptable under such conditions. This also sheds an
interesting light on the LTEE experiment by Lenski: evolution there is proceeding in an evolved system,
and it will therefore be more evolvable for certain conditions (encountered over evolutionary time) than
to others (that have never been seen before by E. coli).

Subconclusion evolution of evolvability

The process we just described and showed is called mutational priming or the evolution of evolvabil-
ity: evolution makes the occurrence of certain mutations that can be beneficial more likely. Yeast has
transposon remnants that cause breakpoints, just like in the model we just saw, and it has been observed
to rapidly duplicate a whole chromosome in response to a changed environment (Dunham et al., 2002a).
Older transposons are also often found in important (regulatory) regions (Crombach and Hogeweg, 2007).
Though this was long a no-go in evolutionary circles, evolution of evolvability exists, and needs no
short-term fitness benefit to persist.

Mutational priming in GRNs
We now turn to a threshold network to investigate mutational priming in a genome with a regulatory
layer. The model is in the family of the PoaS models, so genes on linear chromosomes can serve as
transcription factors and various mutational operators are included (Figure 5.6). The network is
similar to a Boolean network, only genes become activated or not dependent on a threshold function
(if more than X of the incoming nodes are on, you are on, otherwise off, or you remain the same). So
to recap: the genome has TFBS and codes for TFs. Genes are turned off or on based on how many
incoming connections are on. Fitness iEarly in time, switches of the environment are rare, while they
happen more often later in time.

What happens in this case? We look at the frequency with which mutations have a certain effect (Figure
5.12). In a certain environment you are at the attractor (so at 0). If mutations happen, do they push
the network away from the attractor in the other environment (negative values) or towards the attractor
in the other environment (positive values)? The gray area shows the initial effects of mutations (i.o.w.
before evolution). The blue line shows the evolved effects of mutations. After prolonged evolution, all
mutational operators except one shows a larger proportion of positive effects. That is to say, these
mutations are more often than expected, biased towards the network state that is required in the other
environment (positive values). This is thus evolution of evolvability in a PoaS model with a regulatory
layer.
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Figure 5.12: Distance from the target gene expression in the population for different frequences of
environmental change. Adapted from: (Crombach and Hogeweg, 2007).

Within the network, there are still a lot of changes in which gene or which places on the genome are
important for the switching behaviour. The gene that does the switching when the environments change
can change over time, but the switch does remain in the genome. Thus, neutral changes to network
structure do still occur. In fact, neutral mutations were by far the most abundant in this system (data
not shown, see Crombach and Hogeweg (2008)). So, the system stays on a fitness “ridge” where it can
easily change to the necessary target in the other environment. So, while the specific gene or position
that is crucial to switching behaviour in different environments does change, the behaviour stays in the
system.

In the beginning of this reader, we talked about Kauffman’s investigations of Boolean networks. There,
we mentioned basins of attraction that can be found in networks. Here, the network has two different
attractors. Mutations need to act such that:

1. The current attractor is not the attractor anymore.

2. A new attractor is created, corresponding to the new environment.

3. It brings you into the domain of attraction of that new attractor.

Evolution manages to do all of that rather nicely.

Final yeast example of the evolution of evolvability: rapid duplication to adapt to high
temperatures and Ph

Just to drive the point home fully, we shortly discuss a study from 2012 where yeast was subjected to
different environments and its genome was sequenced (Yona et al., 2012). Lo and behold, for this yeast
duplicated a specific chromosome (in multiple independent replicates). As it turned out, the duplication
of chromosome III conferred immediate fitness advantage (better growth) under heat stress, but was
detrimental under other types of stresses (Figure 5.13).
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Figure 5.13: Growth rate of yeast under different stresses compared to wt yeast. Yeast with trisomy
III performs considerably better under heat stress, and worse under all other stresses. Adapted from:
(Yona et al., 2012).

The interesting finding here was that this chromosomal duplication was a transient evolutionary solution.
It happened in all 4 replicate lines that were evolved for 450 generations in rich medium with heat stress
(39 degrees Celsius). In two lineages that were evolved further, the trisomy was eliminated after 1700 or
2350 generations (Figure 5.14).

Figure 5.14: Trisomy of chromosome III happens in four replicate lines of yeast. Trisomy is eliminated
in two lines that were evolved further for many generations. Taken from: (Yona et al., 2012).

This is interesting, but what is perhaps more interesting is that this evolutionary change is followed by
refinement that maintains resistance to high temperatures: while the trisomy is undone in the end, there
are lasting changes to gene expression. You can see that descendants of trisomic ancestors that have
lost the trisonomy show improved growth under heat without the large fitness cost that having a whole
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extra chromosome incurs. Interestingly, a specific group of genes from chromosome III retained high
expression. In subfigure C, you can see what insertion of each of a group of lastingly upregulated genes
and control genes in wildtype yeast does to temperature resistance relative to trisomy III yeast. On the
left, you can see that much of the effect is mediated by HSP genes.

Figure 5.15: Yeast remains more resistant to high temperatures through lasting changes in gene ex-
pression after evolutionary elimination of trisomy. A: Refined mutants (without trisomy III) grow better
than their ancestors at both 30 degC (top) and 39 degC (bottom). B: Despite elimination of the trisomy
in Refined 1–4, a group of genes from chromosome III retained high expression levels. Dots represent
log2 ratios of mRNA abundance of chromosome III genes over a diploid wild type. Genes that retain
high expression (in at least three of the four refined evolutions) are marked in red, and from the majority
of genes that went back to wild-type–like expression (gray dots) a control group was selected and marked
in black (used in C). C: The group of genes that retain high expression levels after the elimination of tri-
somy confer increased heat tolerance when introduced into wild type. Each of the highly expressed genes
(red) and the negative control genes (black) was inserted into the diploid wild type on a centromeric
plasmid, and heat-shock tolerance was compared with that of a wt with trisomy III. D: The refined
solution replacing the trisomy is characterized by changes in expression levels of most HSP genes. Log2
expression ratios over wild type are shown for all HSPs, for trisomic yeast (blue) and its descendants
that eliminated the trisomy (red). Data are presented as mean and SEM. Taken from: (Yona et al.,
2012).

Al in all, this is very interesting. It shows that a quick response of yeast to a novel environment (though
one that yeast has undoubtedly encountered many times in its evolutionary history) is a major genomic
change, that is apparently made easy due to the evolved genome structure (in this case that structure
consists of chromosomes). Then, over time, gene expression is changed and refined, resulting in a yeast
fitter at higher temperatures with lower detriments to fitness than a trisonomy III yeast. This is a nice,
experimentally observed, example of the evolution of evolvability.
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Conclusions evolution of genome structure

We have seen that the mutational neighbourhood of an evolved system tends to have a peculiar
shape: the U-shape. Highly deleterious and (almost) neutral mutations occur more often relative to
somewhat deleterious mutations. This increases long-term fitness: highly deleterious mutations allow a
higher selection coefficient (fitness advantage) relative to mutants, and those populations with more
mutations that are neutral will, on average, be more fit (less detrimental mutants, and more sampling of
phenotype space via neutral paths). This U-shape also means that assumptions that are often made
in population genetic models do not hold: it is not so that fitness decreases evenly with the number
of mutations. Thus, when thinking about mutational neighbourhoods, it is extremely important to
keep in mind that evolutionary systems optimise theirs to have a U-shape.

We have also discovered the important point that random mutations do not lead to a random structure.
Rather, neutrally occuring mutations grant some structure for free. This is a very important result. You
will encounter many a paper where certain features of a genome or network are compared to randomi-
sations to determine whether a feature is special. Even though this can be insightful: a randomised
network is not the same as a network that resulted from random mutations. Thus, one still does not
know whether an observed characteristic is special relative to random mutations, i.e. whether it is truly
selected for. Random mutations do not give random results. Thus, testing a resulting structure against
randomisations does not tell the whole story.

We have just now learned that random mutations are not random in evolved genomes. These can
ironically be called ‘non-random random mutations’. These genomes have undergone evolution for many
generations. Over time, evolution thus optimised the genome structure to work best for evolution. This
is called mutational priming or the evolution of evolvability. In yeast and a PoaS model, we have
seen that transposon dynamics are used: breakpoints border regions with genes important for survival in
certain environments. Long-term evolution has thus facilitated short-term evolution without direct fitness
gains. We have also seen, in the second example, that genotype-to-phenotype mapping evolves such
that attractor switching occurs in a regulatory network: there is a blow-up of single mutations to large
scale effects in the network. This mechanism, too, appears to occur in yeast.

It is important to realise that the insight regarding the U-shape and the evolution of evolvability
were, for a long time, considered taboo under the new synthesis. Immediate fitness effects drived change
under that doctrine, and something so mystical as the evolution of evolvability was considered blas-
phemy. Only in the last decade or two have experimental studies started to validate early modeling
results, and have these concepts become more accepted (see, for example (Pigliucci, 2008; Janković and
Ćirković, 2016; Nuño de la Rosa, 2017)).

Evolution of complexity: early complexity
We will now focus on another aspect of genome evolution. One that has proven to be quite counter-
intuitive. We used to think that the group of multicellular animals, for instance, had many important
gene innovations at the root of its tree, which allowed all the following complexity to arise. However,
as research goes on, one trend stands out: the more phylogenetic analysis we do, the more it turns out
that ancient organisms had huge genomes and were extremely complex (Koumandou et al., 2013). While
one might initially expect that gene innovations are what drive differentiation, time and time again the
opposite seems true: complex, multifunctional ancestors lose genes, and gene loss is a major factor in
adaptation.

Another interesting observation is that whole genome duplications (WGDs) are rare, but important.
Though they occur quite often (especially in plants), they are rarely fixed. Nevertheless, they are often
at the root of major radiations of species, and might happen during environmental shifts (Edger and
Pires, 2009; Eric Schranz et al., 2012). One might imagine that the duplication of a whole genome is
a rather destructive affair, considering the regulatory upheaval and the detrimental effect on fitness of
having double the amount of DNA to replicate. The fact that we see many WGDs in the phylogenetic
evidence nevertheless shows that they are important to evolution and might drive success.

To better understand the phylogenetic observations, we turn once again to dynamical models (Cuypers
and Hogeweg, 2012, 2014; Cuypers et al., 2017), and see what is necessary to recreate these observations.

154



Long-term genome structure dynamics in a minimal multilevel cell model

To investigate, a minimal or plausible model of a multilevel cell was used (Figure 5.16). It can be
summarised as PoaS + metabolism: the gene network defines a metabolism. Rather than the fitness
criterion of certain genes being on or off, metabolic homeostasis is the fitness criterion here. There
is a varying environment, and the genome codes for pumps and enzymes that import resources and
drive catabolism (energy generation) or anabolism (creating building blocks), respectively. The goal
for a cell is then specifically to keep the internal concentration of a certain resource constant. The
mutational operators in the system are segmental duplications and deletions, rearrangements, as well as
point mutations (SNPs).

Figure 5.16: Working of the Pearl on a String model with metabolism. The genome has TFs and
TFBS, and codes for enzymes and pumps. There is a fluctuating external concentration of a resource,
and the fitness criterion is cellular homeostasis. Based on: (Cuypers and Hogeweg, 2012).

Populations are initialised with 1,000 cells and are allowed to evolve for 10,000 generations. External
concentrations of the resource A fluctuate between 0.003 and 30 (4 orders of magnitude). The homeostasis
criterion is that the internal concentration should be kept at 1. Initial genome size is about 10 genes.
Each individual sees about one to three environments in its lifetime. The differences with previous
models is thus that fitness is not expressed as gene expression itself, but as the effect of gene expression.
This hinges on the environment and allows regulatory adaptation. Additionally, gene expression is not
simply on/off, but there is a range of activation.

So, what are the typical evolutionary dynamics? From Figure 5.17 we can see that there is often an
initial genome inflation followed by “streamlining” (gradual decrease in genome size). Furthermore, those
genomes that underwent the initial genome inflation eventually ended up fitter! The interpretation here
then is: early genome inflations are a generic pattern of organisms that eventually end up being fit!
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Figure 5.17: Dynamics of genome size and fitness in ten replicate simulations. Simulations are ordered
from fron to back based on eventual fitness achieved. Height corresponds to genome size. There is a
clear correlation between early genome inflation and eventual high fitness. Taken from: (Cuypers and
Hogeweg, 2012).

We also see the aforementioned evolution of the U-shape in this study. If we compare the initial
fitness landscape of mutants with the landscapes further in evolution, we can see that neutrality is
increased, slightly deleterious mutations are somewhat lowered, while lethality is reduced somewhat, but
still maintained at quite high levels (Figure 5.18.
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Figure 5.18: Evolving to a U-shape over evolutionary time. Inset: fitness of a run, where different
time periods are coloured differently. The effect of mutations is found by inducing rounds of mutations
in individuals from these different time periods. Taken from: (Cuypers and Hogeweg, 2012).

Studies of the effect of deletions and duplications on final fitness show that duplications are more often
advantageous than deletions. Early duplications in particular are a boon to eventual fitness. This hap-
pens because other genes hitchhike along with large duplications, and they might only become functional
later. Higher degrees of freedom (more genomic raw material) thus increases adaptability. Nevertheless,
there is always streamlining of the genome. Why does this happen?

Over time, the network function becomes concentrated in fewer genes. Whereas fitness is first attained
by many genes with small individual contributions, the end result over evolutionary time are few genes
that carry a lot of the functionality. Mutations in the model have a per-gene chance of happening. Thus,
by concentrating functionality in a few genes, the fraction of neutral deletions (and duplications) is
increased: non-essential genes can be deleted without problems. At the same time, the fraction of lethal
mutations increases, for mutation of the very important genes is a catastrophe. Streamlining counteracts
the high mutational load that early genome expansion brings: if many genes together create fitness, then
mutations arise more often and can be deleterious more easily. By streamlining and concentrating the
fitness effect in few genes, fewer mutations happen and they are either neutral or lethal. Once again this
strongly implies the evolution of the U-shape!
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WGD and switching to a novel environment

Using the same model, we look at readaptation to a novel environment (Figure 5.19) (Cuypers and
Hogeweg, 2014). Now, cells are allowed to evolve to a certain target, but after thousands of genera-
tions, the environment is changed completely. This means that extracellular concentrations of A change
suddenly, without the system ever having seen these changes before. Whole genome duplications are
implemented, and we ask: what is the effect of WGD on adaptability to a completely novel environment?

Figure 5.19: Protocol for studies of in silico adaptation to environments that were never seen before.
Again, there is a resource A that can diffuse and be pumped in, there is a genome that codes for TFs and
metabolic gene, and the fitness criterion is homeostasis of A within the cell. 100 populations of 1,024
cells are initialised, allowed to evolve for many generations or until fit. Then, 10 populations are sampled
and subjected to 80 novel environments. As a control, all 100 populations are allowed to mutate further
in the original environment. Taken from: (Cuypers and Hogeweg, 2014).

We firstly see that almost all lineages that turned out to be fit had an early WGD. Initially however,
no such increase in fitness is observed. As we have discussed in an earlier chapter: fitness is a time-
dependent function! Lineages without WGD barely ever reach high fitness within 15,000 generations
(Figure 5.20A). In a minority of cases, WGDs happened after or before the switch of the environment,
and could still help fitness in that way. WGD helps to speed up readaptation: the increase in genomic
raw material allos these lineages to cope with the sudden change of environment more quickly (Figure
5.20B). Lineages with ancestral WGD are more likely to become fit eventually than those without a
WGD (Figure 5.20C). WGDs were never observed in intermediately fit lineages. i.e. they happened in
the beginning or right after switching, but not at other times (Figure 5.20D and E). Nevertheless, some
lineages without WGD re-adapted using less than 5 mutations, so there are always exceptions to the rule
(Figure 5.20F). Overall, though, WGD thus helps cope with unknown environments.
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Figure 5.20: Fitness and WGD in re-adaptation. (A,B): lineages with (red) and without (cyan) WGD
binned at the time of reaching high fitness (0.85) in the initial environment (A) or when readapting to the
novel environment (B). Note that lineages without WGD almost never reach high fitness within 15,000
generations (A). Inset in B: distributions of time until reaching fitness on a log scale shows that lineages
with WGD reach fitness earlier (larger peaks in intermediate times). C: eventual fitness in the new
environment for lineages with and without an ancestral WGD. Lineages with WGD more often become
fit. D-F: examples of fitness trajectories before and after environment change. Taken from: (Cuypers
and Hogeweg, 2014).

If we look at what is retained after WGD, we see two trends. Firstly, in this model, TFs are preferentially
retained over enzymes or pumps (data not shown). There is no sub-functionalisation. Adaptation
happens by peripheral TFs. The second thing we notice is that, despite the streamlining process, absolute
size of the genome remains larger in lineages that underwent WGDs (Figure 5.22). The fraction of genes
retained is lower, but there is some irremediable complexity: after genome duplication, more genes
are needed to retain fitness. A good mental model of irremediable complexity is one where you have
a gene A that performs functions X and Y. If this gene is duplicated, one copy can lose function X while
the other loses function Y. This complexity is not an increase in efficiency, and it need not be beneficial at
all, but it can happen and now both copies are needed, where at first one sufficed. That is irremediable
complexity.
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Figure 5.21: Fraction of conserved ancestral gene content through evolutionary time. The gene content
of ancestors at the time of environmental switch was used as reference. At 1,000 generation intervals, the
overlap in gene content of descendants with the reference was measured. All genes inherited one-to-one
from the ancestral reference (not counting copies from subsequent duplication events) count towards the
retained fraction of the total ancestral gene content, in WGD lineages (red), non-WGD lineages (blue),
and a neutral control set where the environment was kept the same (gray). Boxes and whiskers show
the 50% (box) and 75% (whiskers) ranges of the data around the median (line). Triangles and the upper
edge of the shaded area show the averages of the environmental change and neutral evolutionary runs,
respectively. The inset shows the distribution of genome sizes. Taken from: (Cuypers and Hogeweg,
2014).

Evolvability vs. regulation

If we now look at recurrent switching to novel environments (modelled by suddenly increasing or de-
creasing conversion factors, diffusion, or decay parameters), we see that ease of readaptation increases
when the environment changes multiple times. Additionally, the time scale of change is important.
If we look at switching between just two environments, and vary the time scale of changes (10-1,000
generations), we see two different solutions (see figure below). At shorter time scales of change, regula-
tors evolve: these can regulate expression based on conditions. At longer time scales, evolvers evolve,
who can quickly mutate to fit novel environments. [VRAAG OVER FIGUUR MET BRUIN BLAUW
REGULATOR EVOLVER SOLUTIONS ONE WT].
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Figure 5.22: Fraction of conserved ancestral gene content through evolutionary time. The gene content
of ancestors at the time of environmental switch was used as reference. At 1,000 generation intervals, the
overlap in gene content of descendants with the reference was measured. All genes inherited one-to-one
from the ancestral reference (not counting copies from subsequent duplication events) count towards the
retained fraction of the total ancestral gene content, in WGD lineages (red), non-WGD lineages (blue),
and a neutral control set where the environment was kept the same (gray). Boxes and whiskers show
the 50% (box) and 75% (whiskers) ranges of the data around the median (line). Triangles and the upper
edge of the shaded area show the averages of the environmental change and neutral evolutionary runs,
respectively. The inset shows the distribution of genome sizes. Taken from: (Cuypers and Hogeweg,
2014).

Conclusions virtual cell modeling

Phylogenetic reconstructions often suggests that the ancestor of all modern eukaryotes actually had a
huge genome. We have now seen that early genome inflations are something we should perhaps expect
for evolving systems. This is probably not because those expansions were fit at that time, but rather,
because those lineages surviving such a likely quite catastrophic event later found themselves with more
raw material for evolution, increasing adaptability and eventual fitness. WGDs occur often, but are
rarely accepted. Only if they happen early in evolution or after environmental change are they kept.
There is an intricate interplay of adaptive and neutral processes. Adaptation leads to neutrality, and
neutrality influences the potential for adaptation. Evolved genotype-phenotype mappings (GPM)
maximise both neutrality and selection. This is the U-shape: mutations in evolved systems are chiefly
either almost neutral or very deleterious. We have now also seen that the evolved genotype-phenotype
mapping increases evolvability for novel conditions that were not seen in evolutionary history: evolved
systems could adapt remarkably fast to change to an environment that had not been sensed before. We
have seen that evolvability and regulation are equal alternatives to cope with fluctuating environments.
However, we did see that the time scale of environmental change (relative to the speed of mutation)
mattered: if environmental changes are very rapid, a regulator is better. However, evolvability to
different environments is easier to evolve than being a regulator.

Of course, we now say to have derived these general principles of evolution. We say that the U-shape,
evolution of evolvability, and the dynamics of genome inflation and streamlining are real and general
properties of evolved systems. How can we be sure? One might state that we have been looking at
artificial systems that lack some complexity, or that have strange constraints. It is perhaps best to
compare these findings to model organisms: no one would argue that all organisms function exactly like
yeast, but we have learned much about the cell cycle and regulatory mechanisms through studying yeast.
Here, by using different models, we see that the U-shape occurs and that evolvability and regulation
are two different solutions to the problem of changing environments. While the specifics may differ in
real organisms, the overall patterns we observed here are to be expected in many organisms. We do not
state that X will surely happen in the real world, but rather that these are the patterns that emerge
in arbitrary and plausible evolutionary systems. We do not purport to know what exactly did happen
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exactly in evolution, but we do now have an idea of what we can expect to happen by mutation and
selection in evolutionary systems. Thus, these models have granted us new insights that can become
search images: we now know what sort of patterns we might expect, and can look for them. They
have broadened our horizon of what can, and will probably, happen in evolutionary systems.
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Chapter 6

Ecosystem based solutions and
sparse fitness evaluation

The phage example of misguided intuition
In fact, let’s sprinkle in one more example. Bacterial DNA is often modified (methylated) to distinguish
self from non-self by restriction-modification systems. Any invading phage DNA is not modified, and
thus can be attacked. The system contains two parts: the restriction enzymes cut DNA with a certain
sequence, and modification enzymes methylate DNA with that same sequence to protect it from cutting.
These systems come on plasmids. The function is thus supposed to be antiviral defence. Note that this
doesn’t always work: sometimes, invading phage DNA is not cleaved by the restriction enzyme, and so
becomes methylated at these DNA sequences itself. If the phage then multiplies, all copies are duly
methylated, and the system does not work for this phage.

What would we think to be the best strategy in this system? If every RM plasmid causes you to cleave
only a certain sequence, and phages have lots of different sequences, we might want to have many of these
plasmids to defend against as many of these phages as possible. Sounds good, yes? Pagie and Hogeweg
modeled this in a CA system (Pagie and Hogeweg, 2000). It has bacteria and phages, and there is no
penalty for how many plasmids you have. Two alternative attractors exist, which you can see below.
On the left, you can see our clever bacteria, which can cut lots of phages and have many plasmids. On
the right, however, every bacteria just has one or two plasmids (and is thus resistant to only one or two
phages).

By adding the plasmids one-by-one, Hogeweg and Pagie found out that having these clever bacteria
gives clever phages, that is to say: if a phage by chance evades cutting, it gets modified (methylated)
by this system. Then, that phage is immune to the restriction system, and any new bacteria it is in
will propagate the modification on the phage DNA (because it comes in methylated, new copies will also
be methylated). Thus, what you end up with is a system where everyone has many RM systems, but
they don’t do much against the phages, because when a phage is methylated, it will stay methylated (as
(almost) all other bacteria also carry the RM system that first did this). While you might think that
the RM systems would then fade out of the population, they do not, because there is an asymmetry
of infection, called unidirectional infectivity: if everyone has 10 RM systems, and you too, you can be
infected by 10 methylated phages. If everyone has 10 RM systems and you have 9, you can be infected
by 10 methylated phages and 1 phage can also infect you if it is not methylated. This pressure is large
enough to keep the systems in, but phages are relatively successful, and relatively little bacteria are
present.

In the population-based model, however (which you can see occurring after some time in the lower right
picture), bacteria only have one or no RM. How does this work? Phages lose their methylation over time,
so if a phage gets methylated by chance, it will lose it again. If bacteria only have one or no RM system,
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Figure 6.1: Individual vs. ecosystem based solutions (Pagie and Hogeweg, 2000)

a phage methylated in one bacterium will probably be no better off in many other bacteria, and lose
its methylation. Thus, when bacteria have less RM systems, but many RM systems are present in the
population, they protect each other. Many more bacteria can grow, and phages are barely alive (they
mostly subsist on wildtype bacteria and exist because of influx).

So what does that teach us? What is good for whom is not a priori definable. You cannot say what
is good or what is bad. Here, we see that having less restriction-modification systems actually works
out better for the bacteria. For immediate benefit, you can say what is good or bad, but long-term
benefit, and what the immediate benefits might lead to is very unclear. If we compare this to The Major
Transitions: because they were theorycrafting, they had to choose what was good for whom. Otherwise,
they would just be proclaiming baseless hypotheses. However, their assumption is a constraint and might
be a problem!

time scales and fitness
We have seen in the host-parasitoid example that fitness is no defined value. This was a MAP lattice
system with parasitoid wasps migrating to their hosts with a certain tendency, where many spatial
patterns emerged. For an inclusive fitness over 50 generations, the best fitness value came from a high
migration parameter. Over 300 generations, inclusive fitness was by far highest for the low migration
parameter. Why? Because that is good behaviour in the spiral core: if you are there, you had better
stay there! If you are offspring and not in the core, your migration parameter had better mutate to hunt
for hosts. Thus, not everyone got the low migration parameter, but almost everyone was descended from
those that did have it. Conclusion: Fitness is a time-dependent function. Be wary what you think of
fitness of behaviours, characteristics, and traits.

On the genome level, we know that genome duplications are neutral at best, and a burden (both energetic
and because of deregulation) at worst. Nevertheless, those organisms who had a genome duplication 1000
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generations earlier will often be most fit later, as we have seen. That cannot easily be squared with a
philosophy that focusses on immediate benefit.

We’re going to spruce things up some more with another example. This time about sparse fitness
evaluation. What is this? Well, let us think about what evolution is: it is a long-term process of
information integration. Information on what works, and what doesn’t, among other things. Crucially,
you will not be infected by all possible viruses in your lifetime. There are many challenges that an
organism might face, but it will only ever face a subsection of all challenges and obstacles that an
organism of its species can face. In other words: we are only ever confronted with a small subset of an
imagined fitness criterion. For the effectiveness of this approach, we’ll take a look at sorting algorithms.
In particular, we will look at a paper by Hillis (Hillis, 1990). He tried to evolve good algorithms for
parallel sorting. Sorting involves taking, for example, numbers, and sorting them correctly from high
to low or low to high. He initialised random algorithms with a diploid genome. Good algorithms were
allowed to reproduce, which introduced mutations and cross-over. He wanted a fast algorithm, but
selected for the number of problems that an algorithm could correctly sort. Interestingly, this gave fast
sorters as a side-effect (or epiphenomenon).

Interestingly, what he found was that this approach worked best if algorithms and sorting problems
were in a CA field, such that there was spatial locality of algorithms and the problems to solve. In
that way, algorithms are only presented a subset of problems per generation: sparse fitness evaluation.
More interestingly, if the problems were static, the problem of local optima emerged: many algorithms
evolved that could sort most problems easily, but they were still far from perfect. In this case, the
fitness criterion gave little information about who was actually the best algorithm: with a static problem
set that almost anyone can solve, there is little for selection to go by. If the problems were allowed to
co-evolve with the sorters (where the fitness criterion for the problems was to not be solved, such that
only problems that the current algorithms found difficult would thrive), however, an algorithm that was
only marginally worse than the best known one emerged (61 computations versus 60). This is because
the small, co-evolving subset of problems provided a more easily navigable fitness landscape. Thus, local
red queen dynamics between algorithm and problem set, with sparse fitness evaluation proved a great
optimisation procedure. Hillis concludes that ’It is ironic, but perhaps not surprising, that our attempts
to improve simulated evolution as an optimization procedure continue to take us closer to real biological
systems’. It is a testament to the effectiveness of evolution that evolving (parallel sorting) algorithms is
still an important field today (Mora et al., 2015).

The effectiveness of sparse fitness evaluation was also shown by Pagie and Hogeweg (Pagie and Hogeweg,
1997). They looked at fitting of a mathematical function by algorithms, and specifically at how sparse
and total fitness evaluation differed in results, generalisability of the solution, and mutational robustness.
They did this by populating a CA with solutions and problems from a complete problem set, and co-
evolving the problems from the problem set that were shown with the solutions. What they found was
that even in the simplest case, where evolution was simply aimed at matching a certain preset bit string
(string of 1 and 0, of variable lengths; this corresponds to a Mt. Fuji landscape), sparse fitness evaluation
performed better (see image below).

For the actual mathematical function (the mathematical function to be approximated was 1
1+X−4 +

1
1+Y −4 ), fitness evaluation on the full problem set did not achieve good solutions at all, whereas sparse
evaluation quickly got to almost perfect solutions (see below).

These solutions were also more general, such that evaluation on unseen problems worked out well for the
approximations evolved under sparse fitness evaluation, but were a disaster for those under static evalu-
ation. Thus, we see here another example of long-term information integration: solutions (phenotypes)
are only scored on certain problems in their lifetime (sparse fitness evaluation, but manage to integrate
these separate challenges into a solution that is correct, quickly achieved, and generalisable (which you
could equate with being more robust to changes in the environment).

Giving up self-sufficiency, or exploiting opportunities?
In the view of The Major Transitions, complexity arose by giving up self-sufficiency. That sounds nega-
tive, or as something that one needs to be coaxed into. However, we could recast this as exploiting new
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Figure 6.2: Hillis sorter (coevolution vs. static) Hillis (1990)

Figure 6.3: Sparse fitness evaluation outperformes complete fitness evaluation.
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opportunities. For example, there is an emergence of non-self-sustaining parasites or cheaters in systems
with a single replicators. On the population level, the system is still self-sufficient, and the pressure ex-
erted by the cheaters leads to more efficient self-replication. Local interactions lead to spatial patterns,
with higher level entities that can enslave the lower-level entities, such that their evolutionary fate is not
in their own hands. This creates evolutionary interdependence. For the spirals in the hypercycle model,
how fast spirals rotate affect what is happening much more than what an individual replicator is doing.
A replicator cannot decide what is good for it anymore. We have seen that RNA in protocells prevents
evolutionary extinction with the stochastic corrector. This is an opportunity, and might have come about
due to a concentration of nutrients within cells. We have seen that DNA can evolve in a RNA world
by exploiting the weakness of having both catalysis and information storage in one molecule, offering a
way out of that conundrum. Thus, exploitation of new opportunities is something that happens at many
levels.

Division of labour
The same is true of division of labour: this is a phenomenon that we can find on many different levels, and
in very different systems. We have seen non-heritable phenotypic differentiation: TODO-based behaviour
and regulation in bumblebee colonies is regulated by dominance interactions and what is encountered.
We have also seen a division of labour in quasispecies, where it lay in the mutational neighbourhood: at
high mutation rates, what evolved was not the sequence that had optimal replication, but rather one that
filled its immediate mutational neighbourhood with many helpers, which acted like worker bees, aiding
its replication. We could call this mutation-decoded division of labour. In the host-parasitoid example,
and in the hypercycle example, we have seen that there is a location-decoded division of labour: the
spiral centre is similar to a germline, it generates all offspring in the system in the long-term. The other
replicators might be seen as the soma. In symmetry breaking we find another division of labour: one
strand becomes something of a proto-genome, the other a much better catalyst. This evolved division
of labour has as side-effects that the system can survive at much higher volumes (protocell) or larger
diffusion rates (spatial system).

We could also think of ecosystem-based division of labour or problem solving. In fact, you might have
guessed that Paulien (and Folkert de Boer) did think of that, and we’ll now dive in to a small example
(de Boer and Hogeweg, 2012). In an ecosystem, organisms have to cope with their local environment
(solving problems) and they evolve interactions via resources (problems). But how do these interactions
in an ecosystem evolve? For that, they looked at an artificial ecosystem. The task to optimise is once
again a mathematical function that needs to be approximated as well as possible. This is an extension
of the co-evolution of problems and solutions we saw above. Now, however, there are predators and
scavengers (two solutions), that together hunt prey (combined should approximate the target function
for a given set of coordinates).

So how does that work? There are three planes. One with predators, one with prey, and one with
scavengers. Importantly, predators and scavengers do not see each other. Instead, predators achieve
fitness by eating as much of the prey as possible (approximating the true value of the mathematical
function for a certain set of coordinates as well as possible). What they do not solve are leftovers, and
the scavengers see only these leftovers, and try to best approximate these (see image below).

What happens? Well, solvers evolve that solve only one part of the problem (the Y part or the X
part). Scavengers take care of the rest, and the predators and scavengers colocalise. Largely, the difficult
problem can be completely solved by the predators and scavengers together (see image below). Thus, the
difficult problem is automatically (or automagically) decomposed into easier sub-problems. A division
of labour, if you will.

Thus, ecosystem-based problem solving happens. This might sound similar to what Eigen proposed for
the information threshold problem, but his solution was unstable, and had a strange topology. This
work shows, however, that it is possible. Other work on the topic by de Boer and Hogeweg has shown
that finding a solution needs more information than maintaining a solution, and that ecosystem-based
solutions are resilient to high mutation rates, whereas individual-based solutions are less so (De Boer
and Hogeweg, 2010).
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Figure 6.4: Evolution of problem solving in a predator-prey model.

Figure 6.5: Ecosystem based solutions for solving problems works at high mutation rates. The problem
is decomposed by multiple species on both “trophic” layers (predators and scavengers)

168



Chapter 7

Supervised and non-supervised
modeling strategies to understand
specific phenomena

Up until now, we have looked at non-supervised multi-level evolution modeling. That is to say: we have
taken basic (evolutionary) assumptions (mutations and selection occur) and looked at what happens if
we add space, (evolvable) genotype-phenotype mapping (using RNA, Pearl on a String genomes,
Gene Regulatory Networks, and environmental feedback), and different mutational operators.
Understanding what happens in such models often proves difficult, because there are many observables
(just as in real life). Finding out what the quasispecies with the functional neighbourhood was doing,
for instance, took at least a year, because we need to look at such systems as if we are studying a real
life system: slowly gleaning understanding from myriad observations of what is going on (Colizzi and
Hogeweg, 2014).

From now on, we will instead focus on some (experimentally) observed phenomena and look at various
supervised modeling strategies to understand these specific phenomena. Some models will not involve
evolution at all, other models will incorporate it as a tool, rather than as a phenomenon whose dynamics
are to be studied in its own right. We will first turn towards the transcription/replication conflict.

Genome organisation and the conflict between transcription and translation
The yeast genome has long tandem repeats of ribosomal RNA genes, often way more than 100! It has
been experimentally shown that up to 20% of them can be knocked out without fitness effects (Colizzi
and Hogeweg, 2016). Nevertheless, in a short time period, the repeats recover their length. Why should
this happen? After modelling was brought to bear upon the issue, the answer is: this is regulation of
mutation.

The step-by-step explanation: transcriptional loads induce mutations due to a replication/transcription
conflict (García-Muse and Aguilera, 2016). When the translational and transcriptional machinery of the
cell bump into each other, this causes increased chance of mutations. Within the tandem repeats of rRNA
genes, there are so-called replication fork barriers (RFB). These are areas on the genome where proteins
can bind that stop the unbinding of base pairs necessary for DNA replication (Brewer and Fangman,
1988). These barriers cause replication to wait until transcription is done, and diverts mutations that
might become SNPs to instead become duplications or deletions. The TOR pathway in yeast, which is
involved in activating rRNA transcription, also biases mutations towards duplications.

The model

How did we learn the above explanation? The model worked with a population whose size was kept
constant. Cells can pump in a resource, which costs them energy. Cells need an enzyme (the pump) to
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do this. When amino acid concentrations in the cells rise, this results in more transcription. There are
a few types of genes on the genome (enzymes, rRNA, ribosomal proteins, household genes). All genes
are transcribed to mRNA. Mutation at the gene level (a SNP) causes an mRNA to become inactive.
Housekeeping genes need to be produced in certain concentrations (this is thus an external fitness
criterion). There is a background mutation chance, and a conflict between transcription and translation
imposes an additional chance of mutation (note: if this is left out, the model only holds at very high
mutational rates). The additional mutation chance on regions with conflict between transcription and
translation is evolvable: the chance of mutation is constant, but the type of mutation (mutational
operator) can be changed (SNPs, deletions or duplications) by evolution.

Model results

We first look at the case where there is only the background mutation rate (i.e. transcription/translation
conflict is left out). In such a situation, the genome inflates, and interdivision time is high (Figure
7.1top left and bottom left, respectively). There are many inactive genes (Figure 7.1top right). If
the extra evolvable mutation rate is added, the problem of inactive genes is alleviated: genome size
shrinks, inactive genes are few and far between, and the interdivision time is markedly reduced. The
inactivating mutations (SNPs) are almost nonexistant, whereas duplications and deletions do happen,
which is selected for by the system (Figure 7.1bottom right). Here, adding mutations of a certain type
alleviates genome deterioration: allowing more mutations resolves the problem of increasing interdivision
time and a large proportion of inactive genes.
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Figure 7.1: Yeast transcription and translation conflict. Situations with only background mutations
(µBG) or additional evolved mutational load because of replication/transcription conflict (µTR). Left:
genome size and interdivision time. Top right: amount of active and inactive genes (genes become
inactive due to SNPs). Bottom right: evolution of the mutational operator that is used for the
additional mutation rate due to transcription/replication conflict. The system clearly prefers duplications
and deletions, and this ameliorates the problem of inactive genes. Taken from work that is partially
unpublished and (Colizzi and Hogeweg, 2016).

Intermezzo: comparison with mutator strains E. coli

We have seen a similar type of behaviour in the mutator screen of E. coli. There, if an individual was
turned into a mutator, it expanded the non-coding parts of its genome. This made the mutational
neighbourhood into a U-shape. First, there was a loss of fitness, however, following that, there
was less deterioration because of slightly deleterious mutations. By increasing the non-coding parts of
the genome and decreasing the coding part of the genome, the chance for duplications, deletions and
LCRs increased (remember, SNPs in non-coding parts of the genome didn’t matter). Because selection
on deleterious mutations was stronger (the compressed coding part causes any mutations therein to be
(almost) lethal), a strong U-shape emerges. [In a similar vein, the system here chooses duplication and
deletions over inactivating SNPs, increasing lethality and neutrality (duplication is neutral, deletion is
more often lethal), and decreasing the amount of inactive genes, similar to what yeast does with TOR
and replication fork barriers (Colizzi and Hogeweg, 2016).

There are, however, important differences. In the E. coli case, duplication and deletion probability could
only be increased by evolving a larger genome. Here, there is a parameter that governs what type of
mutations the added mutation rate will inflict. However, similar increase of dupdels over SNPs is seen,
so the two findings are qualitatively linked. If given the chance, a system will choose more lethality and
more neutrality.
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Deeper look into model results

Why does the transcription-translation problem arise at all? There is a short-term pressure to obtain
active genes (you want housekeeping genes at certain levels) by duplication of these genes. However, this
short-term pressure leads to an increase in genome size. This, in turn, increases the mutational load.
If this mutational load becomes too large, inactive genes are likely to result (due to SNPs), leading to
mutational breakdown (i.e. decrease in fitness due to rampant mutation). We see that the ratio of
active genes over inactive genes is often lower in the current population (dark red) than for the ancestors
(blue) (Figure 7.2). Thus, mutational breakdown is frequent. On the right, we can see that there is no
fitness effect of removing rRNA genes, just like the finding in yeast that prompted this model.

Figure 7.2: Transcription and translation conflict hinges on mutational breakdown and loss of genes
gives no loss of fitness. Left: proportion of active genes over total genes over evolutionary time. Plotted
are the distribution in the current population (dark red) and the ancestral population (blue). There is
often a loss of active genes due to mutational breakdown. Right: removing up to 20% rRNA genes
in the model has no fitness effect, just like in yeast. Taken from work that is partially unpublished and
(Colizzi and Hogeweg, 2016).

Bottom line

An elaborate system evolved for long-term evolutionary purposes. This is thus a nice example of evo-evo,
the evolution of evolvability. By choosing duplications and deletions over SNPs, the system has less
of a burden of inactive genes. Real yeast might have many rRNA genes with replication fork barriers
for the same reason, to alleviate mutational pressures caused by the transcription/replication conflict.
Different kinds of mutations can have many effects on a system, and evolution might prefer one over the
other. Dobzhansky was thus right: nothing makes sense except in the light of evolution (why have many
rRNA genes if losing up to 20% shows no fitness effect? Long-term evolutionary optimisation). It was
not predefined in this model what good was. The only fitness criterion was that housekeeping genes
were needed in certain concentrations, and that growth was needed. These are very minor assumptions:
we never explicitly forced a criterion that more rRNA genes was better for the system. That is what a
mini-model might do (more on that in the next section), but we allowed the system freedom to evolve
a solution. In this case, we see that the system wishes more duplications and deletions, increasing the
amount of rRNA genes, and alleviating the conflict.

Intermezzo: experimental and modeling strategies
We will now look at how multi-level evolutionary modeling can correct errors in thinking that might arise
due to other modeling and even experimental approaches. Experiments use controlled conditions. It is
assumed that, in this way, the internal state of different replicates is the same, or as similar as possible
(due to few fluctuations in environment). This limits the degrees of freedom of a system (organism).
Mini-models allow one to study the parameter space and choose good parameters based on the outcome
of the modeling. Basically, a mini-model is heavily based on experimental outcomes and knowledge
(such as measured kinetic rates of reactions) and you vary parameters to see what this does to the
system. Detailed models use many measured or estimated (reasonable, is often claimed) parameters
to very stringently model an experimental system. Whereas a mini-model would take core reactions,
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a detailed model would take all known reactions, estimate all parameters that are unknown, and thus
try to model all or most intricacies of a system. Note that such systems suffer from the parameter
curse: they need huge amounts of parameters to work, and these are often very hard to find. Hence the
reasonable parameters. However, a cautionary tale exists of ecologists who, with reasonable parameters,
made an ecological model that predicted the need for a population of several monsters in Loch Ness
(about 1-156, the researchers reckoned, afterwards thanking their colleague for drawing their attention
to this problem, because they had been unaware that monsters were a problem) (Sheldon and Kerr,
1972). We do not really believe, currently, that such a predator exists. Thus, reasonable parameters
can be made to predict almost anything, and one should always be cautious in using and trusting such
parameters. Finally, minimal evolutionary optimisation models ask what certain properties could
be good for in a given system, but often include only a very minimal representation of the system. Bet
hedging models are an example.

Is the lac-operon a bistable switch?
The lac operon is the prototype of gene regulation. It is a bacterial set of genes that regulates the uptake
of lactose. LacY makes a lactose pump and LacZ makes beta-galactosidase, which breaks down lactose.
Glucose reduces the expression of the operon, whereas a shortage of energy and sensing of allolactose
stimulate the expression of the genes in the operon (Ozbudak et al., 2004) (Figure 7.3). Classical mini-
models, based on experimental data, showed that there was bistability and hysteresis in this system:
for a certain concentration of allolactose, the operon could be either active or inactive, depending on
whether allolactose was previously high and was now decreasing, or whether it was previously low and
was now increasing. Thus, for a certain range of allolactose, there were two possible states of the system.
This finding from models based on measured parameters was later experimentally verified (Ozbudak
et al., 2004). Models and experiments agree, so that is that. Well, not really, as we shall see.

Figure 7.3: Workings of the E. coli Lac operon. Taken from: [REF NEEDED].

Very complex models of lac operon dynamics had been made. Paulien and von Hoek adapted such a
complex model (Wong et al., 1997), and allowed the parameters governing promoter function to evolve
(Van Hoek and Hogeweg, 2006). Note that there was again a huge parameter curse. Worse, a literature
search of experimental parameters (which are often treated as representing a ground truth) showed that
they could vary by three orders of magnitude. What parameter is one then to pick? Of course, this
variation is not wholly unexpected: the parameter for E. coli kinetics does not exist, it is a metaphysical
construct. There will always be differences between strains and conditions. Thus, even experimental
parameters are uncertain.

Nevertheless, the model was parameterised using the best of our knowledge. This was the most-studied
regulatory system, and it was often considered an AND-gate: it was ON if lactose AND NOT glucose,
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otherwise it was off. However, recent promoter measurements seemed to indicate a more graded response
of the promoter to metabolites (Figure 7.4). Still, it was maintained that in real E. coli, bistability is
the norm.

Figure 7.4: Lac operon promoter activity for varying levels of IPTG (an artificial inducer of the operon)
and cAMP (signals energy state). Adapted from: (Van Hoek and Hogeweg, 2006), experimental data for
figure provided by (Setty et al., 2003).

The adapted model

Measured values were used for all parameters (as far as possible) except those governing lac operon
activation: those were set to some arbitrary value and then allowed to evolve, 11 in total. Paulien and
von Hoek found out that reducing the dimensionality caused an evolutionary lock-in (if some parameters
were bundled to ease computation, no good solution evolved). Specifically, there were five parameters
that explicitly impacted promoter activity, but these five depended on seven other parameters in the
model. If only the 5 supraparameters were allowed to evolve, evolution was too constrained and there
was no result. This is a reminder that evolution needs enough degrees of freedom to find good solutions.

An environment was designed with fluctuating levels of glucose and lactose. This was actually one of
the most difficult parts to model. Why? Because cells immediately take up glucose or lactose they
encounter, and so many don’t experience the same levels of glucose and lactose, because cells at sites
of inflow immediately change the levels in the environment. Eventually, the environment was made by
creating global, aperiodic influx of glucose and lactose in the medium, diffusion, and scaling. Growth,
division, and decay of cells was implemented. There are many different time scales in the model: proteins
outlast the cells (in bacteria, proteins have (much) longer lives than the cell that makes them (Koch and
Levy, 1955)), there is metabolism, cell division, there are environmental switches, and there is evolution.

The operon is then initialised as a bistable switch and the aforementioned 11 parameters are allowed to
evolve. The bottom line is that the model uses evolution as a trick to cope with parameter uncertainty:
what evolves by itself, if allowed the freedom to do so?
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Adapted model results and observables

Comparing the outcomes is also a difficult ordeal. Ancestor traces were used, as well as competing
last common ancestors an n amount of times, and competing the last populations an n amount of times
to determine what the best evolved promoter function is. If one looks at the changes in individual
parameters over time, the picture that emerges is quite uninformative (Figure 7.5A). There just seem
to be variations all the time, without any clear goal or optimum emerging. However, if one looks at
phenotypes in the four extreme conditions (4 combinations of low/high glucose/lactose) a trend emerges:
while there are still large fluctuations, especially for the bottom two, the phenotype seems to be evolving
towards something (Figure 7.5B).

Figure 7.5: Evolved parameters and phenotypes in different nutrient conditions. A: evolutionary
trajectory of the 5 main parameters allowed to evolve. There is no clear pattern here. B: evolutionary
trajectory of the phenotype in four extreme conditions. Some directionality is apparent, though there
are large fluctuations. Based on: (Van Hoek and Hogeweg, 2006).

If one compares the best last common ancestor with the published promoter function, they match very
well (see figure below). However, there was no bistability in this sytem (see figure below). In fact, the
model evolved away from bistability. How could this be?

Figure 7.6: Experimentally measured promoter function and promoter function evolved in the model.
Though these functions look alike, there is no bistability in the model (right). Based on: (Van Hoek and
Hogeweg, 2006), experimental data for figure provided by (Setty et al., 2003).

The devil is in the missed details

The evolved promoter from the work by Paulien and von Hoek did not have bistability. When this
work was due to be published, a disheartening 2004 experimental paper came out that claimed to have
found bistability (Ozbudak et al., 2004). However, stowed far away in its tome of supplemental data
and methods was a liberating sentence that said that if lactose was used bistability did not happen. As
it turns out, experiments had always used artificial inducers of the lac operon instead of actual lactose.
However, these artificial inducers cause different behaviours than actual lactose, because they cannot be
metabolised. If you look at the figures of the observed behaviour by Setty, you see IPTG on one axis:
this is the artificial inducer. Thus, the experimentalists had found the result as well, but failed to report
it properly or reckon with what it implies.
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This was the story of how models and experiments combined can still be wrong. Experimentalists are
hooked to doing things under controlled conditions. For good reason, but it can go too far. In this
case, the artifical inducer IPTG made sure that metabolic conditions did not change (i.e., metabolism
of actual lactose would affect cellular energy levels and hence the activation of the lac operon), but this
led to wrong results precisely because the artificial inducer could not be metabolised. If modelers then
fit models to these wrong results, 50 years of false thinking can follow.

The new results showing that there is no bistability were beautifully illustrated in a 2012 experimental
paper (Quan et al., 2012), and a 2017 modeling and experimental paper (Zander et al., 2017), but it
took a long time. Only by debugging assumptions of both experiment and models could this finding
be made.

Conclusion evolutionary modeling to test regular systems biology and experiments

Here, evolution was used as a trick to overcome parameter uncertainty (the parameter curse that
plagues very specific models). This helped to debug long-held misconceptions. Evolutionary change
in the parameters themselves was non-informative. Instead, the change in the phenotype (promoter
behaviour) shed light on what was happening with the promoter function. Experiments are not stupid
but, like models, have limitations: things that can be done, and things that cannot easily be done
in a controlled fashion. Thus, experimental results should not be trusted blindly. The parameters of a
biological system are a metaphorical construct. If you consider evolution, standing variation, and (slight)
differences in conditions, it is easy to see that no true parameters for a system exist.
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Chapter 8

Final words: on bananas, elephants,
and how to model biocomplexity

This section tries to take everything we have looked at and provide some sort of final message. A daring
goal, so let’s get to it. After all that we have learned, the question is: how to model biocomplexity?
Biology is filled to the brim with interactions on multiple scales of space and time. Many models
use reductions of this complexity that can be misplaced: adaptive dynamics, for example, separates
evolutionary and ecological time scales, and while some of its results may be interesting, the conclusions
one reaches through such modelling are possibly only marginally applicable to the real world. Similarly,
simple ODEs might make one conclude that cheaters cannot possibly coexist with altruists, while we’ve
seen from the exercises that this not true for spatial systems.

Let’s recap some defining properties of biocomplexity:

1. There is a locality of interactions, which often goes hand in hand with pattern formation in space.
There are often many different entities in small numbers. This is an important difference with
physics (modeling): particles in biology are not equal. We can capture this part of complexity by
introducing locality (CA framework), and using individual-based models.

2. In biology, there are multiple levels of organisation. These levels are not separate from each other,
but actively influence each other in both directions: from micro- to macro-level, and from macro-
to micro-level. Early death of replicators does not make sense from the perspective of the micro-
level, but it evolves due to feedback from the higher level (propagating waves, which are Darwinian
entities) on the lower level.

3. There are multiple time scales: ecology, evolution, regulation, etc. Though these processes might
seem as entirely different in scope and timing, we have seen that separating time scales is a dan-
gerous business.

4. Organisms are evolved systems, and bear signatures of evolution. Neutrality is extremely impor-
tant, and evolution can work to change evolution

Given these properties, how can we work with this complexity? As a first, models should be simple
ENOUGH but not more so. That is a conundrum: what is the right level of complexity for tackling a
certain problem? That is difficult to know, and implies that we often have to look at different modeling
approaches (caricatures). Additionally, because we know that biological systems can have micro-level
properties such that higher-order structures arise, so you need to formulate models that can do these
things.

We observe a lot of complexity in life as well. The mechanism of evolution is random mutations and
selection. Fitness is, in principle,how many descendants you create in a certain time frame (though
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note that it is a time-dependent function). Complexity in theory means that you reproduce less fast
(we cannot compete with a bacterium). Classical models often cannot account for the inexorable rise in
complexity. If they do, it is often because of a very narrow pre-defined fitness criterion. If you take the
highest growth as a criterion, complexity would never arise. Why are there bats and cats, and not just
microbes (Koonin, 2011)? Bats and cats have arisen, so perhaps taking growth-rate as a fitness criterion
is not informative enough to what life actually does. Additionally, there is the information threshold:
given a certain mutation rate, only so much information can be retained evolutionarily.

About that elephant specifically
In a session with John Maynard Smith that Paulien attended circa 1975, he said that as biologists, we
should all go to the zoo once a year and look at an elephant. Then, we should solemnly intone: ’Elephant,
I believe you got about by random mutations’. Then, we should spend yet another year trying to find
out how, because population genetic models do not explain an elephant, neither can many other models.
This belief is real and founded, and it is so that elephants and other complex systems arose through
random mutations and selection (Figure 8.1), but we do not, in reality, know how all this complexity
arose.

Figure 8.1: Do you really need a caption for this picture? I’d say it doesn’t take genius level wetware
computations to figure out what you might be looking at here. Still reading? Have it your way then. It
might surprise you to learn that this is, in fact, an elephant. Satisfied? (image taken from: (Manuel).)

Maynard Smith and Sathmary versus bioinformatics
Maynard Smith and Sathmary wrote an influential book called The Major Transitions in Evolution,
in which they mapped the important points that increased the complexity of organisms.They followed
a course that is quite different from what we have tried to do with bioinformatics. They focussed on
what did happen in evolution, noting major events, and trying to find explanations for them. In fact,
they reconstructed these intermediate steps such that the evolution of higher levels of complexity could
be fitted to the idea of small cumulative changes with positive effects. Specifically, they wrote ’The
transitions must be explained in terms of immediate selective advantage to individual replicators...’. I
presume you can already see where this is going: we have seen that one of the defining marks of biology
is the emergence of multiple levels and their feedbacks on each other, and we have seen that properties
can emerge that are not to the immediate selective advantage of individual replicators!

So, what have we done? We took Darwinian selection, added local interactions (as a sort of truism,
i.e. we assume most interactions in biology are best modeled by local processes) and asked: what does
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happen? In other words: we did not set out to push empirical knowledge into this theory, but instead
went from the minimal requirements of the theory, then let it unfold and looked at what happens.

So what are these major transitions that Maynard Smith and Sathmary identify? Let us refer to the
table below that we have shamelessly ripped from their book:

What is common to all these steps? A form of self-sufficient entities which become part of a whole,
which inevitably leads to conflicts. Here, this is illustrated with conflicts that are known to exist (meiotic
drive, parthenogenesis). Often, these things involve a division of labour: RNA going to DNA and RNA,
direct cellular reproduction changing into germline and soma, and social insects, where reproduction
and maintenance are spread over distinct individuals. There is also a change from limited to unlimited
inheritability, or attractor-based versus storage-based inheritability.

In the bioinformatic view, we instead confront complexity with different levels of multilevel evolution:

1. Replicators and self-organised spatial patterns arose as an automatic consequence of local interac-
tions.

2. Replicators within protocells, or, in other words, replicators within replicators, where we choose
for an explicit and pre-imposed coupling of dynamics.

3. We have looked at (virtual) cells, with duplications, deletions, large chromosomal rearrangements,
plasmids, and transposons. The genome is, itself, a replicator, but because of duplications, dele-
tions, rearrangements, etc., genes themselves are also in some form a replicator.

4. We then have multilevel genotype-phenotype mapping. We looked at the evolution of coding
structures, primarily in RNA. All the stages between the genotype and the phenotype are evolved
interactions, every molecule in a cell needs to do its job and somehow survive. Again, multiple
levels are present here, though it is less clear-cut than replicators within replicators for the vesicle
system.

To reiterate: Maynard Smith and Sathmary took immediate selective advantage for an individual repli-
cator as a constraint. How does that square with what we have seen? Well, we never imposed that as
a criterion. We didn’t constrain what might happen by stating that the individual replicator should,
always, benefit. Given that biology is this huge multilevel process, from strands of DNA all the way to
the scale of the organism, part of this terminology of immediate benefit is very doubtful. Additionally,
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evolution can select things that provide benefit in the long term as we have seen. We have also seen that
often, things that do not provide immediate benefits can later lead to fitness (think of genome expansion,
that is neutral or detrimental at first, but leads to high fitness later in evolution). Neutrality, too, is an
example: lots of neutrality is not of immediate selective advantage, but it does make a population fitter
by reducing non-neutral mutations. So is the “immediate”-part in this sentence, really true?

If we are to go by immediate benefit, we might ask: immediate benefit, to whom? In the spatial
patterns with replicators that formed, early death could evolve. This was not of immediate benefit to
the replicator, but it was of immediate benefit to the wave. Note that these sort of reasoning mistakes
riddle the field: can we truly say whether something is beneficial or not out of hand? What we have seen
indicates that no, we cannot.

Why models? What are they for?
Besides the different approaches to modeling complexity, we might ask what models are for, exactly.
Well, models have many uses. One is that they can be a proof of principle: you can prove that it is
possible for phenomena or behaviours to occur given some circumstance. Think of D.S. Wilson’s group
selection model.

We can also use modeling to get a baseline expectation. For example, given models of networks, we came
to assume that they would have multiple attractors. By studying the basic properties of networks, we
figured out that this was to be expected. In spatial systems, we found that pattern formation was the
norm, rather than a special exception. In the same vein, we can use them for expectation exploration,
where we can ask: what happens if we assume...?

Modeling also allows us to plant our flags in hitherto unexplored regions. For example, the paradigm
RNA genotype-phenotype mapping system that revealed many interesting properties of the evolutionary
process provided a search image, a first flag planted firmly in the soil of discovery. From this beacon,
similar properties were soon found in many more aspects of biology. Thus, models can provide search
images: often extreme examples that nevertheless show what might be possible. Another example is
the Lotka-Volterra model: it is an absolutely preposterous model (prey never die, for one), but it taught
us a lot about population dynamics and more.

Models can help us debug assumptions or ideas. We saw this explicitly in the case of the Lac operon,
where 50 years of experimental and model knowledge was dispelled with a model that evolved parameters
controlling operon expression to optimal values. You can draw an analogy with programming: if you
just look at the code, it is hard to find bugs. But if you instead let the program run, it is much easier
to find where the logic goes wrong. The same holds for scientific theories and findings: models force you
to make things explicit, allowing efficient debugging.

Models can also be predictive. However, in this case, not only do you need a correct model, you also need
parameters and initial conditions. If we compare aerodynamics and weather prediction, we can say that
models of aerodynamics work pretty well, but weather prediction is still not too good, simply because
the initial conditions are almost impossible to know precisely enough. You also need to ask yourself what
they are predictive of exactly, and what the constraints are. For example, Newton’s apple was a model
for how forces work, which eventually led to much more than you might at first think. This is another
example of Results ++.

There are many flavours and purposes of models, but the simplest answer is that they are for under-
standing.

Modes of explanation
Let us start with a great Dutch saying that showcases the very best of our nation’s creative genius:
’Waarom, waarom, waarom zijn de bananen krom?’. Why, oh why, are bananas bent? Well, the first
mode of explanation is that a yellow fruit that is bent is a banana, so if it is not bent is is not a banana.
This is a tautology.

This particular tautology is uninformative. Such a tautology is often invoked when it comes to survival
of the fittest, as if that marginalises how important it is. On the other hand, survival of the fittest for any
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Figure 8.2: “Waarom, waarom, waarom zijn de bananen krom?”

explicit fitness is not necessarily true: the host-parasitoid example showed that low-fitness parasitoids
in the spiral centre nevertheless ruled the system in the long term. At the same time, some tautologies
can be very deep insights. For example, during the exercises, you will have discussed that survival of the
fittest is equal to competitive exclusion, they are thus a tautology. However, understanding where these
different terms came from can nevertheless be insightful.

Another mode of explanation could be that in almost all cases, bananas are bent. Hence, a straight
banana is a pathological case. However, we often think a straight banana would be the simplest case.
Oftentimes, what has been researched are specific cases, such as model organisms. It is very interesting
to know what generic properties are. You can also think from the angle of why you would not want to
be bent? Are we even asking the right questions? In the course we have discussed many examples where
the question ‘why’ just turned out to be the wrong question to ask! For example: why are lymph nodes
structured as they are? Because structure is the default, suboptimal case, while randomness is in fact
very hard to achieve!

A third mode of explanation is imposing a certain value or benefit. A bent banana is optimal, one could
say. However, if I do not define what optimal means a priori, I can say a phenomenon is optimal for
something. For example, if there is a robot that continuously walks in circles, you can say that is optimal
for guarding an area. However, in truth, one of the motors could just be blocked so only the left wheel
moves, turning the robot in circles. Thus, optimality by itself is an empty statement. Note also that
a lot of behaviour that is hailed as (evolutionaryily) optimised could just be TODO-based behaviour:
simple rules whose resultant behaviours are determined by the environment. We have also learnt to ask
the question ’optimal for whom?’. Early death is...well, a death sentence for the individual replicator,
but not for the higher-level wave.

Yet another mode of explanation is one of side-effects. Perhaps being bent is a side-effect of growing
in bunches, or a side effect of growing in the presence of gravity. We could also explain away banana
bentness as a side-effect of growth. Not evolutionary, but rather TODO (i.e. an individual banana should
grow, if the forces during growth make it bent, that is simply a side-effect of the needed behaviour). We
can possibly identify the gene, or the genes, that cause bentness in bananas. If we knock out enough
genes, we might be able to pinpoint, on a genetic level, what causes a banana to be bent. We could then
reiterate, and ask the question why this gene is the way it is, why plants are the way they are, why the
earth is the way it is, etc. This infinite regress will eventually make us end up at the big bang. Surely,
it is not useful to say that bananas are bent because of the big bang (?).

To wrap up, we can (attempt to) make a detailed model of real bananas and see whether we can
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explain why they grow in a bent shape if we input all known data. The point of this exercise is that
one question, no matter how nonsensical, can have many different answers, given from a plethora of
viewpoints and levels. It is best to view a question, problem, or behaviour, from many different angles to
get the ‘complete’ answer. We have advocated this during the course, by using similar rules in different
systems, and seeing whether similar behaviours show up, showing that they are robust to changes in
model formalism (our viewpoint) and general.

One last time, Mr. Elephant

Elephant, I believe you have come about by random mutations, local interactions, multi-level selection,
genome structuring, mutational priming (non-random mutations), and who knows what else, and I can
only understand you by simplification. But not to one level.

Thanks for reading, folks!

182



Chapter 9

Glossary of bold terms

This section attempts to summarize all the jargon you have come to learn to appreciate by reading this
document. Is something missing? Please let us know!
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